Skip to main content
Log in

Canthaxanthin production with modified Mucor circinelloides strains

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Canthaxanthin is a natural diketo derivative of β-carotene primarily used by the food and feed industries. Mucor circinelloides is a β-carotene-accumulating zygomycete fungus and one of the model organisms to study the carotenoid biosynthesis in fungi. In this study, the β-carotene ketolase gene (crtW) of the marine bacterium Paracoccus sp. N81106 fused with fungal promoter and terminator regions was integrated into the M. circinelloides genome to construct stable canthaxanthin-producing strains. Different transformation methods including polyethylene glycol-mediated transformation with linear DNA fragments, restriction enzyme-mediated integration and Agrobacterium tumefaciens-mediated transformation were tested to integrate the crtW gene into the Mucor genome. Mitotic stability, site of integration and copy number of the transferred genes were analysed in the transformants, and several stable strains containing the crtW gene in high copy number were isolated. Carotenoid composition of selected transformants and effect of culturing conditions, such as temperature, carbon sources and application of certain additives in the culturing media, on their carotenoid content were analysed. Canthaxanthin-producing transformants were able to survive at higher growth temperature than the untransformed strain, maybe due to the effect of canthaxanthin on the membrane fluidity and integrity. With the application of glucose, trehalose, dihydroxyacetone and l-aspartic acid as sole carbon sources in minimal medium, the crtW-expressing M. circinelloides strain, MS12+pCA8lf/1, produced more than 200 μg/g (dry mass) of canthaxanthin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Álvarez V, Rodríguez-Sáiz M, de la Fuente JL, Gudina EJ, Godio RP, Martín JF, Barredo JL (2006) The crtS gene of Xanthophyllomyces denrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of β-carotene into astaxanthin and other xanthophylls. Fungal Genet Biol 43:261–272

    Article  Google Scholar 

  • Appel KF, Wolff AM, Arnau J (2004) A multicopy vector system for genetic studies in Mucor circinelloides and other zygomycetes. Mol Genet Genom 271:595–602

    Article  CAS  Google Scholar 

  • Asker D, Ohta Y (2002) Production of canthaxanthin by Haloferax alexandrinus under non-aseptic conditions and a simple, rapid method for its extraction. Appl Microbiol Biotechnol 58:743–750

    Article  CAS  Google Scholar 

  • Benito EP, Díaz-Mínguez JM, Iturriaga EA, Campuzano EA, Eslava AP (1992) Cloning and sequence analysis of the Mucor circinelloides pyrG gene encoding orotidine-5′-monophosphate decarboxylase: use of pyrG for homologous transformation. Gene 116:59–67

    Article  CAS  Google Scholar 

  • Bhosale P (2004) Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol 63:351–361

    Article  CAS  Google Scholar 

  • Bhosale P, Bernstein PS (2005) Microbial xanthophylls. Appl Microbiol Biotechnol 68:445–455

    Article  CAS  Google Scholar 

  • Bundock P, Hooykaas PJJ (1996) Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc Nat Acad Sci USA 93:15272–15275

    Article  CAS  Google Scholar 

  • Cooney JJ, Marks HW, Smith AM (1966) Isolation and identification of canthaxanthin from Micrococcus roseus. J Bacteriol 92:342–345

    CAS  Google Scholar 

  • Covert SF, Kapoor P, Lee M, Briley A, Nairn CJ (2001) Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res 105:259–264

    Article  CAS  Google Scholar 

  • Csernetics Á, Nagy G, Iturriaga EA, Szekeres A, Eslava AP, Vágvölgyi C, Papp T (2011) Expression of three isoprenoid biosynthesis genes and their effects on the carotenoid production of the zygomycete Mucor circinelloides. Fungal Genet Biol 48:696–703

    Article  CAS  Google Scholar 

  • Czygan FC (1964) Canthaxanthin as a secondary carotenoid in certain green algae. Experientia 20:573–574

    Article  CAS  Google Scholar 

  • De Miguel T, Sieiro C, Poza M, Villa TG (2001) Analysis of canthaxanthin and related pigments from Gordonia jacobaea mutants. J Agric Food Chem 49:1200–1202

    Article  Google Scholar 

  • Dufossé L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44:313–321

    Google Scholar 

  • Ernst H (2002) Recent advances in industrial carotenoid synthesis. Pure Appl Chem 74:1369–1382

    Article  CAS  Google Scholar 

  • Fraser PD, Ruiz-Hidalgo MJ, Lopez-Matas MA, Alvarez MI, Eslava AP, Bramley PM (1996) Carotenoid biosynthesis in wild type and mutant strains of Mucor circinelloides. Biochim Biophys Acta 1289:203–208

    Article  Google Scholar 

  • Ibrahim AS, Skory CD (2007) Genetic manipulation of zygomycetes. In: Kavanagh K (ed) Medical mycology: cellular and molecular techniques. Wiley, Bognor Regis, pp 305–326

    Google Scholar 

  • Iturriaga EA, Díaz-Mínguez JM, Benito EP, Álvarez MI, Eslava AP (1992) Heterologous transformation of Mucor circinelloides with the Phycomyces blakesleeanus leu1 gene. Curr Genet 21:215–223

    Article  CAS  Google Scholar 

  • Jyonouchi HS, Sun MM, Gross MD (1996) Effects of various carotenoids on cloned, effector-stage T-helper cell activity. Nutr Cancer 26:313–324

    Article  CAS  Google Scholar 

  • Kumaresan N, Sanjay KR, Venkatesh KS, Kadeppagari R-K, Vijayalakshmi G, Umesh-Kumar S (2008) Partially saturated canthaxanthin purified from Aspergillus carbonarius induces apoptosis in prostate cancer cell line. Appl Microbiol Biotechnol 80:467–473

    Article  CAS  Google Scholar 

  • Lampila LE, Wallen ISE, Bullerman LB (1985) A review of factors affecting biosynthesis of carotenoids by the order Mucorales. Mycopathologia 90:65–80

    Article  CAS  Google Scholar 

  • Liang SH, Skory CD, Linz JE (1996) Characterization of the function of the ver-1A and ver-1B genes, involved in aflatoxin biosynthesis in Aspergillus parasiticus. Appl Environ Microbiol 62:4568–4575

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75

    Article  CAS  Google Scholar 

  • Maier FJ, Schäfer W (1999) Mutagenesis via insertional or restriction enzyme-mediated-integration (REMI) as a tool to tag pathogenicity related genes in plant pathogenic fungi. Biol Chem 380:855–864

    Article  CAS  Google Scholar 

  • Mayne ST, Parker RS (1989) Antioxidant activity of dietary canthaxanthin. Nutr Cancer 12:225–236

    Article  CAS  Google Scholar 

  • Michielse CB, Salim K, Ragas P, Ram AFJ, Kudla B, Jarry B, Punt J, van den Hondel CAMJJ (2004) Development of a system for integrative and stable transformation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer. Mol Gen Genom 271:499–510

    Article  CAS  Google Scholar 

  • Monfort A, Cordero L, Maicas S, Polaina J (2003) Transformation of Mucor miehei results in plasmid deletion and phenotypic instability. FEMS Microbiol Lett 224:101–106

    Article  CAS  Google Scholar 

  • Mosqueda-Cano G, Gutierez-Corona JF (1995) Environmental and developmental regulation of carotenogenesis in the dimorphic fungus Mucor rouxii. Curr Microbiol 31:141–145

    Article  CAS  Google Scholar 

  • Navarro E, Lorca-Pascual JM, Quiles-Rosillo MD, Nicolas FE, Garre V, Torres-Martinez S, Ruiz-Vazquez RM (2001) A negative regulator of light-inducible carotenogenesis in Mucor circinelloides. Mol Gen Genom 266:463–470

    Article  CAS  Google Scholar 

  • Nelis HJ, De Leenheer AP (1989) Reinvestigation of Brevibacterium sp Strain KY-4313 as a source of canthaxanthin. Appl Environ Microbiol 55:2505–2510

    CAS  Google Scholar 

  • Nyilasi I, Ács K, Papp T, Vágvölgyi C (2005) Agrobacterium tumefaciens-mediated transformation of Mucor circinelloides. Folia Microbiol 50:415–420

    Article  CAS  Google Scholar 

  • Nyilasi I, Papp T, Csernetics Á, Vágvölgyi C (2008) Agrobacterium tumefaciens-mediated transformation of the zygomycete fungus, Backusella lamprospora. J Basic Microbiol 48:59–64

    Article  CAS  Google Scholar 

  • Obraztsova IN, Prados N, Holzmann K, Avalos J, Cerdá-Olmedo E (2004) Genetic damage following introduction of DNA in Phycomyces. Fung Genet Biol 41:168–180

    Article  CAS  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    CAS  Google Scholar 

  • Okai Y, Higashi-Okai K (1996) Possible immunomodulating activities of carotenoids in in vitro cell culture experiments. Int J Immunopharmacol 18:753–758

    Article  CAS  Google Scholar 

  • Palozza P, Krinsky NI (1992) Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch Biochem Biophys 297:291–295

    Article  CAS  Google Scholar 

  • Palozza P, Maggiano N, Calviello G, Lanza P, Piccioni E, Ranelletti FO, Bartoli GM (1998) Canthaxanthin induces apoptosis in human cancer cell lines. Carcinogenesis 19:373–376

    Article  CAS  Google Scholar 

  • Papp T, Csernetics Á, Nyilasi I, Ábrók M, Vágvölgyi C (2010) Genetic transformation of zygomycetes fungi. In: Rai M, Kövics G (eds) Progress in mycology, Springer, Scientific Publishers, Jodhpur, pp 75–94

    Chapter  Google Scholar 

  • Papp T, Csernetics Á, Nyilasi I, Vágvölgyi C, Iturriaga EA (2012) Integration of a bacterial β-carotene ketolase gene into the Mucor circinelloides genome by the Agrobacterium tumefaciens-mediated transformation (ATMT) method. In: Barredo J-L (ed) Microbial carotenoids: methods and protocols. Methods in molecular biology, vol. 898, Humana Press, Springer, New York, pp 123–132

    Google Scholar 

  • Papp T, Velayos A, Bartók T, Eslava AP, Vágvölgyi C, Iturriaga EA (2006) Heterologous expression of astaxanthin biosynthesis genes in Mucor circinelloides. Appl Microbiol Biotechnol 69:526–531

    Article  CAS  Google Scholar 

  • Pelah D, Sintov A, Cohen E (2004) The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity. World J Microbiol Biotechnol 20:483–486

    Article  CAS  Google Scholar 

  • Sambrook J, Fitsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  • Saperstein S, Star MP (1954) The ketonic carotenoid canthaxanthin isolated from a colour mutant of Corynebacterium michiganense. Biochem J 57:273–275

    CAS  Google Scholar 

  • Silva F, Torres-Martínez S, Garre V (2006) Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol Microbiol 61:1023–1037

    Article  CAS  Google Scholar 

  • Sujak A, Strzałka K, Gruszecki WI (2007) Thermotropic phase behaviour of lipid bilayers containing carotenoid pigment canthaxanthin: a differential scanning calorimetry study. Chem Phys Lipids 145:1–12

    Article  CAS  Google Scholar 

  • Takaya N, Yanai K, Horiuchi H, Ohta A, Takagi M (1996) Cloning and characterization of the Rhizopus niveus leu1 gene and its use for homologous transformation. Biosci Biotechnol Biochem 60:448–452

    Article  CAS  Google Scholar 

  • Turgeon BG, Condon B, Liu J, Zhang N (2010) Protoplast transformation of filamentous fungi. In: Sharon A (ed) Molecular and cell biology methods for fungi, series: Methods in molecular biology, vol 638, Humana Press, Springer, New York, pp 3–19

    Chapter  Google Scholar 

  • van Heeswijck R, Roncero MIG (1984) High frequency transformation of Mucor with recombinant plasmid DNA. Carlsberg Res Commun 49:691–702

    Article  Google Scholar 

  • Veiga-Crespo P, Blasco L, dos Santos FR, Poza M, Villa TG (2005) Influence of culture conditions of Gordonia jacobaea MV-26 on canthaxanthin production. Int Microbiol 8:55–58

    CAS  Google Scholar 

  • Velayos A (2000) Carotenogenesis en Mucor circinelloides. PhD Thesis. Universidad de Salamanca, Salamanca, Spain

  • Velayos A, Blasco JL, Alvarez MI, Iturriaga EA, Eslava AP (2000a) Blue-light regulation of the phytoene dehydrogenase (carB) gene expression in Mucor circinelloides. Planta 210:938–946

    Article  CAS  Google Scholar 

  • Velayos A, Eslava AP, Iturriaga EA (2000b) A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur J Biochem 267:1–12

    Article  Google Scholar 

  • Velayos A, Papp T, Aguilar-Elena R, Fuentes-Vicente M, Eslava AP, Iturriga EA, Álvarez MI (2003) Expression of the carG gene, encoding geranylgeranyl pyrophosphate synthase, is up-regulated by blue light in Mucor circinelloides. Curr Genet 43:112–120

    CAS  Google Scholar 

  • Verdoes JC, Punt PJ, van den Hondel CAMJJ (1995) Molecular-genetic strain improvement for the overproduction of fungal proteins by filamentous fungi. Appl Microbiol Biotechnol 43:195–205

    Article  CAS  Google Scholar 

  • Yanai K, Horiuchi H, Takagi M, Yano K (1990) Preparation of protoplasts of Rhizopus niveus and their transformation with plasmid DNA. Agric Biol Chem 54:2689–2696

    Article  CAS  Google Scholar 

  • Yokoyama A, Miki W (1995) Composition and presumed biosynthetic pathway of carotenoids in the astaxanthin-producing bacterium Agrobacterium aurantiacum. FEMS Microbiol Lett 128:139–144

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Research and Technology Innovation Fund and the Hungarian Scientific Research Fund (KTIA-OTKA CK 80188) and the Hungarian–French Intergovernmental S&T Cooperation Programme (TÉT_10-1-2011-0747).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Papp.

Additional information

Authors Tamás Papp and Árpád Csernetics contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papp, T., Csernetics, Á., Nagy, G. et al. Canthaxanthin production with modified Mucor circinelloides strains. Appl Microbiol Biotechnol 97, 4937–4950 (2013). https://doi.org/10.1007/s00253-012-4610-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4610-2

Keywords

Navigation