Skip to main content
Log in

Comparative mapping of DNA sequences in rye (Secale cereale L.) in relation to the rice genome

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The rice genome has proven a valuable resource for comparative approaches to address individual genomic regions in Triticeae species at the molecular level. To exploit this resource for rye genetics and breeding, an inventory was made of EST-derived markers with known genomic positions in rye, which were related with those in rice. As a first inventory set, 92 EST-SSR markers were mapped which had been drawn from a non-redundant rye EST collection representing 5,423 unigenes and 2.2 Mb of DNA. Using a BC1 mapping population which involved an exotic rye accession as donor parent, these EST-SSR markers were arranged in a linkage map together with 25 genomic SSR markers as well as 131 AFLP and four STS markers. This map comprises seven linkage groups corresponding to the seven rye chromosomes and covers 724 cM of the rye genome. For comparative studies, additional inventory sets of EST-based markers were included which originated from the rye-mapping data published by other authors. Altogether, 502 EST-based markers with known chromosomal localizations in rye were used for BlastN search and 334 of them could be in silico mapped in the rice genome. Additionally, 14 markers were included which lacked sequence information but had been genetically mapped in rice. Based on the 348 markers, each of the seven rye chromosomes could be aligned with distinct portions of the rice genome, providing improved insight into the status of the rye–rice genome relationships. Furthermore, the aligned markers provide genomic anchor points between rye and rice, enabling the identification of conserved ortholog set markers for rye. Perspectives of rice as a model for genome analysis in rye are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bailey PC, McKibbin RS, Lenton JR, Holdsworth MJ, Flintham JE, Gale MD (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor Appl Genet 98:281–284

    Article  CAS  Google Scholar 

  • Bolibok H, Gruszczyńska A, Hromada-Judycka A, Rakoczy-Trojanowska M (2007) The identification of QTLs associated with the in vitro response of rye (Secale cereale L.). Cell Mol Biol Lett 12(4):523–535

    Article  CAS  Google Scholar 

  • Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP (2008) An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 Locus of Rye (Secale cereale L.). Genetics 179:669–682

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojć P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680

    Article  CAS  Google Scholar 

  • Ehdaie B, Whitkus RB, Wainesa JG (2003) Root biomass, water-use efficiency, and performance of wheat–rye translocations of chromosomes 1 and 2 in Spring Bread Wheat ‘Pavon’. Crop Sci 43:710–717

    Google Scholar 

  • Falke KC, Sušić Z, Hackauf B, Korzun V, Schondelmaier J, Wilde P, Wehling P, Wortmann H, Mank JR, van der Voort JR, Maurer HP, Miedaner T, Geiger HH (2008) Establishment of introgression libraries in hybrid rye (Secale cereale L.) from an Iranian primitive accession as a new tool for rye breeding and genomics. Theor Appl Genet 117:641–652

    Article  PubMed  CAS  Google Scholar 

  • Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Hernández-Riquer MV, Gallego FJ (2007) Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theor Appl Genet 114:249–260

    Article  PubMed  CAS  Google Scholar 

  • Forsström PO, Merker A (2001) Sources of wheat powdery mildew resistance from wheat–rye and wheat–Leymus hybrids. Hereditas 134:115–119

    Article  PubMed  Google Scholar 

  • Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14(7):1457–1467

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Guyot R, Keller B (2004) Ancestral genome duplication in rice. Genome 47:610–614

    Article  PubMed  CAS  Google Scholar 

  • Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25

    Article  CAS  Google Scholar 

  • Hackauf B, Wehling P (2003) Development of microsatellite markers in rye: map construction. Plant Breed Seed Sci 48:143–151

    Google Scholar 

  • Hackauf B, Wehling P (2005) Approaching the self-incompatibility locus Z in rye (Secale cereale L.) via comparative genetics. Theor Appl Genet 110:832–845

    Article  PubMed  CAS  Google Scholar 

  • Hackauf B, Wortmann H, Wehling P (2007) Unravelling genomic regions involved in fertilization control in rye: advances and prospects. Vortr. Pflanzenzüchtung 71:210–216

    Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    PubMed  CAS  Google Scholar 

  • Hernandez P, Laurie DA, Martin A, Snape JW (2002) Utility of barley and wheat simple sequence repeat (SSR) markers for genetic analysis of Hordeum chilense and tritordeum. Theor Appl Genet 104:735–739

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: A DNA Sequence Assembly Program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Keller B, Feuillet C (2000) Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Than MH, Pestsova EG, Roder MS, Malyshev SV, Korzun V, Borner A (2004) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor Appl Genet 109:725–732

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Than MH, Pestsova EG, Roder MS, Malyshev SV, Korzun V, Borner A (2005) Erratum: Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor Appl Genet 110:990–991

    Article  CAS  Google Scholar 

  • Kishimoto N, Higo H, Abe K, Arai S, Saito A, Higo K (1994) Identification of the duplicated segments in rice chromosomes 1 and 5 by linkage analysis of cDNA markers of known functions. Theor Appl Genet 88:722–726

    Article  CAS  Google Scholar 

  • Kofler R, Bartoš J, Gong L, Stift G, Suchánková P, Šimková H, Berenyi M, Burg K, Doležel J, Lelley T (2008) Development of microsatellite markers specific for the short arm of rye (Secale cereale L.) chromosome 1. Theor Appl Genet (published online 15 July 2008)

  • Korzun V, Malyshev S, Voylokov AV, Börner A (2001) A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor Appl Genet 102:709–717

    Article  CAS  Google Scholar 

  • Kuleung C, Baenziger PS, Dweikat I (2004) Transferability of SSR markers among wheat, rye, and triticale. Theor Appl Genet 108:1147–1150

    Article  PubMed  CAS  Google Scholar 

  • Lapitan NLV, Peng J, Sharma V (2007) A high-density map and PCR markers for Russian wheat Aphid Resistance Gene Dn7 on chromosome 1RS/1BL. Crop Sci 47:811–820

    CAS  Google Scholar 

  • Linkiewicz AM, Qi LL, Gill BS, Ratnasiri A, Echalier B, Chao S, Lazo GR, Hummel DD, Anderson OD, Akhunov ED, Dvorák J, Pathan MS, Nguyen HT, Peng JH, Lapitan NL, Miftahudin, Gustafson JP, La Rota CM, Sorrells ME, Hossain KG, Kalavacharla V, Kianian SF, Sandhu D, Bondareva SN, Gill KS, Conley EJ, Anderson JA, Fenton RD, Close TJ, McGuire PE, Qualset CO, Dubcovsky J (2004) A 2500-locus bin map of wheat homoeologous group 5 provides insights on gene distribution and colinearity with rice. Genetics 168:665–676

    Article  PubMed  CAS  Google Scholar 

  • Liu ZW, Biyashev RM, Saghai Maroof MA (1996) Development of simple sequence repeat markers and their integration into a barley linkage map. Theor Appl Genet 93:869–876

    Article  CAS  Google Scholar 

  • Loarce Y, Hueros G, Ferrer E (1996) A molecular linkage map of rye. Theor Appl Genet 93:1112–1118

    Article  CAS  Google Scholar 

  • Ma X-F, Wanous MK, Houchins K, Rodriguez Milla MA, Goicoechea PG, Wang Z, Xie M, Gustafson JP (2001) Molecular linkage mapping in rye (Secale cereale L.). Theor Appl Genet 102:517–523

    Article  CAS  Google Scholar 

  • Mago R, Miah H, Lawrence GJ, Wellings CR, Spielmeyer W, Bariana HS, McIntosh RA, Pryor AJ, Ellis JG (2005) High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor Appl Genet 112:41–50

    Article  PubMed  CAS  Google Scholar 

  • Masojć P, Myśków B, Milczarski P (2001) Extending a RFLP-based genetic map of rye using random amplified polymorphic DNA (RAPD) and isozyme markers. Theor Appl Genet 102:1273–1279

    Article  Google Scholar 

  • Mater Y, Baenziger S, Gill K, Graybosch R, Whitcher L, Baker C, Specht J, Dweikat I (2004) Linkage mapping of powdery mildew and greenbug resistance genes on recombinant 1RS from ‘Amigo’ and ‘Kavkaz’ wheat–rye translocations of chromosome 1RS.1AL. Genome 47:292–298

    PubMed  CAS  Google Scholar 

  • Matos M, Perez-Flores V, Camacho MV, Pernaute B, Pinto-Carnide O, Benito C (2007) Detection and mapping of SSRs in rye ESTs from aluminium-stressed roots. Mol Breed 20:103–115

    Article  CAS  Google Scholar 

  • Miedaner T, Glass C, Dreyer F, Wilde P, Wortmann H, Geiger HH (2000) Mapping of genes for male-fertility restoration in ‘Pampa’ CMS winter rye (Secale cereale L.). Theor Appl Genet 101:1226–1233

    Article  Google Scholar 

  • Miftahudin, Scoles GJ, Gustafson JP (2004) Development of PCR-based codominant markers flanking the Alt3 gene in rye. Genome 47:231–238

    Article  PubMed  CAS  Google Scholar 

  • Milczarski P, Banek-Tabor A, Lebiecka K, Stojalowski S, Myoeków B, Masojc P (2007) New genetic map of rye composed of PCR-based molecular markers and its alignment with the reference map of the DS2 × RXL10 intercross. J Appl Genet 48:11–24

    PubMed  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Grasses, line up and form a circle. Curr Biol 5:737–739

    Article  PubMed  CAS  Google Scholar 

  • Nagy ED, Lelley T (2003) Genetic and physical mapping of sequence-specific amplified polymorphic (SSAP) markers on the 1RS chromosome arm of rye in a wheat background. Theor Appl Genet 107:1271–1277

    Article  PubMed  CAS  Google Scholar 

  • Passarge E, Horsthemke B, Farber RA (1999) Incorrect use of the term synteny. Nat Genet 23:387

    Article  PubMed  CAS  Google Scholar 

  • Pillen K, Binder A, Kreuzkam B, Ramsay L, Waugh R, Förster J, Leon J (2000) Mapping new EMBL-derived barley microsatellites and their use in differentiating German barley cultivars. Theor Appl Genet 101:652–660

    Article  CAS  Google Scholar 

  • Ramsay L, Macaulay M, Ivanissevich SD, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    PubMed  CAS  Google Scholar 

  • Quackenbush J, Liang F, Holt I, Pertea G, Upton J (2000) The TIGR gene indices: reconstruction and representation of expressed gene sequences. Nucleic Acids Res 28:141–145

    Article  PubMed  CAS  Google Scholar 

  • Rorat T, Sadowski J, Grellet E, Daussant J, Delseny M (1991) Characterization of cDNA clones for rye endosperm/I-amylase and analysis of β-amylase deficiency in rye mutant lines. Theor Appl Genet 83:257–263

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Roux SR, Hackauf B, Linz A, Ruge B, Klocke B, Wehling P (2004) Leaf-rust resistance in rye (Secale cereale L.). 2. Genetic analysis and mapping of resistance genes Pr3, Pr4, and Pr5. Theor Appl Genet 110:192–201

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rudd S, Mewes HW, Mayer KFX (2003) Sputnik: a database platform for comparative plant genomics. Nucl Acids Res 31:128–132

    Article  PubMed  CAS  Google Scholar 

  • Rudd S (2005) openSputnik: a database to ESTablish comparative plant genomics using unsaturated sequence collections. Nucl Acids Res 33:D622–D627

    Article  PubMed  CAS  Google Scholar 

  • Ruge B, Linz A, Pickering R, Proeseler G, Greif P, Wehling P (2003) Mapping of Rym14Hb, a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley. Theor Appl Genet 107:965–971

    Article  PubMed  CAS  Google Scholar 

  • Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20:11–24

    Article  PubMed  CAS  Google Scholar 

  • Senior ML, Chin ECL, Smith JSC, Stuber CW (1996) Simple sequence repeat markers developed from maize sequences found in the GenBank database: map construction. Crop Sci 36:1676–1683

    CAS  Google Scholar 

  • Shimizu Y, Nasuda SM, Endo TR (1997) Detection of the Sec-1 locus of rye by a PCR-based method. Genes Genet Syst 72:197–203

    Article  PubMed  CAS  Google Scholar 

  • Simeone MC, Lafiandra D (2005) Isolation and characterisation of friabilin genes in rye. J Cereal Sci 41:115–122

    Article  CAS  Google Scholar 

  • Singh NK, Dalal V, Batra K, Singh BK, Chitra G, Singh A, Ghazi IA, Yadav M, Pandit A, Dixit R, Singh PK, Singh H, Koundal KR, Gaikwad K, Mohapatra T, Sharma TR (2007) Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes. Funct Integr Genomics 7:17–35

    Article  PubMed  CAS  Google Scholar 

  • Smilde WD, Haluškova J, Sasaki T, Graner A (2001) New evidence for the synteny of rice chromosome 1 and barley chromosome 3H from rice expressed sequence tags. Genome 44:361–367

    Article  PubMed  CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1, 000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839

    Article  PubMed  CAS  Google Scholar 

  • Stracke S, Schilling AG, Förster J, Weiss C, Glass C, Miedaner T, Geiger HH (2003) Development of PCR-based markers linked to dominant genes for male-fertility restoration in Pampa CMS of rye (Secale cereale L.) Theor Appl Genet 106:1184–1190

    Google Scholar 

  • Taylor C, Shepherd KW, Langridge P (1998) A molecular genetic map of the long arm of chromosome 6R of rye incorporating the cereal cyst nematode resistance gene CreR. Theor Appl Genet 97:1000–1012

    Article  CAS  Google Scholar 

  • Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.) Theor Appl Genet 100:697–712

    Google Scholar 

  • Valarik M, Linkiewicz A, Dubcovsky J (2006) A microcolinearity study at the earliness per se gene Eps-A(m)1 region reveals an ancient duplication that preceded the wheat-rice divergence. Theor Appl Genet 112:945–957

    Article  PubMed  CAS  Google Scholar 

  • Van Campenhout S, Koebner RMD, Volckaert G (2000) The applicability of consensus PCR primers across species and genera: the use of wheat Em sequences to develop markers for orthologues in rye. Theor Appl Genet 100:328–336

    Article  Google Scholar 

  • Van Deynze AE, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells ME (1995) Comparative mapping in grasses. Wheat relationships. Mol Gen Genet 248:744–754

    Article  PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® Version 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Varshney RK, Grosse I, Hähnel U, Siefken R, Prasad M, Stein N, Langridge P, Altschmied L, Graner A (2006) Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor Appl Genet 113:239–250

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Beier U, Khlestkina EK, Kota R, Korzun V, Graner A, Börner A (2007) Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies. Theor Appl Genet 114:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Villarea RL, Bañuelos O, Mujeeb-Kazi A, Rajaram S (1998) Agronomic performance of chromosomes 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82. Euphytica 103:195–202

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946

    Article  PubMed  CAS  Google Scholar 

  • Wehling P, Linz A, Hackauf B, Roux SR, Ruge B, Klocke B (2003) Leaf-rust resistance in rye (Secale cereale L.). 1. Genetic analysis and mapping of resistance genes Pr1 and Pr2. Theor Appl Genet 107:432–438

    Article  PubMed  CAS  Google Scholar 

  • Wricke G, Wehling P (1985) Linkage between an incompatibility locus and a peroxidase locus (Prx7) in rye. Theor Appl Genet 71:289–291

    Google Scholar 

  • Wricke G, Hackauf B (2007) Towards the inheritance of kernel weight in rye. Vortr Pflanzenzüchtung 71:22–26

    Google Scholar 

  • Wricke G, Wilde P, Wehling P, Gieselmann C (1993) An isozyme marker for pollen fertility restoration to the Pampa cms system of rye (Secale cereale L.). Plant Breed 111:290–294

    Article  CAS  Google Scholar 

  • Wricke G, Dill P, Senft P (1996) Linkage between a major gene for mildew resistance and an RFLP marker on chromosome 1R of rye. Plant Breed 115:71–73

    Article  CAS  Google Scholar 

  • Yang L, Jin G, Zhao X, Zheng Y, Xu Z, Wu W (2007) PIP: a database of potential intron polymorphism markers. Bioinformatics 23:2174–2177

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li S, Li X, Zheng Hqa2`, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Wang J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Wang J, Wang X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Liu J, Xiao Y, Bu D, Tan J, Yang L, Ye C, Zhang J, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Zhang Z, Zhang Y, Huang X, Su Z, Tong W, Li J, Tong Z, Li S, Ye J, Wang L, Fang L, Lei T, Chen C, Chen H, Xu Z, Li H, Huang H, Zhang F, Xu H, Li N, Zhao C, Li S, Dong L, Huang Y, Li L, Xi Y, Qi Q, Li W, Zhang B, Hu W, Zhang Y, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, McDermott J, Samudrala R, Wang J, Wong GK-S, Yang H (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

  • Yuan Q, Liang F, Hsiao J, Zismann V, Benito MI, Quackenbush J, Wing R, Buell R (2000) Anchoring of rice BAC clones to the rice genetic map in silico. Nucleic Acids Res 28:3636–3641

    Article  PubMed  CAS  Google Scholar 

  • Yuan Q, Ouyang S, Wang A, Zhu W, Maiti R, Lin H, Hamilton J, Haas B, Sultana R, Cheung F, Wortman J, Buell CR (2005) The Institute for Genomic Research Osa1 Rice Genome Annotation Database. Plant Physiol 138:18–26

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the German Federal Ministry of Education and Research (BMBF) in conjunction with the GABI programme (BMBF Grant #0312289B). Helpful discussion by Dr. B. Truberg on the design of the local relational database is gratefully acknowledged. We are grateful to two anonymous reviewers for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hackauf.

Additional information

Communicated by M. Xu.

Dedicated to Prof. em. Dr. Dr. h.c. Günter Wricke on occasion of his 80th birthday.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackauf, B., Rudd, S., van der Voort, J.R. et al. Comparative mapping of DNA sequences in rye (Secale cereale L.) in relation to the rice genome. Theor Appl Genet 118, 371–384 (2009). https://doi.org/10.1007/s00122-008-0906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0906-0

Keywords

Navigation