Skip to main content
Log in

Genome shuffling of Hansenula anomala to improve flavour formation of soy sauce

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Genome shuffling of mutagenized Hansenula anomala was used to improve soy-sauce flavour by enhancing its salt-tolerance, because the concentration of salt was about 17% in high-salt liquid fermentation of soy sauce. A mutant strain H3-8, with stronger resistance to salt, was selected and screened after three rounds of genome shuffling. It was found that H3-8 could grow in YPD media containing a high salt content and within a wide range of pH. In high-salt liquid fermentation, the soy-sauce flavour components produced by H3-8 were distinctly improved compared with the control strains Zygosaccharomyces rouxii and Torulopsis versatilis. Notably, hydroxyethylmethylfuranone produced by H3-8 was 6.3 times as high as that formed by Z. rouxii. Ethyl acetate synthesized by H3-8 was 734 times higher than that yielded by T. versatilis. Another important aroma component, 4-ethylguaiacol was increased by up to 10.84% compared with T. versatilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akada R (2002) Genetically modified industrial yeast ready for application. J Biosci Bioeng 94:536–544. doi:10.1016/S1389-1723(02)80192-X

    CAS  Google Scholar 

  • Carlson CR, Grallert B, Bernander R, Stokke T, Boye E (1997) Measurement of nuclear DNA content in fission yeast by flow cytometry. Yeast 13:1329–1335

    Article  CAS  Google Scholar 

  • Chiou RYY, Ferng S, Beuchat LR (1999) Fermentation of low-salt miso as affected by supplementation with ethanol. Int J Food Microbiol 48:11–20

    Article  CAS  Google Scholar 

  • Dai MH, Copley SD (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microb 70:2391–2397. doi:10.1128/AEM.70.4.2391-2397.2004

    Article  CAS  Google Scholar 

  • Edlin DAN, Narbad A, Dickinson JR, Lloyd D (1995) The biotransformation of simple phenolic compounds by Brettanomyces anomalus. FEMS Microbiol Lett 125:311–316

    Article  CAS  Google Scholar 

  • Ezeronye OU, Okerentugba PO (2001) Optimum conditions for yeast protoplast release and regeneration in Saccharomyces cerevisiae and Candida tropicalis using gut enzymes of the giant African snail Achatina achatina. Lett Appl Microbiol 32:190–193

    Article  CAS  Google Scholar 

  • Giudici P, Solieri L, Pulvirenti AM, Cassanelli S (2005) Strategies and perspectives for genetic improvement of wine yeasts. Appl Microbiol Biotechnol 66:622–628. doi:10.1007/s00253-004-1784-2

    Article  CAS  Google Scholar 

  • Hecquet L, Sancelme M, Bolte J, Demuynck C (1996) Biosynthesis of 4-hydroxy-2, 5-dimethyl-3(2H)-furanone by Zygosaccharomyces rouxii. J Agr Food Chem 44:1357–1360

    Article  CAS  Google Scholar 

  • Hida H, Yamada T, Yamada Y (2007) Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl Microbiol Biotechnol 73:1387–1393. doi:10.1007/s00253-006-0613-1

    Article  CAS  Google Scholar 

  • Hou LH (2009) Novel methods of genome shuffling used in Saccharomyces cerevisiae. Biotechnol Lett 31:671–677. doi:10.1007/s10529-009-9916-5

    Article  CAS  Google Scholar 

  • Kataoka S (2005) Functional effects of Japanese style fermented soy sauce (Shoyu) and its components. J Biosci Bioeng 100:227–234. doi:10.1263/jbb.100.227

    Article  CAS  Google Scholar 

  • Kumazawa N, Yanagawa R (1972) Chemical properties of the pili of Corynebacterium renale. Infect Immun 5:27–30

    CAS  Google Scholar 

  • Lawrence CW (2004) Guide to yeast genetics and molecular and cell biology. Methods in enzymology Part A. Elsevier academic press, NK, p 194

    Google Scholar 

  • Manzanares P, Ramo′n D, Querol A (1999) Screening of non-Saccharomyces wine yeasts for the production of b-D-xylosidase activity. Int J Food Microbiol 46:105–112

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Ohata M, Kohama K, Morimitsu Y, Kubota K, Sugawara E (2007) The formation mechanism by yeast of 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone in miso. Biosci Biotechnol Biochem 71:407–413

    Article  CAS  Google Scholar 

  • Patnaik R, Louie S, Gavrilovic V, Stemmer WPC, Ryan CM, Cardayre S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712. doi:10.1038/nbt0702-707

    Article  CAS  Google Scholar 

  • Sasaki M, Nunomura N, Matsudo T (1991) Biosynthesis of 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone by yeasts. J Agr Food Chem 39:934–938

    Article  CAS  Google Scholar 

  • Sluis C, Stoffelen CJP, Castelein SJ, Engbers GHM, Schure EG, Tramper J, Wijffels RH (2001a) Immobilized salt-tolerant yeasts: application of a new polyethylene-oxide support in a continuous stirred-tank reactor for flavour production. J Biotechnol 88:129–139

    Article  Google Scholar 

  • Sluis C, Tramper J, Wijffels RH (2001b) Enhancing and accelerating flavour formation by salt-tolerant yeasts in Japanese soy-sauce processes. Trends Food Sci Tech 12:322–327

    Article  Google Scholar 

  • Suezawa Y, Suzuki M (2007) Bioconversion of ferulic acid to 4-vinylguaiacol and 4-ethylguaiacol and of 4-vinylguaiacol to 4-ethylguaiacol by halotolerant yeasts belonging to the genus Candida. Biosci Biotechnol Biochem 71:1058–1062

    Article  CAS  Google Scholar 

  • Wanakhachornkrai P, Lertsiri S (2003) Comparison of determination method for volatile compounds in Thai soy sauce. Food Chem 83:619–629. doi:10.1016/S0308-8146(03)00256-5

    Article  CAS  Google Scholar 

  • Wei P, Li Z, He P, Lin Y, Jiang N (2008) Genome shuffling of ethanologenic yeast Candida krusei for improved acetic acid tolerance. Biotechnol Appl Biochem 49:113–128. doi:10.1042/BA20070072

    Article  CAS  Google Scholar 

  • Yu L, Pei X, Lei T, Wang Y, Feng Y (2008) Genome shuffling enhanced l-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J Biotechnol 134:154–159. doi:10.1016/j.jbiotec.2008.01.008

    Article  CAS  Google Scholar 

  • Zhan X, Li C, Li Z, Yang X, Zhong S, Yi T (2004) Highly accurate nephelometric titrimetry. J Pharm Sci 93:441–448

    Article  CAS  Google Scholar 

  • Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646. doi:10.1038/415644a

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the projects (2007BAK36B03 and 2008BAI63B06, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Song, Q., Wang, C. et al. Genome shuffling of Hansenula anomala to improve flavour formation of soy sauce. World J Microbiol Biotechnol 28, 1857–1862 (2012). https://doi.org/10.1007/s11274-010-0477-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0477-5

Keywords

Navigation