Skip to main content
Log in

Agrobacterium tumefaciens-mediated transformation ofMucor circinelloides

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

TheAgrobacterium tumefaciens-mediated transformation of the zygomycetous fungusMucor circinelloides is described. A method was also developed for the hygromycin B-based selection ofMucor transformants. Transformation with the hygromycin B phosphotransferase gene ofEscherichia coli controlled by the heterologousAspergillus nidulans trpC promoter resulted in hygromycin B-resistant clones. The presence of the hygromycin resistance gene in the genome of the transformants was verified by polymerase chain reaction and Southern hybridization: the latter analyses revealed integrations in the host genome at different sites in different transformants. The stability of transformants remained questionable during the latter analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amey R.C., Athey-Pollard A., Burns C., Mills P.R., Bailey A., Foster G.D.: PEG-mediated andAgrobacterium-mediated transformation in the mycopathogenVerticillium fungicola.Mycol.Res. 106, 4–11 (2002).

    Article  Google Scholar 

  • Anaya N., Roncero M.I.G.: Transformation of a methionine auxotrophic mutant ofMucor circinelloides by direct cloning of the corresponding wild-type gene.Mol.Gen.Genet. 230, 449–455 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Arnau J., Stroman P.: Gene replacement and ectopic integration in the zygomyceteMucor circinelloides.Mol.Gen.Genet. 23, 542–546 (1993).

    CAS  Google Scholar 

  • Arnau J., Jepsen L.P., Stroman P.: Integrative transformation by homologous recombination in the zygomyceteMucor circinelloides.Mol.Gen.Genet. 225, 193–198 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Benito E.P., Díaz-Minguez J.M., Iturriaga E.A., Campuzano V., Eslava A.P.: Cloning and sequence analysis of theMucor circinelloides pyrG gene encoding orotidine-5′-monophosphate decarboxylase: use ofpyrG for homologous transformation.Gene 225, 59–67 (1992).

    Article  Google Scholar 

  • Benito E.P., Campuzano V., López-Matas M.A., de Vicente J.I., Eslava A.P.: Isolation, characterization and transformation by autonomous replication ofMucor circinelloides OMPdecase-deficient mutants.Mol.Gen.Genet. 248, 126–135 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Bundock P., Hooykaas P.J.J.: Integration ofAgrobacterium tumefaciens T-DNA in theSaccharomyces cerevisiae genome by illegitimate recombination.Proc.Nat.Acad.Sci.USA 93, 15272–15275 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Bundock P., Dendulkras A., Beijersbergen A., Hooykaas P.J.J.: Transkingdom T-DNA transfer fromAgrobacterium tumefaciens toSaccharomyces cerevisiae.EMBO J. 14, 3206–3214 (1995).

    PubMed  CAS  Google Scholar 

  • Campoy S., Perez F., Martin J.F., Gutierrez S., Liras P.: Stable transformants of the azophilone pigment-producingMonascus purpureus obtained by protoplast transformation andAgrobacterium-mediated DNA transfer.Curr.Genet. 43, 447–452 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Covert S.F., Kapoor P., Lee M., Briley A., Nairn C.J.:Agrobacterium tumefaciens-mediated transformation ofFusarium circinatum.Mycol.Res. 105, 259–264 (2001).

    Article  CAS  Google Scholar 

  • Dickinson L., Harboe M., van Heeswijk R., Stroman P., Jepsen L.P.: Expression of activeMucor miehei aspartic protease inMucor circinelloides.Carlsberg Res.Commun. 52, 243–252 (1987).

    Article  CAS  Google Scholar 

  • Godtfredsen S.E.: Microbial lipases, pp. 255–274 in W.M. Fogarty, C.T. Kelly (Eds):Microbial Enzymes and Biotechnology, 2nd ed. Elsevier, London 1990.

    Google Scholar 

  • Gooday G.W.: Hormones in mycelial fungi, pp. 401–411 in J.G.H. Wessels, F. Meinhardt (Eds):The Mycota, Vol. 1. Springer-Verlag, Berlin 1994.

    Google Scholar 

  • de Groot M.J.A., Bundock P., Hooykaas P.J.J., Beijersbergen A.G.M.:Agrobacterium tumefaciens-mediated transformation of filamentous fungi.Nature Biotechnol. 16, 839–842 (1998).

    Article  Google Scholar 

  • van Heeswijck R., Roncero M.I.G.: High frequency transformation ofMucor with recombinant plasmid DNA.Carlsberg Res.Commun. 49, 691–702 (1984).

    Article  Google Scholar 

  • Hocking A.D.: Improved media for enumeration of fungi in foods.CSIRO Food Res.Quart. 41, 7–11 (1981).

    Google Scholar 

  • Hood E.E., Helmer G.L., Fraley R.T., Chilton M.D.: The hypervirulence ofAgrobacterium tumefaciens A281 is encoded in the region pTiBo542 outside the T-DNA.J.Bacteriol. 168, 1291–1301 (1986).

    PubMed  CAS  Google Scholar 

  • Iturriaga E.A., Díaz-Minguez J.M., Benito E.P., Alvarez M.I., Eslava A.P.: Heterologous transformation ofMucor circinelloides with thePhycomyces blakesleeanus leuI gene.Curr.Genet. 21, 215–223 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Iturriaga E.A., Velayos A., Eslava A.P.: Structure and function of the genes involved in the biosynthesis of carotenoids in theMucorales.Biotechnol.Bioproc.Eng. 5, 263–274 (2000).

    CAS  Google Scholar 

  • Iturriaga E.A., Velayos A., Eslava A.P., Alvarez M.I.: The genetics and molecular biology of carotenoid biosynthesis inMucor.Rec.Res.Dev.Genet. 1, 79–92 (2001).

    CAS  Google Scholar 

  • Jung M.K., Ovechkina Y., Prigozhina N., Oakley C.E., Oakley B.R.: The use of β-d-glucanase as a substitute for Novozym 234 in immunofluorescence and protoplasting.Fungal Genet.Newslett. 47, 65–66 (2000).

    Google Scholar 

  • Kado C.I.: Molecular mechanisms of crown gall tumorigenesis.Crit.Rev.Plant Sci. 10, 1–32 (1991).

    Article  CAS  Google Scholar 

  • King A.D. Jr.,Hocking A.D., Pitt J.I.: Dichloran-Rose Bengal medium for enumeration and isolation of molds from foods.Appl.Environ.Microbiol. 37, 959–964 (1979).

    PubMed  Google Scholar 

  • Lazo G.R., Stein P.A., Ludwig R.A.: A DNA transformation-competentArabidopsis genomic library inAgrobacterium.Biotechnology 9, 963–967 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Leach J., Finkelstein D.B., Rambosek J.A.: Rapid miniprep of DNA from filamentous fungi.Fungal Genet.Newslett. 33, 32–33 (1991).

    Google Scholar 

  • Malonek S., Meinhardt F.:Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomyceteCalonectria morganii.Curr.Genet. 40, 152–155 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Michielse C.B., Salim K., Ragas P., Ram A.F.J., Kudla B., Jarry B., Punt P.J., van den Hondel C.A.M.J.J.: Development of a system for integrative and stable transformation of the zygomyceteRhizopus oryzae byAgrobacterium-mediated DNA transfer.Mol.Genet.Genomics 271, 499–510 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Mikosh T.S.P., Lavrijssen B., Sonnenberg A.S.M., van Griensven L.J.L.D.: Transformation of the cultivated mushroomAgaricus bisporus (Lange) using T-DNA fromAgrobacterium tumefaciens.Curr.Genet. 39, 35–39 (2001).

    Article  Google Scholar 

  • Monfort A., Cordero L., Maicas S., Polaina J.: Transformation ofMucor miehei results in plasmid deletion and phenotypic instability.FEMS Microbiol.Lett. 224, 101–106 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Mullins E.D., Chen X., Romaine P., Raina R., Geiser D.M., Kang S.:Agrobacterium-mediated transformation ofFusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer.Phytopathology 91, 173–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Obraztsova I.N., Prados N., Holzmann K., Avalos J., Cerdá-Olmedo E.: Genetic damage following introduction of DNA inPhycomyces.Fungal Genet.Biol. 41, 168–180 (2003).

    Article  CAS  Google Scholar 

  • Orlowsky M.:Mucor dimorphism.Microbiol.Rev. 55, 234–258 (1991).

    Google Scholar 

  • Outtrup H., Boyce C.O.L.: Microbial proteinases and biotechnology, pp. 227–254 in W.M. Fogarty, C.T. Kelly (Eds):Microbial Enzymes and Biotechnology, 2nd ed. Elsevier, London 1990.

    Google Scholar 

  • Roncero M.I.G., Jepsen L.P., Stroman P., van Heeswijck R.: Characterization of aleuA gene and anARS element fromMucor circinelloides.Gene 84, 335–343 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera J.: Dimorphism inMucor species, pp. 257–265 in H. van den Bossche, F.C. Odds, D. Herridge (Eds):Dimorphic Fungi in Biology and Medicine. Plenum Press, New York 1993.

    Google Scholar 

  • Ruiz-Hidalgo M.J., Eslava A.P., Alvarez M.I., Benito E.P.: Heterologous expression of thePhycomyces blakesleanus phytoene dehydrogenase gene (carB) inMucor circinelloides.Curr.Microbiol. 39, 259–264 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J., Fritsch E.F., Maniatis T.:Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1989.

    Google Scholar 

  • Skaar I., Stenwig H.: Malt-yeast extract-sucrose agar, a suitable medium for enumeration and isolation of fungi from silage.Appl.Environ.Microbiol. 62, 3614–3619 (1996).

    PubMed  CAS  Google Scholar 

  • Velayos A., Alvarez M.I., Eslava A.P., Iturriaga E.A.: Interallelic complementation at thepyrF locus and the homodimeric nature of orotate phosphoribosyltransferase (OPRTase) inMucor circinelloides.Mol.Gen.Genet. 260, 251–260 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Wolf A.M., Arnau J.: Cloning of glyceraldehyde-3-phosphate dehydrogenase-encoding genes inMucor circinelloides (syn.racemosus) and use of thegpáI promoter in recombinant protein production.Fungal Genet.Biol. 35, 21–29 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by theHungarian Scientific Research Fund (OTKA) grants T037471, F046658 and D048537.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyilasi, I., Ács, K., Papp, T. et al. Agrobacterium tumefaciens-mediated transformation ofMucor circinelloides . Folia Microbiol 50, 415–420 (2005). https://doi.org/10.1007/BF02931423

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931423

Keywords

Navigation