Skip to main content
Log in

Mutation and a high-throughput screening method for improving the production of Epothilones of Sorangium

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The epothilones are highly promising prospective anticancer agents that are produced by the myxobacterium Sorangium cellulosum. We mutated the epothilone producing S. cellulosum strain So0157-2 to improve the production of epothilones. For evaluation in high-throughput of a large number of mutants, we developed a simple microtiter method for primary screening. Using the classical UV-mutation method plus selection pressures, the production capacity was increased about 0.5∼2.5 times the starting strain. The mutants with higher production and different phenotypes were further subjected to recursive protoplast fusions and the fusants products were screened under multi-selection pressure. Furthermore, the production was greatly increased by the genome shuffling. For epothilone B, the production of one fusant was increased about 130 times compared to the starting strain, increasing from 0.8 mg l−1 to 104 mg l−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Höfle G, Bedorf N, Gerth K, Reichenbach H (1993) Epothilone, dere Herstellungsverfahren sowie sie enthaltende Mittel. DE 4138042 A1, published May 27 (priority Nov. 19, 1991)

  2. Gerth K, Bedorf N, Höfle G, Irschik H, Reichenbach H (1996) Epothilons A and B: Antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria)—production, physico-chemical and biological properties. J Antibiot 49:560–564

    CAS  Google Scholar 

  3. Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM (1995) Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 55:2325–2333

    CAS  Google Scholar 

  4. Larkin JM, Kaye SB (2006) Epothilones in the treatment of cancer. Expert Opin Investig Drugs 15:691–702

    Article  CAS  Google Scholar 

  5. Julien B, Shah S (2002) Heterogonous expression of epothilone biosynthetic genes in Myxococcus xanthus. Antimicrob Agents Chemother 46:2772–2778

    Article  CAS  Google Scholar 

  6. Tang L, Shah S, Chung L, Carney J, Katz L, Khosla C, Julien B (2000) Cloning and heterologous expression of the epothilone gene cluster. Science 287:640–642

    Article  CAS  Google Scholar 

  7. Mutka SC, Carney JR, Liu YQ, Kennedy J (2006) Heterologous Production of Epothilone C and D in Escherichia coli. Biochemistry 45:1321–1330

    Article  CAS  Google Scholar 

  8. Lau J, Frykman S, Regentin R, Qu S (2002) Optimizing the heterologous production of Epothilone D in Myxococcus xanthus. Biotechnol Bioeng 78:280–288

    Article  CAS  Google Scholar 

  9. Frykman SA, Tsuruta H, Lacari PJ (2005) Assessment of fed-batch, semicontinuous, and continuous Epothilone D production processes. Biotechnol Prog 21:1102–1108

    Article  CAS  Google Scholar 

  10. Reichenbach H (2001) Myxobacteria, producers of novel bioactive substances. J Ind Microbiol Biotechnol 27:149–156

    Article  CAS  Google Scholar 

  11. Gerth K, Pradella S, Perlova O, Beyer S, Müller R (2003) Myxobacteria: proficient producers of novel natural products with various biological activities -past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol 106:233–253

    Article  CAS  Google Scholar 

  12. Reichenbach H, Dworkin M (1992) The Myxobacteria. In: Balows A, Trüper GH, Dworkin M, Harder W, Schleifer KH (Eds) The prokaryotes, vol 2. Springer, New York, pp 3416–3487

  13. Jaoua S, Neff S, Schupp T (1992) Transfer of mobilizable plasmids to Sorangium cellulosum and evidence for their integration into the chromosome. Plasmid 28:157–165

    Article  CAS  Google Scholar 

  14. Julien B, Fehd R (2003) Development of a mariner-based transposon for use in Sorangium cellulosum. Appl Environ Microbiol 69:6299–6301

    Article  CAS  Google Scholar 

  15. Kopp M, Irschik H, Gross F, Perlova O, Sandmanna A, Gerth K, Müller R (2004) Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So ce12 and So ce56: development of a mariner-based transposon mutagenesis system. J Biotechnol 107:29–40

    Article  CAS  Google Scholar 

  16. Zirkle R, Ligon JM, Molnár I (2004) Heterologous production of the antifungal polyketide antibiotic soraphen A of Sorangium cellulosum So ce26 in Streptomyces lividans. Microbiology 150:2761–2774

    Article  CAS  Google Scholar 

  17. Bode BH, Müller R (2006) Analysis of myxobacterial secondary metabolism goes molecular. J Ind Microbiol Biotechnol 33:577–588

    Article  CAS  Google Scholar 

  18. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    Article  CAS  Google Scholar 

  19. Stephanopoulos G (2002) Metabolic engineering by genome shuffling. Nat Biotechnol 20:660–668

    Article  CAS  Google Scholar 

  20. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, del Cardayre S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712

    Article  CAS  Google Scholar 

  21. Dai MH, Copley SD (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol 70:2391–2397

    Article  CAS  Google Scholar 

  22. Dong H, Li YZ, Hu W (2004) Analysis of purified tubulin in high concentration of glutamate for application in high throughput screening for microtubule-stabilizing agents. Assay Drug Dev Technol 2:621–628

    Article  CAS  Google Scholar 

  23. Li ZF, Zhao JY, Xia ZJ, Shi J, Liu H, Wu ZH, Hu W, Liu WF, Li YZ (2007) Evolutionary diversity of ketoacyl syntheses in cellulolytic myxobacterium Sorangium. Syst Appl Microbiol 30:189–196

    Article  CAS  Google Scholar 

  24. Nguimbi E, Li YZ, Gao BL, Li ZF, Wang B, Wu ZH, Yan BX, Qu YB, Gao PJ (2003) 16S-23S ribosomal DNA intergenic spacer regions in cellulolytic myxobacteria and differentiation of closely related strains. Syst Appl Microbiol 26:262–268

    Article  CAS  Google Scholar 

  25. Regentin R, Frykman S, Tsuruta H, Licari P (2003) Nutrient regulation of Epothilone biosynthesis in heterologous and native production strains. Appl Microbiol Biotechnol 61:451–455

    CAS  Google Scholar 

  26. Gerth K, Steinrich H, Hofle G, Reichenbach H (2000) Studies on the biosynthesis of epothilones: the biosynthetic origin of the carbon skeleton. J Antibiot 53:1373–1377

    CAS  Google Scholar 

  27. Gerth K, Steinmetz H, Höfle G, Reichenbach H (2001) Studies on the biosynthesis of epothilones: the PKS and Epothilone C/D monooxygenase. J Antibiot 54:144–148

    CAS  Google Scholar 

  28. Wyrick PB, Rogers HJ (1973) Isolation and characterization of cell wall-defective variants of Bacillus subtilis and Bacillus licheniformis. J Bacteriol 116:456–465

    CAS  Google Scholar 

  29. Xu ZN, Shen WH, Chen XY, Lin JP, Cen PL (2005) A high-throughput method for screening of rapamycin-producing strains of Streptomyces hygroscopicus by cultivation in 96-well microtiter plates. Biotechnol Lett 27:1135–1140

    Article  CAS  Google Scholar 

  30. Jin ZH, Lin JP, Xu ZN, Cen PL (2002) Improvement of industry-applied rifamycin B-producing strain, Amycolatopsis mediterranei, by rational screening. J Gen Appl Microbiol 48:329–334

    Article  CAS  Google Scholar 

  31. Gravius B, Glocker D, Pigac J, Pandza K, Hranueli D, Cullum J (1994) The 387 kb linear plasmid pPZG101 of Streptomyces rimosus and its interactions with the chromosome. Microbiology 140:2271–2277

    Article  CAS  Google Scholar 

  32. Adrio1 JL, Demain AL (2006) Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev 30:187–214

    Article  CAS  Google Scholar 

  33. Abe M, Nakai T, Umetsu H, Sasage D (1984) Regeneration of mycelial protoplasts from Lyophilum shimeji. Agic Biol Chem 48(6):1635–1636

    CAS  Google Scholar 

  34. Shirai M, Okada Y, Aida T (1985) Conversion of protoplasts of colistin-producing forms. Agric Biol Chem 49(3):595–560

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants 30370792, 30400009, 30671192 of Chinese National Natural Science Foundation. The authors thank Dr. Roberta Greenwood for her help in editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-zhong Li.

Additional information

Guo-li Gong and Xin Sun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Gl., Sun, X., Liu, Xl. et al. Mutation and a high-throughput screening method for improving the production of Epothilones of Sorangium . J Ind Microbiol Biotechnol 34, 615–623 (2007). https://doi.org/10.1007/s10295-007-0236-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0236-2

Keywords

Navigation