Skip to main content
Log in

Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Improvement of pristinamycin production by Streptomyces pristinaespiralis was performed by using recursive protoplast fusion and selection for improved resistance to the product antibiotic in a genome shuffling format. A 100-μg/ml pristinamycin resistant recombinant, G 4-17, was obtained after four rounds of protoplast fusion, and its production of pristinamycin reached 0.89 g/l, which was increased by 89.4% and 145.9% in comparison with that of the highest parent strain M-156 and the original strain CGMCC 0957, respectively. The subculture experiments indicated that the hereditary character of high producing S. pristinaespiralis G 4-17 was stable. It is concluded that genome shuffling improves the production of pristinamycin by enhancing product-resistance in a stepwise manner. Pristinamycin fermentation experiments by recombinant G 4-17 were carried out in a 5-l fermentor, and its production of pristinamycin reached 0.90 g/l after 60 h of fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aumercier M, Bouhallab S, Capmau ML, Le Goffic F (1992) RP 59500: a proposed mechanism for its bactericidal activity. J Antimicrob Chemother 30(Suppl. A):9–14

    Article  CAS  Google Scholar 

  • Chen JM, Xu LT (1991) Analysis of Antibiotic Industry, 2nd edn. Pharmaceutical Science, Beijing, pp 109–139

    Google Scholar 

  • Cocito C, Chinali G (1985) Molecular mechanism of action of virginiamycin-like antibiotics (synergimycins) on protein synthesis in bacterial cell-free systems. J Antimicrob Chemother 16(Suppl. A):35–52

    Article  CAS  Google Scholar 

  • Corvini PFX, Gautier H, Rondags E, Vivier H, Goergen JL, Germain P (2000) Intracellular pH determination of pristinamycin-producing Streptomyces pristinaespiralis by image analysis. Microbiol (Reading, UK) 146(10):2671–2678

    Article  CAS  Google Scholar 

  • Corvini PFX, Delaunay S, Maujean F, Rondags E, Vivier H, Goergen J-L, Germain P (2004) Intracellular pH of Streptomyces pristinaespiralis is correlated to the sequential use of carbon sources during the pristinamycins-producing process. Enzyme Microb Technol 34(2):101–107

    Article  CAS  Google Scholar 

  • Dai MH, Copley SD (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol 70(4):2391–2397

    Article  CAS  Google Scholar 

  • Hida H, Yamada T, Yamada Y (2007) Genome shuffling of Streptomyces sp U121 for improved production of hydroxycitric acid. Appl Microbiol Biotechnol 73(6):1387–1393

    Article  CAS  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM (1985) Genetic Manipulation of Streptomyces, a laboratory manual. John Innes Foundation, Norwich, p 356

    Google Scholar 

  • Hosoya Y, Okamoto S, Muramatsu H, Ochi K (1998) Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob Agents Chemother 42(8):2041–2047

    Article  CAS  Google Scholar 

  • Hotta K, Ishikawa J, Ogata T, Mizuno S (1992) Secondary aminoglycoside resistance in aminoglycoside-producing strains of Streptomyces. Gene 115(1–2):113–17

    Article  CAS  Google Scholar 

  • Hu H, Ochi K (2001) Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Appl Environ Microbiol 67(4):1885–1892

    Article  CAS  Google Scholar 

  • Imada C, Ikemoto Y, Kobayashi T, Hamada N, Watanabe E (2002) Isolation and characterization of the interspecific fusants from Streptomycetes obtained using a liquid regeneration method. Fish Sci 68(2):395–402

    Article  CAS  Google Scholar 

  • Jia B, Jin Z-H, Lei Y-L, Mei L-H, Li N-H (2006) Improved production of pristinamycin coupled with an adsorbent resin in fermentation by Streptomyces pristinaespiralis. Biotechnol Lett 28(22):1811–1815

    Article  CAS  Google Scholar 

  • Jin Z-H, Lei Y, Lin J, Cen P (2006) Improvement of pristinamycin-producing Streptomyces pristinaespiralis by rational screening. World J Microbiol Biotechnol 22(2):129–134

    Article  CAS  Google Scholar 

  • Jin Q, Jin Z, Xu B, Wang Q, Lei Y, Yao S, Cen P (2008) Genomic variability among high pristinamycin-producing recombinants of Streptomyces pristinaespiralis revealed by amplified fragment length polymorphism. Biotechnol Lett, DOI https://doi.org/10.1007/s10529-008-9701-x

    Article  CAS  Google Scholar 

  • Leclercq R, Soussy CJ, Weber P, Moniot-Ville N, Dib C, Chardon H, Eb F, Maugein J, Tande D, Sirot J et al (2003) In vitro activity of the pristinamycin against the isolated Staphylococci in the french hospitals in 1999–2000. Pathol Biol 51(7):400–404

    Article  CAS  Google Scholar 

  • Ng J, Gosbell IB (2005) Successful oral pristinamycin therapy for osteoarticular infections due to methicillin-resistant Staphylococcus aureus (MRSA) and other Staphylococcus spp. J Antimicrob Chemother 55(6):1008–1012

    Article  CAS  Google Scholar 

  • Paquet V, Goma G, Soucaille P (1992) Induction of pristinamycins production in Streptomyces pristinaespiralis. Biotechnol Lett 14(11):1065–70

    Article  CAS  Google Scholar 

  • Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54(3):287–301

    Article  CAS  Google Scholar 

  • Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, del Cardayre S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20(7):707–712

    Article  CAS  Google Scholar 

  • Rodriguez H, Aguilar L, Lao M (1997) Variations in xanthan production by antibiotic-resistant mutants of Xanthomonas campestris. Appl Microbiol Biotechnol 48(5):626–629

    Article  CAS  Google Scholar 

  • Vazquez D (1975) Streptogramin family of antibiotics. Antibiotics 3:521–34

    CAS  Google Scholar 

  • Voelker F, Altaba S (2001) Nitrogen source governs the patterns of growth and pristinamycin production in Streptomyces pristinaespiralis. Microbiol (Reading, UK) 147(9):2447–2459

    Article  CAS  Google Scholar 

  • Wang Y, Li Y, Pei X, Yu L, Feng Y (2007) Genome-shuffling improved acid tolerance and l-lactic acid volumetric productivity in Lactobacillus rhamnosus. J Biotechnol 129(3):510–515

    Article  CAS  Google Scholar 

  • Witte W, Naber KG, Pasemann B, Cuny C, Klare I (1996) In-vitro sensitivity of the pristinamycin combination RP 59500 against Staphylococci. Chemotherapie Journal 5(1):17–22

    CAS  Google Scholar 

  • Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415(6872):644–646

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by National Natural Science Foundation of China (No. 20576122), Department of Science and Technology, Zhejiang Province, China (No. 2004C13007), and Natural Science Foundation of Zhejiang Province, China (No. Y404291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, B., Jin, Z., Wang, H. et al. Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling. Appl Microbiol Biotechnol 80, 261–267 (2008). https://doi.org/10.1007/s00253-008-1540-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1540-0

Keywords

Navigation