Skip to main content
Log in

Development of a system for integrative and stable transformation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

An Erratum to this article was published on 15 May 2004

Abstract

Two transformation systems, based on the use of CaCl2/PEG and Agrobacterium tumefaciens, respectively, were developed for the zygomycete Rhizopus oryzae. Irrespective of the selection marker used, a pyr4 marker derived from R. niveus or a dominant amdS + marker from Aspergillus nidulans, and irrespective of the configuration of the transforming DNA (linear or circular), the transformants obtained with the CaCl2/PEG transformation method were found to carry multiple copies of tandemly linked vector molecules, which failed to integrate into the genomic DNA. Furthermore, these transformants displayed low mitotic stability. In contrast, transformants obtained by Agrobacterium-mediated transformation were mitotically stable, even under non-selective conditions. Detailed analysis of these transformants revealed that the transforming DNA had integrated into the genome of R. oryzae at a single locus in independently obtained transformants. In addition, truncation of the transforming DNA was observed, resulting in the integration of the R. niveus pyr4 marker gene, but not the second gene located on the transferred DNA. Modification of the transforming DNA, resulting in partial resistance to restriction enzyme digestion, was observed in transformants obtained with the CaCl2/PEG transformation method, suggesting that a specific genome defence mechanism may exist in R. oryzae. It is likely that the unique mechanism used by A. tumefaciens to deliver its transferred DNA to its hosts facilitates bypass of the host defence mechanisms, thus allowing the DNA to integrate into the chromosomal genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2A, B

Similar content being viewed by others

References

  • Abuodeh RO, Orbach MJ, Mandel MA, Das A, Galgiani JN (2000) Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J Infect Dis 181:2106–2110

    CAS  PubMed  Google Scholar 

  • Amadioha AC (1993) Production of cellulolytic enzymes by Rhizopus oryzae in culture and Rhizopus-infected tissues of potato-tubers. Mycologia 85:574–578

    CAS  Google Scholar 

  • Anaya N, Roncero MI (1991) Transformation of a methionine auxotrophic mutant of Mucor circinelloides by direct cloning of the corresponding wild type gene. Mol Gen Genet 230:449–455

    PubMed  Google Scholar 

  • Arnau J, Stroman P (1993) Gene replacement and ectopic integration in the zygomycete Mucor circinelloides. Curr Genet 23:542–546

    Google Scholar 

  • Arnau J, Murillo FJ, Torres-Martinez S (1988) Expression of Tn5-derived kanamycin resistance in the fungus Phycomyces blakesleeanus. Mol Gen Genet 212:375–377

    PubMed  Google Scholar 

  • Arnau J, Jepsen LP, Stroman P (1991) Integrative transformation by homologous recombination in the zygomycete Mucor circinelloides. Mol Gen Genet 225:193–198

    PubMed  Google Scholar 

  • Bako L, Umeda M, Tiburcio AF, Schell J, Koncz C (2003) The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci USA 100:10108–10113

    CAS  PubMed  Google Scholar 

  • Beijersbergen AG, Den Dulk A, Schilperoort RA, Hooykaas PJ (1992) Conjugative transfer by the virulence system of Agrobacterium tumefaciens. Science 256:1324–1327

    CAS  Google Scholar 

  • Benito EP, Diaz-Minguez JM, Iturriaga EA, Campuzano V, Eslava AP (1992) Cloning and sequence analysis of the Mucor circinelloides pyrG gene encoding orotidine-5′-monophosphate decarboxylase: use of pyrG for homologous transformation. Gene 116:59–67

    PubMed  Google Scholar 

  • Benito EP, Campuzano V, Lopez-Matas MA, De Vicente JI, Eslava AP (1995) Isolation, characterization and transformation, by autonomous replication, of Mucor circinelloides OMPdecase-deficient mutants. Mol Gen Genet 248:126–135

    PubMed  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    PubMed  Google Scholar 

  • Birch PR, Sims PF, Broda P (1998) A reporter system for analysis of regulatable promoter functions in the basidiomycete fungus Phanerochaete chrysosporium. J Appl Microbiol 85:417–424

    Article  CAS  PubMed  Google Scholar 

  • Bundock P, Dulk-Ras A, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    CAS  PubMed  Google Scholar 

  • Bundock P, van Attikum H, Dulk-Ras A, Hooykaas PJ (2002) Insertional mutagenesis in yeasts using T-DNA from Agrobacterium tumefaciens. Yeast 19:529–536

    CAS  Google Scholar 

  • Burmester A (1992) Transformation of the mycoparasite Parasitella simplex to neomycin resistance. Curr Genet 21:121–124

    CAS  PubMed  Google Scholar 

  • Burmester A, Wöstemeyer A, Wöstemeyer J (1990) Integrative transformation of a zygomycete, Absidia glauca, with vectors containing repetitive DNA. Curr Genet 17:155–161

    Google Scholar 

  • Burmester A, Wöstemeyer A, Arnau J, Wöstemeyer J (1992) The SEG1 element: a new DNA region promoting stable mitotic segregation of plasmids in the zygomycete Absidia glauca. Mol Gen Genet 235:166–172

    PubMed  Google Scholar 

  • Cambareri EB, Singer MJ, Selker EU (1991) Recurrence of repeat-induced point mutation (RIP) in Neurospora crassa. Genetics 127:699–710

    CAS  PubMed  Google Scholar 

  • Chambers SP, Prior SE, Barstow DA, Minton NP (1988) The pMTL nic- cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68:139–149

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Stone M, Schlagnhaufer C, Romaine CP (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microb 66:4510–4513

    CAS  PubMed  Google Scholar 

  • De Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    PubMed  Google Scholar 

  • Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1:71–82

    CAS  Google Scholar 

  • Goldberg I, Peleg Y, Rokem JS (1991) Citric, fumaric and malic acids. In: Goldberg I, Williams R (eds) Biotechnology and food ingredients. Van Nostrand Reinhold, New York, pp 349–374

  • Gonzalez-Hernandez GA, Herrera-Estrella L, Rocha-Ramirez V, Roncero MIG, Gutierrez-Corona JF (1997) Biolistic transformation of Mucor circinelloides. Mycol Res 101:953–956

    Article  Google Scholar 

  • Goosen T, Bos CJ, van den Broek HWJ (1991) Transformation and gene manipulation in filamentous fungi: an overview. In: Arora DK, Mukerji KG, Elander RP (eds) Handbook of applied mycology (Fungal biotechnology, vol 4). Marcel Dekker, New York, pp 85–109

  • Gouka RJ, Hessing JG, Stam H, Musters W, van den Hondel CA (1995) A novel strategy for the isolation of defined pyrG mutants and the development of a site-specific integration system for Aspergillus awamori. Curr Genet 27:536–540

    CAS  PubMed  Google Scholar 

  • Goyon C, Faugeron G (1989) Targeted transformation of Ascobolus immersus and de novo methylation of the resulting duplicated DNA sequences. Mol Cell Biol 9:2818–2827

    CAS  PubMed  Google Scholar 

  • Hanegraaf PP, Punt PJ, van den Hondel CA, Dekker J, Yap W, van Verseveld HW, Stouthamer AH (1991) Construction and physiological characterization of glyceraldehyde-3-phosphate dehydrogenase overproducing transformants of Aspergillus nidulans. Appl Microbiol Biotechnol 34:765–771

    CAS  PubMed  Google Scholar 

  • Horiuchi H, Takaya N, Yanai K, Nakamura M, Ohta A, Takagi M (1995) Cloning of the Rhizopus niveus pyr4 gene and its use for the transformation of Rhizopus delemar. Curr Genet 27:472–478

    Google Scholar 

  • Iturriaga EA, Diaz-Minguez JM, Benito EP, Alvarez MI, Eslava AP (1992) Heterologous transformation of Mucor circinelloides with the Phycomyces blakesleeanus leu1 gene. Curr Genet 21:215–223

    Google Scholar 

  • Kolar M, Punt PJ, van den Hondel CA, Schwab H (1988) Transformation of Penicillium chrysogenum using dominant selection markers and expression of an Escherichia coli lacZ fusion gene. Gene 62:127–134

    CAS  PubMed  Google Scholar 

  • Koncz C, Nemeth K, Redei GP, Schell J (1992) T-DNA insertional mutagenesis in Arabidopsis. Plant Mol Biol 20:963–976

    CAS  PubMed  Google Scholar 

  • Liou CM, Yanai K, Horiuchi H, Takagi M (1992) Transformation of a Leu- mutant of Rhizopus niveus with the leuA gene of Mucor circinelloides. Biosci Biotechnol Biochem 56:1503–1504

    PubMed  Google Scholar 

  • Mackenzie DA, Wongwathanarat P, Carter AT, Archer DB (2000) Isolation and use of a homologous histone H4 promoter and a ribosomal DNA region in a transformation vector for the oil-producing fungus Mortierella alpina. Appl Environ Microbiol 66:4655–4661

    Article  CAS  PubMed  Google Scholar 

  • Maloisel L, Rossignol JL (1998) Suppression of crossing-over by DNA methylation in Ascobolus. Genes Dev 12:1381–1389

    CAS  PubMed  Google Scholar 

  • Mattanovich D, Ruker F, Machado AC, Laimer M, Regner F, Steinkellner H, Himmler G, Katinger H (1989) Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acids Res 17:6747

    CAS  PubMed  Google Scholar 

  • Michielse CB, Ram AFJ, Hooykaas PJJ, van den Hondel CAMJJ (2004a) Agrobacterium-mediated transformation of Aspergillus awamori in the absence of full length VirD2, VirC2 and VirE2 leads to the insertion of aberrant T-DNA structures. J Bacteriol, in press

  • Michielse CB, Ram AFJ, Hooykaas PJJ, van den Hondel CAMJJ (2004b) Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori. Fungal Genet Biol, in press

  • Misro SK, Kumar MR, Banerjee R, Bhattacharyya BC (1997) Production of garlic acid by immobilization of Rhizopus oryzae. Bioprocess Eng 16:257–260

    Article  CAS  Google Scholar 

  • Monfort A, Cordero L, Maicas S, Polaina J (2003) Transformation of Mucor miehei results in plasmid deletion and phenotypic instability. FEMS Microbiol Lett 224:101–106

    Article  CAS  PubMed  Google Scholar 

  • Mooibroek H, Kuipers AG, Sietsma JH, Punt PJ, Wessels JG (1990) Introduction of hygromycin B resistance into Schizophyllum commune: preferential methylation of donor DNA. Mol Gen Genet 222:41–48

    CAS  PubMed  Google Scholar 

  • Morales V, Giamarchi C, Chailleux C, Moro F, Marsaud V, Le Ricousse S, Richard-Foy H (2001) Chromatin structure and dynamics: functional implications. Biochimie 83:1029–1039

    Article  CAS  PubMed  Google Scholar 

  • Moriya T, Murashima K, Nakane A, Yanai K, Sumida N, Koga J, Murakami T, Kono T (2003) Molecular cloning of endo-beta-D-1,4-glucanase genes, rce1, rce2, and rce3, from Rhizopus oryzae. J Bacteriol 185:1749–1756

    Article  CAS  PubMed  Google Scholar 

  • Revuelta JL, Jayaram M (1986) Transformation of Phycomyces blakesleeanus to G-418 resistance by an autonomously replicating plasmid. Proc Natl Acad Sci USA 83:7344–7347

    PubMed  Google Scholar 

  • Rhounim L, Rossignol JL, Faugeron G (1992) Epimutation of repeated genes in Ascobolus immersus. EMBO J 11:4451–4457

    CAS  PubMed  Google Scholar 

  • Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343–3353

    CAS  PubMed  Google Scholar 

  • Ruiz-Hidalgo MJ, Eslava AP, Alvarez MI, Benito EP (1999) Heterologous expression of the Phycomyces blakesleeanus phytoene dehydrogenase gene (carB) in Mucor circinelloides. Curr Microbiol 39:259–264

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Selker EU (1998) Trichostatin A causes selective loss of DNA methylation in Neurospora. Proc Natl Acad Sci USA 95:9430–9435

    Article  CAS  PubMed  Google Scholar 

  • Skory CD (2002) Homologous recombination and double-strand break repair in the transformation of Rhizopus oryzae. Mol Genet Genomics 268:397–406

    Google Scholar 

  • Skory CD (2003) Induction of Rhizopus oryzae pyruvate decarboxylase genes. Curr Microbiol 47:59–64

    CAS  PubMed  Google Scholar 

  • Suarez T, Eslava AP (1988) Transformation of Phycomyces with a bacterial gene for kanamycin resistance. Mol Gen Genet 212:120–123

    PubMed  Google Scholar 

  • Takaya N, Yanai K, Horiuchi H, Ohta A, Takagi M (1994) Cloning and characterization of two 3-phosphoglycerate kinase genes of Rhizopus niveus and heterologous gene expression using their promoters. Curr Genet 25:524–530

    Google Scholar 

  • Takaya N, Yanai K, Horiuchi H, Ohta A, Takagi M (1996) Cloning and characterization of the Rhizopus niveus leu1 gene and its use for homologous transformation. Biosci Biotechnol Biochem 60:448–452

    PubMed  Google Scholar 

  • Thompson DP, Eribo BE (1984) Extracellular enzyme production by Rhizopus and Mucor species on solid media. Can J Microbiol 30:126–128

    CAS  PubMed  Google Scholar 

  • Tunga R, Banerjee R, Bhattacharyya BC (1999) Some studies on optimization of extraction process for protease production in SSF. Bioprocess Eng 20:485–489

    Article  CAS  Google Scholar 

  • Van Attikum H, Bundock P, Hooykaas PJ (2001) Non-homologous end-joining proteins are required for Agrobacterium T- DNA integration. EMBO J 20:6550–6558

    PubMed  Google Scholar 

  • Van Gorcom RF, van den Hondel CA (1988) Expression analysis vectors for Aspergillus niger. Nucleic Acids Res 16:9052

    PubMed  Google Scholar 

  • Van Heeswijck R, Roncero MIG, Jepsen LP (1988) Genetic analysis and manipulation of Mucor species by DNA-mediated transformation. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis. Springer-Verlag, Berlin, pp 207–220

  • Van West P, Kamoun S, ‘t Klooster JW, Govers F (1999) Internuclear gene silencing in Phytophthora infestans. Mol Cell 3:339–348

    PubMed  Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    CAS  PubMed  Google Scholar 

  • Wada M, Beppu T, Horinouchi S (1996) Integrative transformation of the zygomycete Rhizomucor pusillus by homologous recombination. Appl Microbiol Biotechnol 45:652–657

    PubMed  Google Scholar 

  • Wöstemeyer J, Burmester A, Weigel C (1987) Neomycin resistance as a dominantly selectable marker for transformation of the zygomycete Absidia glauca. Curr Genet 12:625–627

    Google Scholar 

  • Yamazaki H, Ohnishi Y, Takeuchi K, Mori N, Shiraishi N, Sakata Y, Suzuki H, Horinouchi S (1999) Genetic transformation of a Rhizomucor pusillus mutant defective in asparagine-linked glycosylation: production of a milk-clotting enzyme in a less-glycosylated form. Appl Microbiol Biotechnol 52:401–409

    Article  CAS  PubMed  Google Scholar 

  • Yanai K, Horiuchi H, Takagi M, Yano K (1990) Preperation of protoplasts of Rhizopus niveus and their transformation with plasmid DNA. Agric Biol Chem 54:2689–2696

    CAS  Google Scholar 

  • Yanai K, Horiuchi H, Takagi M, Yano K (1991) Transformation of Rhizopus niveus using a bacterial blasticidin S resistance gene as a dominant selectable marker. Curr Genet 19:221–226

    Google Scholar 

  • Ysraeli J, Szyf AC (1984) Gene methylation patterns and expression. In: Razin A, Cedar H, Riggs AD (eds) DNA methylation: biochemistry and biological significance. Springer-Verlag, New York, pp 353–378

  • Zupan J, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Masamichi Takagi for providing us with the plasmids pRNU54 and pLPGUS21. This research was supported in part by a grant from Orsan to TNO Nutrition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Michielse.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00438-004-1020-x

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michielse, C.B., Salim, K., Ragas, P. et al. Development of a system for integrative and stable transformation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer. Mol Genet Genomics 271, 499–510 (2004). https://doi.org/10.1007/s00438-004-1003-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1003-y

Keywords

Navigation