Skip to main content
Log in

Leaf-rust resistance in rye (Secale cereale L.). 2. Genetic analysis and mapping of resistance genes Pr3, Pr4, and Pr5

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 06 October 2004

Abstract

Three dominant resistance genes, Pr3, Pr4, and Pr5, were identified by genetic analysis of resistance to leaf rust in rye (Puccinia recondita f. sp. secalis). Each of the three genes confers resistance to a broad scale of single-pustule isolates (SPIs), but differences could be observed for specific Pr gene/SPI combinations. Resistance conferred by the three genes was effective in both detached-leaf tests carried out on seedlings and in field tests of adult plants. Molecular marker analysis mapped Pr3 to the centromeric region of rye chromosome arm 1RS, whereas Pr4 and Pr5 were assigned to the centromeric region of 1RL. Chromosomal localization and reaction patterns to specific SPIs provide evidence that the three Pr genes represent distinct and novel leaf-rust resistance genes in rye. The contributions of these genes to resistance breeding in rye and wheat are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bartoš P, Bareš I (1971) Leaf and stem rust resistance of hexaploid wheat cultivars Salzmünder Bartweizen and Weique. Euphytica 20:435–440

    Google Scholar 

  • Boyko EV, Gill KS, Mickelson-Young L, Nasuda S, Raupp WJ, Ziegle JN, Singh S, Hassawi DS, Fritz AK, Namuth D, Lapitan NLV, Gill BS (1999) A high-density genetic linkage map of Aegilops tauschii, the D-genome progenitor of bread wheat. Theor Appl Genet 99:16–26

    Article  CAS  Google Scholar 

  • Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

    Article  CAS  PubMed  Google Scholar 

  • Feuillet C, Schachermayr G, Keller B (1997) Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 11:45–52

    Article  CAS  PubMed  Google Scholar 

  • Frauenstein K (1985) Untersuchungen zur Schadwirkung des Braunrostes, Puccinia recondita Rob. ex Desm., an Winterroggen. Nachrichtenbl Dtsch Pflanzenschutz DDR 39:177–178

    Google Scholar 

  • Frauenstein K, Reichel A (1978) Zum Erkennen von slow-rusting-Formen bei Roggenbraunrost (Puccinia recondita Rob. ex Desm.). 2. Symposium über Schaderreger in der industriemässigen Getreideproduktion, Martin-Luther-Universität Halle, Wissenschaftliche Beiträge 14 (S11), 403–411

  • Gale MD, Devos KM (1998a) Comparative mapping in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  CAS  PubMed  Google Scholar 

  • Gale MD, Devos KM (1998b) Plant comparative genetics after 10 years. Science 282:656–659

    Article  CAS  PubMed  Google Scholar 

  • Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25

    Article  CAS  Google Scholar 

  • Hart GE, Gale MD, McIntosh RA (1993) Linkage maps of Triticum aestivum hexaploid wheat, 2n=42, genomes A, B, and D) and T. tauschii (2n=14, genome D). In: O’Brien SJ (ed) Genetic maps: locus maps of complex genomes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 6204–6219

    Google Scholar 

  • Hsam SLK, Mohler V, Hartl L, Wenzel G, Zeller FJ (2000) Mapping of powdery mildew and leaf rust resistance genes on the wheat-rye translocated chromosome T1BL·1RS using molecular and biochemical markers. Plant Breed 119:87–89

    Article  CAS  Google Scholar 

  • Jahn M, Freier B, Kluge E (1995) Zum Einfluss von Klimaveränderungen auf die phytosanitäre Situation im Agrarbereich. In: Weigel HJ, Dämmgen U, Scholz F (eds) Klimawirkungsforschung im Geschäftsbereich des BML. Reihe A: Angewandte Wissenschaft, vol 442. Landwirtschaftsverlag, Münster, pp 81–92

    Google Scholar 

  • Keller B, Feuillet C (2000) Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251

    Article  CAS  PubMed  Google Scholar 

  • Kobylanski VD, Solodukhina OV (1983) Damage of important fungal diseases and methods for resistance breeding of short-straw rye (in Russian). In: Voprosy Sal. I Genetiki zernovych Kult, Moscow, pp 140–147

  • Kobylanski VD, Solodukhina OV (1996) Genetic bases and practical breeding utilization of heterogenous resistance of rye to brown rust. Vortr Pflanzenzuecht 35:155–163

    Google Scholar 

  • Korzun V, Malyshev S, Voylokov AV, Börner A (2001) A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor Appl Genet 102:709–717

    Article  CAS  Google Scholar 

  • Laurie DA, Devos KM (2002) Trends in comparative genetics and their potential impacts on wheat and barley research. Plant Mol Biol 48:729–740

    Article  CAS  PubMed  Google Scholar 

  • Madsen LH, Collins NC, Rakwalska M, Backes G, Sandal N, Krusell L, Jensen J, Waterman EH, Jahoor A, Ayliffe M, Pryor AJ, Langridge P, Schulze-Lefert P, Stougaard J (2003) Barley disease resistance gene analogs of the NBS-LRR class: identification and mapping. Mol Genet Genomics 269:150–161

    CAS  PubMed  Google Scholar 

  • Mettin D, Blüthner WD, Schlegel R (1973) Additional evidence on spontaneous 1B/1R wheat-rye substitutions and translocations. In: Sears ER, Sears LMS (eds) Proc 4th Int Wheat Genet Symp. Mo. Agric Exp Sta, Columbia, Mo., pp 179–184

  • Miedaner T, Sperling U (1995) Effect of leaf rust on yield components of winter rye hybrids and assessment of quantitative resistance. J Phytopathol 143:725–730

    Google Scholar 

  • Miedaner T, Gey A-KM, Sperling U, Geiger HH (2002) Quantitative-genetic analysis of leaf-rust resistance in seedling and adult-plant stages of inbred lines and their testcrosses in winter rye. Plant Breed 121:475–479

    Article  Google Scholar 

  • Mohler V, Hsam SLK, Zeller FJ, Wenzel G (2001) An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breed 120:448–450

    Article  CAS  Google Scholar 

  • Musa GLC, Dyck PL, Samborski DJ (1984) The inheritance of resistance in rye to Puccinia recondita f. sp. secalis and f. sp. tritici. Can J Plant Sci 64:511–519

    Google Scholar 

  • Parlevliet JE (1977) Variation for partial resistance in a cultivar of rye, Secale cereale, to brown rust, Puccinia recondita f. sp. secalis. Cereal Rusts Bull 5:13–16

    Google Scholar 

  • Parlevliet JE (1989) Identification and evaluation of quantitative resistance. In: Leonard KJ, Fry WE (eds) Plant disease epidemiology: genetics, resistance and management, vol 2. McGraw-Hill, New York, pp 215–248

  • Roux SR, Ruge B, Linz A, Wehling P (2000) Leaf rust resistance in rye—evaluation, genetic analysis and molecular mapping. Acta Phytopathol Entomol Hung 35:65–73

    CAS  Google Scholar 

  • Ruge B, Roux SR, Linz A, Wehling P (1999) Erschließung und molekulare Charakterisierung von Resistenzen gegen Braunrost bei Roggen (Secale cereale L.). Vortr Pflanzenzuecht 46:169–176

    Google Scholar 

  • Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972

    Article  CAS  PubMed  Google Scholar 

  • Sawhney RN, Sharma JB (1999) Novel complementary genes for adult plant leaf rust resistance in a wheat stock carrying the 1BL-1RS translocation. Plant Breed 118:269–271

    Article  Google Scholar 

  • Shimizu Y, Nasuda S, Endo TR (1997) Detection of the Sec-1 locus of rye by a PCR-based method. Genes Genet Syst 72:197–203

    Article  CAS  PubMed  Google Scholar 

  • Singh NK, Shepherd KW, McIntosh RA (1990) Linkage mapping of genes for resistance to leaf, stem and stripe rusts and ω-secalins on the short arm of rye chromosome 1R. Theor Appl Genet 80:609–616

    Article  CAS  Google Scholar 

  • Solodukhina OV (1994) Rye resistance to brown rust and powdery mildew: the potential of hereditary variability (in Russian). Genetika 30:616–618

    Google Scholar 

  • Solodukhina OV (2002) Genetic characterization of rye accessions with regard to leaf rust resistance. Russ J Genet 38:399–407

    Article  CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NLV, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    CAS  PubMed  Google Scholar 

  • Stevens WL (1942) Accuracy of mutations rates. J Genet 43:301–307

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap version 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Voylokov AV, Fuong FT, Smirnov VG (1993) Genetic studies on self-fertility in rye (Secale cereale L.). 1. The identification of genotypes of self-fertile lines for the sf-alleles of self-incompatibility genes. Theor Appl Genet 87:616–618

    CAS  Google Scholar 

  • Voylokov AV, Korzun V, Börner A (1998) Mapping of three self-fertility mutations in rye (Secale cereale L.) using RFLP, isozyme and morphological markers. Theor Appl Genet 97:147–153

    Article  CAS  Google Scholar 

  • Wehling P, Wricke G (1985) Linkage between an incompatibility locus and a peroxidase isozyme locus (Prx7) in rye. Theor Appl Genet 71:289–291

    Google Scholar 

  • Wehling P, Linz A, Hackauf B, Roux SR, Ruge B, Klocke B (2003) Leaf-rust resistance in rye (Secale cereale L.). 1. Genetic analysis and mapping of resistance genes Pr1 and Pr2. Theor Appl Genet 107:432–438

    Article  CAS  PubMed  Google Scholar 

  • Welz G (1986) Struktur und Dynamik der Virulenz in Populationen von Erysiphe graminis f. sp. hordei. Marchal. PhD thesis, Justus-Liebig-Universität, Giessen, Germany

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 41:415–421

    Google Scholar 

  • Zeller FJ (1973) 1B/1R wheat-rye chromosome substitutions and translocations. In: Proc 4th Int Wheat Genetics Symp. Mo. Agric Exp Sta, Columbia, Mo., pp 209–222

  • Zeller FJ, Hsam SLK (1983) Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. In: Sakamoto S (ed) Proceedings of 6th international wheat genetics symposium, Kyoto, pp 161–173

Download references

Acknowledgements

The authors are indebted to Prof. F. Salamini for the critical reading of the manuscript. This study was supported in part by the Deutsche Forschungsgemeinschaft (DFG) (Project Grant WE 2079/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Roux.

Additional information

Communicated by F. Salamini

The authors dedicate this paper to Prof. Dr. H.H. Geiger, University of Hohenheim, on the occasion of his 65th birthday.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00122-004-1826-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roux, S.R., Hackauf, B., Linz, A. et al. Leaf-rust resistance in rye (Secale cereale L.). 2. Genetic analysis and mapping of resistance genes Pr3, Pr4, and Pr5. Theor Appl Genet 110, 192–201 (2004). https://doi.org/10.1007/s00122-004-1807-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1807-5

Keywords

Navigation