Skip to main content

Advertisement

Log in

Environmental and cultural stimulants in the production of carotenoids from microorganisms

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Commercial production of carotenoids from microorganisms competes mainly with synthetic manufacture by chemical procedures. Efficient stimulation of carotenoid biosynthesis is expected to promote accumulation of carotenoid by microbes. This review describes the variety of environmental and cultural stimulants studied during the last few decades which enhance volumetric production and cellular accumulation of commercially important carotenoids from microalgae, fungi and bacteria. Stimulation of carotenoid production by white-light illumination and temperature fluctuation is discussed along with supplementation of metal ions, salts, organic solvents, preformed precursors and several other chemicals in the culture broth. Reports on the improvements in yield are reviewed and assessed from a biotechnology point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcantara S, Sanchez S (1999) Influence of carbon and nitrogen sources on Flavobacterium growth and zeaxanthin biosynthesis. J Ind Microbiol Biotechnol 23: 697–700

    Article  CAS  PubMed  Google Scholar 

  • An GH (2001) Improved growth of the red yeast, Phaffia rhodozyma (Xanthophyllomyces dendrorhous), in the presence of tricarboxylic acid cycle intermediates. Biotechnol Lett 23:1005–1009

    Article  CAS  Google Scholar 

  • An GH, Chang KW, Johnson EA (1996) Effect of oxygen radicals and aeration on carotenogenesis and growth of Phaffia rhodozyma (Xanthophyllomyces dendrorhous). J Microbiol Biotechnol 6:103–109

    CAS  Google Scholar 

  • An GH, Johnson EA (1990) Influence of light on growth and pigmentation of the yeast Phaffia rhodozyma. Antonie van Leeuwenhoek 57:91–203

    Google Scholar 

  • Arakawa Y, Hashimoto K, Shibata A, Umezu M (1977) Studies on the biosynthesis of carotenoids by microorganism. II. Effect of visible light on the growth and carotenoids production of Flavobacterium sp. TK-70. Hakko Kogaku Kaishi 55:319–24

    CAS  Google Scholar 

  • Armstrong GA (1997) Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu Rev Microbiol 51:629–659

    Article  CAS  PubMed  Google Scholar 

  • Atamanyuk DI, Razumorskii PN (1974) Effect of ammonium perchlorate on carotene formation by Rhodotorula gracilis K-1. Ser Biol Khim Nauk 1:89–90

    Google Scholar 

  • Ausich RL (1997) Commercial opportunities for carotenoid production by biotechnology. Pure Appl Chem 69:2169–2173

    CAS  Google Scholar 

  • Ausich RL, Brinkhaus FL Mukharji I, Proffitt J, Yarger J, Yen HB (1996) Lycopene biosynthesis in genetically engineered hosts. US patent 5,530,189

  • Ausich RL, Brinkhaus FL Mukharji I, Proffitt J, Yarger J, Yen HB (1997) β-carotene biosynthesis in genetically engineered hosts US patent 5,656,472

  • Ausich RL, Brinkhaus FL Mukharji I, Proffitt J, Yarger J, Yen HB (1997a) Biosynthesis of zeaxanthin and glycosylated zeaxanthin in genetically engineered hosts US patent 5,684,238

  • Ben-Amotz A, Avron M (1983) Accumulation of metabolites by halotolerant algae and its industrial potential. Annu Rev Microbiol. 37:95–119

    Google Scholar 

  • Ben-Amotz, A (1996) Effect of low temperature on the stereoisomer composition of β-carotene in the halotolerant alga Dunaliella bardawil (Chlorophyta). J Phycol 32:272–275

    CAS  Google Scholar 

  • Bhosale P, Gadre RV (2001) Production of β-carotene by a mutant of Rhodotorula glutinis. Appl Microbiol Biotechnol 55:423–427

    Article  CAS  PubMed  Google Scholar 

  • Bhosale P, Gadre RV (2002) Manipulation of temperature and illumination conditions for enhanced β-carotene production by mutant 32 of Rhodotorula glutinis. Lett Appl Microbiol 34:349–353

    Article  CAS  PubMed  Google Scholar 

  • Bjork L, Neujahr HY (1969) Stimulation of β-carotene synthesis in Blakeslea trispora by pyruvate and intermediates of tricarboxylic acid (TCA) cycle. Acta Chem Scand 23:2908–2909

    CAS  Google Scholar 

  • Bobkova TS (1965) The effect of the carbon and nitrogen composition of the medium on the growth and synthesis of carotenoids by Sporobolomyces roseus. Prikl Biokhim Mikrobiol 1:426–432

    CAS  Google Scholar 

  • Bohne F, Linden H (2002) Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. Biochim Biophys Acta 1579:26–34

    Article  CAS  PubMed  Google Scholar 

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Planta 108:111–117

    Article  CAS  Google Scholar 

  • Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32:1077–1082

    Google Scholar 

  • Boussiba S, Fan L, Vonshak A (1992) Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. In: Packer L (ed) Methods Enzymol 214:386–391

  • Boussiba S, Vonshak A, Cohen Z, Richmond A (2000) Procedure for large-scale production of astaxanthin from Haematococcus US patent 6,022,701

  • Calo P, Gonzalez T (1995) The yeast Phaffia rhodozyma as an industrial source of astaxanthin. Microbiologia 11:386–388

    Google Scholar 

  • Cerda-Olmedo E, Huettermann A (1986) Stimulation and inhibition of carotene biosynthesis in Phycomyces by aromatic compounds. Angewandte Botanik 60:59–70

    CAS  Google Scholar 

  • Chaumont D, Thepenier C (1995) Carotenoid content in growing cells of Haematococcus pluvialis during a sunlight cycle. J Appl Phycol 7:5

    Google Scholar 

  • Ciegler A, Lagod, AA, Sohns VE, Hall HH, Jackson RW (1963) β-Carotene production in 20 L fermenter. Biotechnol Bioeng 5: 109–121

    Google Scholar 

  • Ciegler A, Pazola Z, Hall HH (1964) Stimulation of carotenogenesis by microbial cells. Appl Microbiol 12:150–154

    CAS  PubMed  Google Scholar 

  • Dandekar S, Modi VV, Jani UK (1980) Chemical regulators of carotenogenesis by Blakeslea trispora. Phytochem 19:795–798

    Article  CAS  Google Scholar 

  • Daraseliya GY, Daushvili LP (1982) Effect of various carbon sources on the growth and carotenogenesis of Mycobacterium rubrum strain 44. Prik Biokhim Mikrobiol 18:191–196

    CAS  Google Scholar 

  • Daushvili LP, Elisashvili VI (1990) Optimization of nutrient medium content for the biosynthesis of carotenoids of Mycobacterium rubrum 44 by mathematical experiment planning. Soobshcheniya Akademii Nauk Gruzinskoi SSR 139:589–592

    CAS  Google Scholar 

  • Del Campo JA, Moreno J, Rodriguez H, Angeles Vargas M, Rivas J, Guerrero MG (1999) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59

    Google Scholar 

  • Desai HG, Modi VV (1977) Stimulation of carotenogenesis by penicillin in Blakeslea trispora. Phytochemistry 16:1373–1376

    Article  CAS  Google Scholar 

  • Doerfling P, Dummler W, Muecke D (1971) Significance of citric acid and other acids of the tricarboxylic acid cycle for growth and pigment formation in the unicellular alga Poteriochromonas stipitata. Zeitschrift fuer Allgemeine Mikrobiologie 11:161–165

    CAS  Google Scholar 

  • Ducrey Sanpietro LM, Kula MR (1998) Studies of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Effect of inhibitors and low temperature. Yeast 14:1007–1016

    Article  PubMed  Google Scholar 

  • Elahi M, Chichester CO, Simpson KL (1973) Biosynthesis of carotenoids by Phycomyces blakesleeanus mutants in the presence of nitrogenous heterocyclic compounds. Phytochemistry 12:1627–1632

    Article  CAS  Google Scholar 

  • Eslava AP, Alvarez MI, Cerda-Olmedo E (1974) Regulation of carotene biosynthesis in Phycomyces by vitamin A and β-ionone. Eur J Biochem 48:617–623

    CAS  Google Scholar 

  • Etienne S, Bezalel L, Schickler H, Paltiel J, Ben-Amotz A, Shaish A, Perry I (2000) Cosmetic compositions containing carotenoids for prevention of damage resulting from oxidation and exposure to UV light. PCT Int. Appl. WO 2000013654

  • Feofilova EP, Tereshina VM, Memorskaya AS (1995) Regulation of lycopene biosynthesis in mucorous fungus Blakeslea trispora by pyridine derivatives. Mikrobiologiya 64:734–740

    CAS  Google Scholar 

  • Flores-Cotera LB, Martin R, Sanchez S (2001) Citrate, a possible precursor of astaxanthin in Phaffia rhodozyma: influence of varying levels of ammonium, phosphate and citrate in a chemically defined medium. Appl Microbiol Biotechnol 55:341–347

    Article  CAS  PubMed  Google Scholar 

  • Frengova G, Simova E, Beshkova K (1995) Effect of temperature changes on the production of yeast pigments co-cultivated with lactic acid in whey ultrafiltrate. Biotechnol Lett 17:1001–1006

    CAS  Google Scholar 

  • Gammal SM, Rizk MI (1989) Effect of cations, sodium chloride and sodium deoxycholate on lipase production by some yeasts. Egypt J Bot 29–30:1-9

  • Giovannucci E, Clinton SK (1998) Tomatoes, lycopene, and prostate cancer. Proc Soc Exp Biol Med 218:129–139

    CAS  PubMed  Google Scholar 

  • Goodwin TW (1980) Biosynthesis of carotenoids. In: Goodwin TW (ed) The biochemistry of the carotenoids, vol I. Chapman and Hall, London, pp 33–76

  • Goodwin TW (1993) Biosynthesis of carotenoids: an overview. In: Packer L (ed) Carotenoids. Part B: metabolism, genetics and biosynthesis. Methods Enzymol 214:330–340

    CAS  Google Scholar 

  • Govind NS, Amin AR, Modi VV (1982) Stimulation of carotenogenesis in Blakeslea trispora by cupric ions. Phytochemistry 21:1043–1044

    Article  CAS  Google Scholar 

  • Govind NS, Cerda-Olmedo E (1986) Sexual activation of carotenogenesis in Phycomyces blakesleeanus. J Gen Microbiol 132:2775–2780

    CAS  Google Scholar 

  • Greenberg ER, Baron JA, Stuket TA, Stevens MM, Mandel JS, Spencer SK, Elias PM, Lowe N, Nierenberg DW, Bayrd G, Vance JC, Freeman DH, Clendenning WE, Kwan T and the Skin Cancer Prevention Study Group (1990) A clinical trial of β-carotene to prevent basal-cell and squamous cell cancers of the skin, New Eng J Med 323:789–795

    Google Scholar 

  • Gu WL, An GH, Johnson EA (1997) Ethanol increases carotenoid production in Phaffia rhodozyma. J Ind Microbiol Biotechnol 19:114–117

    Article  CAS  PubMed  Google Scholar 

  • Hanada S, Hiraishi A, Shimada K, Matsuura K (1995) Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int J Syst Bacteriol 45:676–681

    CAS  PubMed  Google Scholar 

  • Hayman EP, Yokoyama H, Chichester CO, Simpson KL (1974) Carotenoid biosynthesis in Rhodotorula glutinis. J Bacteriol 120:1339–1343

    CAS  PubMed  Google Scholar 

  • Henneckens CH (1997) β-Carotene supplementation and cancer prevention. Nutrition 13:697–699

    Article  CAS  PubMed  Google Scholar 

  • Higuchi M, Kikuchi G (1963) Synthesis of bacteriochlorophyll by Rhodopseudomonas spheroids under dark-aerobic conditions. Nature 200:1191–1192

    CAS  PubMed  Google Scholar 

  • Hoshino T, Ojima K, Setoguchi Y (2001) 3-Hydroxy-3-methylglutaryl-CoA reductase polynucleotides in isoprenoid production US patent 6,284,506

  • Hsu WJ, Yokoyama H, DeBenedict C (1990) Chemical bioregulation of carotenogenesis in Phycomyces blakesleeanus. Phytochemistry 29:2447–2451

    Article  CAS  Google Scholar 

  • Ignatov VV, Mel’nikova, GY (1972) Effect of several Krebs cycle metabolites on the biosynthesis of carotenoids of Staphylococcus aureus 209-P. Voprosy Biokhimii i Fiziologii Mikroorganizmov 1:16–19

    CAS  Google Scholar 

  • Jacobson GK, Jolly SO, Sedmak JJ, Skatrud TJ, Wasileski JM (2002) Astaxanthin over-producing strains of Phaffia rhodozyma, methods for their cultivation, and their use in animal feeds. US patent 6,413,736

  • Johnson E, Schroeder W (1996) Microbial carotenoids. Adv Biochem Eng Biotechnol 53:119–178

    CAS  PubMed  Google Scholar 

  • Kim SW, Keasling JD (2001) Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol Bioeng 72:408–415

    CAS  PubMed  Google Scholar 

  • Kobayashi MK, Toshihide NM, Nagai S (1992) Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74:61–63

    CAS  Google Scholar 

  • Komemushi S, Sakaki H, Yokoyama H, Fujita T (1994) Effect of barium and other metals on the growth of a D-lactic acid assimilating yeast Rhodotorula glutinis No 21. J Antibact Antifung Agt 22:583–587

    CAS  Google Scholar 

  • Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60:1-11

    Article  CAS  PubMed  Google Scholar 

  • Liaaen-Jensen S, Andrewes AG (1972) Microbial carotenoids. Annu Rev Microbiol 26:225–248

    Article  CAS  PubMed  Google Scholar 

  • Liu, BH, Lee YK (2000) Secondary carotenoids formation by the green alga Chlorococcum sp. J Appl Phycol 12:301–307

    Article  CAS  Google Scholar 

  • Liu, HI. (1984) Effects of temperature and light intensity on growth rate, physiological and biochemical characteristics of Spirulina platensis. Zhonghua Nongye Yanjiu 33: 276–291

    CAS  Google Scholar 

  • Mahattanatavee K, Kulprecha S (1991) Production of β-carotene by Rhodotorula sp. Y1621. Microbial Utilization of Renewable Resources 7:295–300

    Google Scholar 

  • Margalith P (1993) Enhancement of carotenoid synthesis by fungal metabolites. Appl Microbiol Biotechnol 38: 664–666

    CAS  Google Scholar 

  • Margalith P, Meydav S (1968) Carotenogenesis in the yeast Rhodotorula mucilaginosa. Phytochemistry 7:765–768

    Article  CAS  Google Scholar 

  • Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  PubMed  Google Scholar 

  • Meyer PS, Du Preez JC (1994) Photo-regulated astaxanthin production by Phaffia rhodozyma mutants. Syst Appl Microbiol 17:24–31

    CAS  Google Scholar 

  • Misawa N, Shimada H (1997) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J Biotechnol 59:169–181

    Article  CAS  PubMed  Google Scholar 

  • Moeller SM, Jacques PF, Blumberg JB (2000) The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J Am Coll Nutr 19:522S-527S

    CAS  PubMed  Google Scholar 

  • Mosqueda-Cano G, Gutierrez-Corona JF (1995) Environmental and developmental regulation of carotenogenesis in the dimorphic fungus Mucor rouxii. Curr Microbiol 31: 141–145

    CAS  Google Scholar 

  • Nakayama T, Mackinny G, Phaff HJ (1954) Carotenoids in asporogenous yeasts. Antonie van Leeuwenhoek 20:217–228

    PubMed  Google Scholar 

  • Nakayama T, Chichester CO, Mackinney G (1957) Phytoene production in Phycomyces. Arch Biochem Biophys 66:310–315

    CAS  PubMed  Google Scholar 

  • Nefelova MV, Sverdlova AN, Alekseeva LN (1978) Effect of organic acids on the biosynthesis of carotenes by Actinomyces chrysomallus strains. Mikrobiologiya 47: 208–211

    CAS  Google Scholar 

  • Nelis HJ, DeLeenheer AP (1991) Microbial sources of carotenoid pigments used in food and feeds. J Appl Bacteriol 70:181–191

    CAS  Google Scholar 

  • Ninet L, Renaut J, Tissier R (1969) Activation of the biosynthesis of carotenoids by Blakeslea trispora. Biotechnol Bioeng 11:1195–1210

    CAS  Google Scholar 

  • Noparatnaraporn N, Sasaki K, Nishizawa Y, Nagai S (1986) Stimulation of vitamin B12 formation in aerobically-grown Rhodopseudomonas gelatinosa under microaerobic condition. Biotechnol Lett 8:491–496

    CAS  Google Scholar 

  • Orosa M, Valero JF, Herrero C, Abalde J (2001) Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnol Lett 23:1079–1085

    Article  CAS  Google Scholar 

  • Orset SC, Young AJ (1999) Low-temperature-induced synthesis of α-carotene in the microalga Dunaliella salina (Chlorophyta). J Phycol 35: 520–527

    Article  CAS  Google Scholar 

  • Orset SC, Young AJ (2000) Exposure to low irradiances favors the synthesis of 9-cis β, β-carotene in Dunaliella salina (Teod.). Plant Physiol 122:609–618

    Article  CAS  PubMed  Google Scholar 

  • Park EK, Seo MW, Lee CG (2001) Effects of medium compositions for the growth and the astaxanthin production of Haematococcus pluvialis. Sanop Misaengmul Hakhoechi 29:227–233

    CAS  Google Scholar 

  • Pazola Z, Ciegler A, Hall HH (1966) Identification of the stimulatory factors in citrus molasses for carotenogenesis in Blakeslea trispora. Nature 210:1367–1368

    CAS  PubMed  Google Scholar 

  • Peto R, Doll R, Buckley JD, Sporn MB (1981) Can dietary β-carotene materially reduce human cancer rates? Nature 290:201–208

    CAS  PubMed  Google Scholar 

  • Phaff HJ, Fell JW (1970) Chapter 8, Discussion of the genera of asporogenous yeasts not belonging to the sporobolomycetaceae Genus 3, In: Lodder J (ed) The yeasts-a taxonomic study. North-Holland, Amsterdam, pp 1088–1145

  • Rissanen T, Voutilainen S, Nyyssonen K, Salonen JT (2002) Lycopene, atherosclerosis, and coronary heart disease. Exp Biol Med 227:900–907

    CAS  Google Scholar 

  • Sanchez Miron A, Ceron Garcia MC, Garcia C, Francisco MG, Emilio C, Yusufv (2002) Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enz Microb Technol 3:11015–1023

    Google Scholar 

  • Sakaki H, Nakanishi T, Tada A, Miki W, Komemushi S, (2001) Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation. J Biosci Bioeng 92:294–297

    Article  CAS  Google Scholar 

  • Sakamoto T, Bryant DA (1998) Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC 7002. Arch Microbiol 169:10–19

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G (1991) Biosynthesis of cyclic carotenoids: biochemistry and molecular genetics of the reaction sequence. Physiol Planta 83:186–193

    Article  CAS  Google Scholar 

  • Sandmann G, Albrecht M, Schnurr G, Knorzer O, Boger P (1999) The biotechnological potential and design of novel carotenoids by gene combination in Escherichia coli. Tib Tech 17, 233–237.

    Google Scholar 

  • Sandmann G (2001) Carotenoid biosynthesis and biotechnological application Arch Biochem Biophys 385:4-12

    Article  CAS  Google Scholar 

  • Sandmann G (2001a) Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. Trend Plant Sci 6:14–17

    Article  CAS  Google Scholar 

  • Sandmann G (2003) Novel carotenoids genetically engineered in a heterologous host. Chem Biol 10:478–479

    Article  CAS  PubMed  Google Scholar 

  • Sang-Pill H, Kim MH, Hwang JK (1998) Biological functions and production technology of carotenoids. Han’guk Sikp’um Yongyang Kwahak Hoechi (Korean) 27:1297–1306

    Google Scholar 

  • Schmidt-Dannert C (2000) Engineering novel carotenoids in microorganisms. Curr Opin Biotechnol 11:255–261

    Google Scholar 

  • Schmidt-Dannert C, Umeno D, Arnold FH (2000) Molecular breeding of carotenoid biosynthetic pathways. Nat Biotechnol 18:750–753

    CAS  PubMed  Google Scholar 

  • Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC, Farber MD, Gragoudas ES, Haller J (1994 ) Dietary carotenoids, vitamin A, C and E, and advanced age-related macular degeneration. J Am Med Assoc 272:1413–1420

    Article  CAS  Google Scholar 

  • Shaish A, Avron M, Pick U, Ben-Amotz A (1993) Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? Planta 190:363–368

    CAS  Google Scholar 

  • Shlomai P, Ben-Amotz A, Margalith P (1991) The effect of veratrole on carotenoid biosynthesis by Phycomyces blakesleeanus. J Appl Bacteriol 70:166–168

    CAS  Google Scholar 

  • Simpson KL, Nakayama TOM, Chichester CO (1964) Biosynthesis of yeast carotenoids. J Bacteriol 88:1688–1694

    CAS  Google Scholar 

  • Stabnikova EV, Slyusarenko TP, Burik MA, Polishchuk GI (1979) Optimization of the nutrient medium for the cultivation of carotene-forming yeast. Kharchova Promislovist 25:55–59

    CAS  Google Scholar 

  • Stahl W, Sies H (1996) Lycopene-A biologically important carotenoid for humans. Arch Biochem Biophys 336: 1–9

    Article  CAS  PubMed  Google Scholar 

  • Steinbrenner J, Linden H (2001) Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol 125:810–817

    Article  CAS  PubMed  Google Scholar 

  • Tada M (1993) Methods for investigating photoregulated carotenogenesis In: Packer L (ed) Carotenoids. Part B: metabolism, genetics and biosynthesis. Methods Enzymol 214:269–283

    CAS  Google Scholar 

  • Tada M, Shiroishi M (1982) Mechanism of photoregulated carotenogenesis in Rhodotorula minuta. II. Aspects of photoregulative reaction. Plant Cell Physiol 23:549–556

    CAS  Google Scholar 

  • Tada M, Tsubouchi M, Matsuo K, Takimoto H, Kimura Y, Takagi S (1990) Mechanism of photoregulated carotenogenesis in Rhodotorula minuta. VIII. Effect of mevinolin on photoinduced carotenogenesis. Plant Cell Physiol 31:319–323

    CAS  Google Scholar 

  • Tjahjono AE, Hayama Y, Kakizono T, Terada Y, Nishio N, Nagai S (1994) Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnol Lett 16:133–138

    CAS  Google Scholar 

  • Vazquez M (2001) Effect of the light on carotenoid profiles of Xanthophyllomyces dendrorhous strains (formerly Phaffia rhodozyma). Food Technol Biotechnol 39:123–128

    CAS  Google Scholar 

  • Wang C, Oh MK, Liao JC (2000) Directed evolution of metabolically engineered Escherichia coli for carotenoid production. Biotechnol Prog 16:922–926

    CAS  PubMed  Google Scholar 

  • Wang GY, Keasling JD (2002) Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metabol Eng 4:193–201

    Article  CAS  Google Scholar 

  • Wang Y, Xiao Y, Ding Y, Wang Z (1999) Effects of La3+, Ce3+, Nd3+ on growth and carotenoids content of Phaffia rhodozyma. Weishengwuxue Tongbao 26:117–119

    CAS  Google Scholar 

  • Yamano S, Ishii T, Nakagawa M, Ikenaga H, Misawa N (1994) Metabolic engineering for production of β-carotene and lycopene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 58:1112–1114

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Mr. Alexander Larson and Ms. Rachna Bhosale for their kind suggestions regarding the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bhosale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhosale, P. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol 63, 351–361 (2004). https://doi.org/10.1007/s00253-003-1441-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1441-1

Keywords

Navigation