Skip to main content
Log in

A microcolinearity study at the earliness per se gene Eps-A m 1 region reveals an ancient duplication that preceded the wheat–rice divergence

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Wheat flowering is controlled by numerous genes, which respond to environmental signals such as photoperiod and vernalization. Earliness per se (Eps) genes control flowering time independently of these environmental cues and are responsible for the fine tuning of flowering time. We recently mapped the Eps-A m 1 gene on the end of Triticum monococcum chromosome arm 1AmL. As a part of our efforts to clone Eps-A m 1 we developed PCR markers flanking this gene within a 2.7 cM interval. We screened more than one thousand gametes with these markers and identified 27 lines with recombination between them. Recombinant lines were used to generate a high-density map and to investigate the microcolinearity between wheat and rice in this region. We mapped ten genes from a 149 kb region located at the distal part of rice chromosome 5 (cdo393 – Ndk3) on a 3.7 cM region on wheat chromosome one. This region is part of an ancient duplication between rice chromosomes 5 and 1. Genes present in both rice chromosomes were less similar to each other than to the closest wheat orthologues, suggesting that this duplication preceded the divergence between wheat and rice. This hypothesis was supported by the presence of 18 loci duplicated both in rice chromosomes 5 and 1 and in the colinear wheat chromosomes from homoeologous groups 1 and 3. Independent gene deletions in wheat and rice lineages explain the alternations of colinearity between rice chromosome 5 and wheat chromosomes 1 and 3. Colinearity between the end of rice chromosome 5 and wheat chromosome 1 was also interrupted by a small inversion, and several non-colinear genes. These results suggest that the distal region of the long arm of wheat chromosome 1 was involved in numerous changes that differentiated wheat and rice genomes. This comparative study provided sufficient markers to saturate the Eps-A m 1 gene region and to precisely map this gene within a 0.9 cM interval flanked by the VatpC and Smp loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn S, Anderson JA, Sorrells ME, Tanksley SD, (1993) Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241:483-490

    Article  PubMed  CAS  Google Scholar 

  • Akhunov ED, Akhunova AR, Linkiewicz AM, Dubcovsky J, Hummel D, Lazo G, Chao SM, Anderson OD, David J, Qi LL, Echalier B, Gill BS, Miftahudin, Gustafson JP, La Rota M, Sorrells ME, Zhang DS, Nguyen HT, Kalavacharla V, Hossain K, Kianian SF, Peng JH, Lapitan NLV, Wennerlind EJ, Nduati V, Anderson JA, Sidhu D, Gill KS, McGuire PE, Qualset CO, Dvorak J, (2003a) Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates along chromosome arms. Proc Natl Acad Sci USA 100:10836–10841

    Article  CAS  Google Scholar 

  • Akhunov ED, Goodyear AW, Geng S, Qi LL, Echalier B, Gill BS, Miftahudin, Gustafson JP, Lazo G, Chao SM, Anderson OD, Linkiewicz AM, Dubcovsky J, La Rota M, Sorrells ME, Zhang DS, Nguyen HT, Kalavacharla V, Hossain K, Kianian SF, Peng JH, Lapitan NLV, Gonzalez-Hernandeiz JL, Anderson JA, Choi DW, Close TJ, Dilbirligi M, Gill KS, Walker-Simmons MK, Steber C, McGuire PE, Qualset CO, Dvorak J, (2003b) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res13:753–763

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ, (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Appendino ML, Slafer GA, (2003) Earliness per se and its dependence upon temperature in diploid wheat lines differing in the major gene Eps-A m 1 alleles. J Agr Sci 141:149–154

    Article  CAS  Google Scholar 

  • Bennetzen JL, Ramakrishna W, (2002) Numerous small rearrangements of gene content, order and orientation differentiate grass genomes. Plant Mol Biol 48:821–827

    Article  PubMed  CAS  Google Scholar 

  • Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A, (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Nat Acad Sci USA 99:9328–9333

    Article  PubMed  CAS  Google Scholar 

  • Brunner S, Keller B, Feuillet C, (2003) A large rearrangement involving genes and low-copy DNA interrupts the microcollinearity between rice and barley at the Rph7 locus. Genetics 164:673–683

    PubMed  CAS  Google Scholar 

  • Bullrich L, Appendino ML, Tranquilli G, Lewis S, Dubcovsky J, (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor Appl Genet 105:585–593

    Article  PubMed  CAS  Google Scholar 

  • Cenci A, Chantret N, Xy K, Gu Y, Anderson OD, Fahima T, Distelfeld A, Dubcovsky J, (2003) Construction and characterization of a half million clones Bacterial Artificial Chromosome (BAC) library of durum wheat. Theor Appl Genet 107:931–939

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, (2005) Updating the ‘Crop circle’. Curr Opin Plant Biol 8:155–162

    Article  PubMed  CAS  Google Scholar 

  • Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J, Fahima T, (2004) Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Funct Integr Genomics 4: 59–66

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Dvorak J, (1995) Genome identification of the Triticum crassum complex (Poaceae) with the restriction patterns of repeated nucleotide sequences. Am J Bot 82:131–140

    Article  CAS  Google Scholar 

  • Dubcovsky J, Galvez AF, Dvorak J, (1994) Comparison of the genetic organization of the early salt stress response gene system in salt-tolerant Lophopyrum elongatum and salt-sensitive wheat. Theor Appl Genet 87:957–964

    Article  CAS  Google Scholar 

  • Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvorak J, (1996) Genetic map of diploid wheat, Triticum monococcum L, and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999

    PubMed  CAS  Google Scholar 

  • Dubcovsky J, Ramakrishna W, SanMiguel P, Busso C, Yan L, Shiloff B, Bennetzen J, (2001) Comparative sequence analysis of colinear barley and rice BACs. Plant Physiol 125:1342–1353

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, McGuire PE, Cassidy B, (1988) Apparent sources of the A genomes of wheats inferred from the polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30:680–689

    CAS  Google Scholar 

  • Dvorak J, Di Terlizzi P, Zhang H-B, Resta P, (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36: 21–31

    Article  CAS  PubMed  Google Scholar 

  • Dvorak J, Zhang HB, (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87: 9640–9644

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Keller B, (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci USA 96:8265–8270

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B, (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM, (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Guyot R, Keller B, (2004) Ancestral genome duplication in rice. Genome 47:610–614

    Article  PubMed  CAS  Google Scholar 

  • Haen KM, Lu HJ, Friesen TL, Faris JD, (2004) Genomic targeting and high-resolution mapping of the Tsn1 gene in wheat. Crop Sci 44:951–962

    Article  CAS  Google Scholar 

  • Hoogendoorn C, (1985) A reciprocal F1 analysis of the genetic control of the time of ear emergence, number of leaves and number of spikelets in wheat (Triticum aestivum L.). Euphytica 34:545–558

    Article  Google Scholar 

  • Huang L, Brooks SA, Li WL, Fellers JP, Trick HN, Gill BS, (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris JD, Gill BS, Haselkorn R, Gornicki P, (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99: 8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Islam-Faridi MN, Worland AJ, Law CN, (1996) Inhibition of ear-emergence time and sensitivity to day-length determined by the group 6 chromosomes of wheat. Heredity 77:572–580

    Google Scholar 

  • Kato K, Miura H, Akiyama M, Kuroshima M, Sawada S, (1998) RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica 101:91–95

    Article  CAS  Google Scholar 

  • Keller B, Feuillet C, (2000) Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251

    Article  PubMed  CAS  Google Scholar 

  • Kellogg EA, (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Kilian A, Chen J, Han F, Steffenson B, Kleinhofs A, (1997) Towards map-based cloning of the barley stem rust resistance gene Rpg1 and Rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol 35:187–195

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto N, Higo H, Abe K, Arai S, Saito A, Higo K, (1994) Identification of the duplicated segments in rice chromosomes 1 and 5 by linkage analysis of cDNA markers of known function. Theor Appl Genet 88:722–726

    Article  CAS  Google Scholar 

  • Langridge P, Karakousis A, Collins N, Kretschmer J, Manning S, (1995) A consensus linkage map of barley. Mol Breeding 1:389–395

    Article  CAS  Google Scholar 

  • Law CN, Suarez E, Miller TE, Worland AJ, (1998) The influence of the group 1 chromosomes of wheat on ear-emergence times and their involvement with vernalization and day length. Heredity 80:83–91

    Article  Google Scholar 

  • Li WL, Gill BS, (2002) The colinearity of the Sh2/A1 orthologous region in rice, sorghum and maize is interrupted and accompanied by genome expansion in the Triticeae. Genetics 160:1153–1162

    PubMed  CAS  Google Scholar 

  • Lijavetzky D, Muzzi G, Wicker T, Keller B, Wing R, Dubcovsky J, (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42:1176–1182

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Anderson JA, (2003) Targeted molecular mapping of a major wheat QTL for Fusarium head blight resistance using wheat ESTs and synteny with rice. Genome 46:817–823

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Nagaki K, Fujita M, Kawaura K, Uozumi M, Ogihara Y, (2000) Development of an efficient maintenance and screening system for large-insert genomic DNA libraries of hexaploid wheat in a transformation-competent artificial chromosome (TAC) vector. Plant J 23:687–695

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Weining S, Sharp PJ, Liu C, (2000) Non-gridded library: a new approach for BAC (bacterial artificial chromosome) exploitation in hexaploid wheat (Triticum aestivum). Nucleic Acids Res 28:e106

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R, (2003) Catalogue of Gene Symbols for Wheat. In: Pogna NE, Romano M, Pogna E, Galterio G (eds) Proceedings of 10th international wheat genetic symposium. Instituto Sperimentale per la Cerealicoltura, Rome, Paestum, Italy, http://www.wheat.pw.usda.gov/ggpages/wgc/2000upd.html.

  • Michaels SD, Amasino RM, (1998) A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J 14:381–385

    Article  PubMed  CAS  Google Scholar 

  • Mingeot D, Jacquemin JM, (1999) Mapping of RFLP probes characterized for their polymorphism on wheat. Theor Appl Genet 98:1132–1137

    Article  CAS  Google Scholar 

  • Miura H, Worland AJ, (1994) Genetic control of vernalization, day-length response, and earliness, by homoeologous group-3 chromosomes in wheat. Plant Breed 113:160–169

    Article  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD, (1995) Grasses, line up and form a circle. Curr Biol 5:737–739

    Article  PubMed  CAS  Google Scholar 

  • Moullet O, Zhang H-B, Lagudah ES, (1999) Construction and characterization of a large DNA insert library from the D genome of wheat. Theor Appl Genet 99:305–313

    Article  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA, (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908

    Article  PubMed  CAS  Google Scholar 

  • Peng JH, Zadeh H, Lazo G, Gustafson JP, Chao S, Anderson OD, Qi LL, Echalier B, Gill BS, Dilbirligi M, Sandhu D, Gill KS, Greene RA, Sorrells ME, Akhunov ED, Dvorak J, Linkiewicz AM, Dubcovsky J, Hossain K, Kianian SF, Mohmand A, Miftahudin, Wennerlind E, Anderson JA, Pathan MS, Nguyen HT, McGuire PE, Qualset CO, Lapitan NLV, (2004) Chromosome bin map of expressed sequence tags in homoeologous group 1 of hexaploid wheat and homoeology with rice and Arabidopsis. Genetics 168:609–623

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorak J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma XF, Miftahudin, Gustafson JP, Conley EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NLV, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Gill BS, (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  PubMed  CAS  Google Scholar 

  • Sarma RN, Fish L, Gill BS, Snape JW, (2000) Physical characterization of the homoeologous Group 5 chromosomes of wheat in terms of rice linkage blocks, and physical mapping of some important genes. Genome 43:191–198

    Article  PubMed  CAS  Google Scholar 

  • Scarth R, Law CN, (1984) The control of the day-length response in wheat by the Group-2 chromosomes. Plant Breed 92:140–150

    Google Scholar 

  • Shah MM, Gill KS, Baenziger PS, Yen Y, Kaeppler SM, Ariyarathne HM, (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–1732

    Article  CAS  Google Scholar 

  • Scherrer B, Isidore E, Klein P, Kim JS, Bellec A, Chalhoub B, Keller B, Feuillet C, (2005) Large intraspecific haplotype variability at the Rph7 locus results from rapid and recent divergence in the barley genome. Plant Cell 17:361–374

    Article  PubMed  CAS  Google Scholar 

  • Snape JW, Butterworth K, Whitechurch E, Worland AJ, (2001) Waiting for fine times: genetics of flowering time in wheat. Euphytica 119:185–190

    Article  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB, (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Sorrells ME, La Rota CM, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Gustafson PP, Qi LL, Echalier BE, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NLV, Gonzalez-Hernandez JL, Anderson JA, Hossain KG, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO, (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • Sourdille P, Snape JW, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M, (2000) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43:487–494

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, Richards RA, (2004) Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor Appl Genet 109:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA, (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R, (1995) Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59

    PubMed  CAS  Google Scholar 

  • Vandepoele K, Simillion C, Van de Peer Y, (2003) Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15:2192–2202

    Article  PubMed  CAS  Google Scholar 

  • Wang XD, Shi X, Hao BL, Ge S, Luo J, (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341

    Article  PubMed  CAS  Google Scholar 

  • Worland AJ, Law CN, (1986) Genetic analysis of chromosome 2D of wheat. I. The location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow-rust resistance. Plant Breed 96:331–345

    Google Scholar 

  • Akhunov ED, Akhunova AR, Dvořák J, (2005) BAC libraries of Triticum urartu, Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploid wheat. Theor Appl Genet 111:1617–1622

    Article  PubMed  CAS  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B, (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J, (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J, (2003) Positional cloning of wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2003-00703. The authors thank Lenka Valarikova for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dubcovsky.

Additional information

Communicated by P. Langridge

Sequencesobtained in this study: DQ196178, DQ196179, DQ196180, DQ196181, DQ196182, DQ196183, DQ196184, DQ196185, DQ196186, DQ196187, DQ196488, DQ198537, DQ308530, DQ308531, DQ308532, DQ308533, DQ308534, DQ308535, DQ308536, DQ308537, DQ308538, DQ308539, DQ308540

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valárik, M., Linkiewicz, A.M. & Dubcovsky, J. A microcolinearity study at the earliness per se gene Eps-A m 1 region reveals an ancient duplication that preceded the wheat–rice divergence. Theor Appl Genet 112, 945–957 (2006). https://doi.org/10.1007/s00122-005-0198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0198-6

Keywords

Navigation