Skip to main content
Log in

Comparative mapping in grasses. Wheat relationships

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Conventionally, the genetics of species of the family Gramineae have been studied separately. Comparative mapping using DNA markers offers a method of combining the research efforts in each species. In this study, we developed consensus maps for members of the Triticeae tribe (Triticum aestivum, T. tauschii, andHordeum spp.) and compared them to rice, maize and oat. The aneuploid stocks available in wheat are invaluable for comparative mapping because almost every DNA fragment can be allocated to a chromosome arm, thus preventing erroneous conclusions about probes that could not be mapped due to a lack of polymorphism between mapping parents. The orders of the markers detected by probes mapped in rice, maize and oat were conserved for 93, 92 and 94% of the length of Triticeae consensus maps, respectively. The chromosome segments duplicated within the maize genome by ancient polyploidization events were identified by homoeology of segments from two maize chromosomes to regions of one Triticeae chromosome. Homoeologous segments conserved across Triticeae species, rice, maize, and oat can be identified for each Triticeae chromosome. Putative orthologous loci for several simply inherited and quantitatively inherited traits in Gramineae species were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn SN, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984

    Google Scholar 

  • Ahn S, Anderson JA, Sorrells ME, Tanksley SD (1993) Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241:483–490

    Google Scholar 

  • Ahn SN, Van Deynze AE, Tanksley SD (1995) Maize-rice comparative map. In: RiceGenes: Internet Gopher, host nightshade.cit.cornell.edu, port 70, menu “browse”

  • Anderson JA, Ogihara Y, Sorrells ME, Tanksley SD (1992) Development of a chromosomal arm map for wheat based on RFLP markers. Theor Appl Genet 83:1035–1043

    Google Scholar 

  • Bonierbale M, Plaisted RL, Tanksley SD (1988) RFLP maps of potato and tomato based on a common set of clones reveal modes of chromosomal evolution. Genetics 120:1095–1103

    Google Scholar 

  • Burr B, Burr FA (1991) Recombinant inbreds for molecular mapping in maize. Trends in Genet 7:55–60

    Google Scholar 

  • Causse M, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SB, Second GA, McCouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274

    Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    Google Scholar 

  • Chong J, Howes NK, Brown PD, Harder DE (1994) Identification of the stem rust resistance genePg9 and its association with crown rust resistance and endosperm proteins in ‘Dumont’ oat. Genome 37:440–447

    Google Scholar 

  • Coe EH, Neuffer MG (1993) Gene loci and linkage map of corn (maize) (Zea mays L.) (2n = 20). In: O'Brien SJ (ed) Genetic maps, 6th edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp 6.157–6.189

    Google Scholar 

  • Darling SM, Abbott CM (1992) Mouse models of human single gene disorders. Non-transgenic mice. Bioessays 14:359–366

    Google Scholar 

  • Devey ME, Hart GE (1993) Chromosomal localization of intergenomic RFLP loci in hexaploid wheat. Genome 36:913–918

    Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Liu CJ, Gale MD (1992) RFLP-based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theor Appl Genet 83:931–939

    Google Scholar 

  • Devos KM, Millan T, Gale MD (1993) Comparative RFLP maps of homoeologous group 2 chromosomes of wheat, rye and barley. Theor Appl Genet 85:784–792

    Google Scholar 

  • Devos KM, Chao S, Li QY, Simonetti MC, Gale M (1994) Relationship between chromosome 9 of maize and wheat homoeologous group 7 chromosomes. Genetics 138:1287–1292

    Google Scholar 

  • Gardiner JM, Coe EH, Melia-Hancock S, Hoisington DA, Chao, S (1993) Development of a core RFLP map in maize using an immortalized F2 population. Genetics 134:917–930

    Google Scholar 

  • Gill KS, Lubbers EL, Gill BS, Raupp WJ, Cox TS (1991) A genetic linkage map ofTriticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome 34:362–374

    Google Scholar 

  • Gill BS, Gill KS, Raupp WJ, Delaney J, Kota RS, Mickelson L, Hassawi D, Fritz AK, Cox TS, Hulbert SH, Sears RG, Endo TR, Namuth D, Lapitan NLV (1993) Genetic and physical mapping inTriticum tauschii andT. aestivum. In: Hoisington D, McNab A (eds) Progress in genome mapping of wheat and related species. Proceedings of the 3rd Public Workshop of the International Triticeae Mapping Initiative, Mexico, D.F. Sept. 22–26, 1992. CIMMYT, pp 10–17

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Google Scholar 

  • Graner A, Bauer E, Kellermann A, Kirchner S, Muraya JK, Jahoor A, Wenzel G (1994) Progress of RFLP map construction in winter barley. Barley Genet Newslett 23:53–61

    Google Scholar 

  • Grivet L, D'Hont A, Dufour P, Hamon P, Roques D, Glaszmann JC (1994) Comparative mapping of sugar cane with other species within the Andropogoneae tribe. Heredity 73:500–508

    Google Scholar 

  • Hart GE, Gale MD, McIntosh RA (1993) Linkage maps ofTriticum aestivum (hexaploid wheat, 2n = 42, genomes A, B & D) andT. tauschii (2n = 14, genome D). In: Hoisington D, McNa A (eds) Progress in genome mapping of wheat and related species. Proceedings of the 3rd Public Workshop of the International Triticeae Mapping Initiative, Mexico, D.F. Sept. 22–26, 1992. CIMMYT, pp 32–46

  • Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34:437–447

    Google Scholar 

  • Hockett EA, Nilan RA (1985) Genetics. In: Rasmusson DC (ed) Barley. ASSA, CSSA, SSSA. Madison, Wis., pp 187–230

    Google Scholar 

  • Kinoshita T (1993) Report of the committee on gene symbolization, nomenclature and linkage groups. Rice Genet Newslett 10:7–39

    Google Scholar 

  • Kleinhofs A, Kilian A, Saghai-Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahlleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor. Appl. Genet. 86:705–712

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kowalski SP, Lan T-H, Feldman KA, Paterson AH (1994) Comparative mapping ofArabidopsis thaliana andBrassica oleracea chromosomes reveals islands of conserved organization. Genetics 138:499–510

    Google Scholar 

  • Kurata N, Nagumara Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimuzu T, Lin S-Y, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang Z-X, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y (1994a) A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet 8:365–372

    Google Scholar 

  • Kurata N, Moore G, Nagumara Y, Foote T, Yano M, Minobe Y, Gale M (1994b) Conservation of genome structure between rice and wheat. Bio/technology 12:276–278

    Google Scholar 

  • Lagudah ES, Appels R, Brown AHD, McNeil D (1991) The molecular-genetic analysis ofTriticum tauschii, the D genome donor to hexaploid wheat. Genome 34:375–386.

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg I (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Google Scholar 

  • Li Z, Pinson SRM, Stansel JW, Park WD (1995) Identification of two major genes and quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet (in press)

  • Liu YG, Tsunewaki K (1991) Restriction fragment length polymorphism analysis of wheat. II. Linkage maps of the RFLP sites in common wheat. Jpn J Genet 66:617–633

    Google Scholar 

  • McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829

    Google Scholar 

  • Naranjo T, Roca P, Goicoechea PG, Giraldez R (1987) Arm homoeology of wheat and rye chromosomes. Genome 29:873–882

    Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995a) Molecular mapping of wheat. Homoeologous group 2. Genome 38:516–524

    Google Scholar 

  • Nelson JC, Van Deynze AE, Lu YH, Autrique E, Sorrells ME, Negre S, Bernard M, Leroy P (1995b) Molecular mapping of wheat. Homoeologous group 3. Genome 38:525–533

    Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M Bernard M, Leroy P, Faris J, Anderson J (1995c) Molecular mapping of wheat. Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics (in press)

  • O'Donoughue LS, Wang Z, Röder M, Kneen B, Leggett M, Sorrells ME, Tanksley SD (1992) An RFLP-based map of oat on a cross between two diploid taxa (Avena atlantica ×A. hirtula). Genome 35:765–771

    Google Scholar 

  • O'Donoughue LS, Kianian SF, Rayapati PJ, Penner GA, Sorrells ME, Tanksley SD, Phillips RL, Rines HW, Lee M, Fedak G, Molnar SJ, Hoffman D, Salas CA, Wu B, Autrique E, Van Deynze A (1995) A molecular map of cultivated oat. Genome 38:368–380

    Google Scholar 

  • Phillips RL, Kim TS, Kaeppler SM, Parentoni SN, Shaver L, Stucker RE, Openshaw SJ (1992) Genetic dissection of maturity using RFLPs. In: ASTA (eds) Proceedings of the 47th annual corn and sorghum industry research conference, pp 135–150

  • Rayapati PJ, Gregory JW, Lee M, Wise RP (1994) A linkage map of diploid oatAvena based on RFLP loci and a locus conferring resistance toPuccinia coronata var.avenae. Theor Appl Gene 89:831

    Google Scholar 

  • Sears ER (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulation and plant genetics. Oliver and Boyd, Edinburgh, pp 29–45

    Google Scholar 

  • Sears ER, Sears LMS (1978) The telocentric chromosomes of common wheat. In: Ramanujams S (ed) Proceedings 5th International Wheat Genetics Symposium. Indian Society Genetics Plant Breeding, New Delhi, pp 389–407

    Google Scholar 

  • Siripoonwiwat W (1995) Application of restriction fragment length polymorphism (RFLP) markers in the analysis of chromosomal regions associated with some quantitative traits for hexaploid oat improvement. MSc Dissertation, Cornell University, Ithaca, New York

    Google Scholar 

  • Uemda M, Hara C, Matsubayashi Y, Li HH, Liu Q, Tadokoro F, Aostuka S, Uchimya H (1994) Expressed sequence tags from cultured cells of rice (Oryza sativa L.) under stressed conditions: analysis of transcripts of genes engaged in ATP generating pathways. Plant Mol Biol 25:469–478

    Google Scholar 

  • Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995a) Molecular-genetic maps for chromosome 1 in Triticeae species and their relation to chromosomes in rice and oats. Genome 38:47–59

    Google Scholar 

  • Van Deynze AE, Nelson JC, O'Donoughue LS, Ahn SN, Siripoonwiwat W, Harrington SE, Yglesias ES, Braga DP, McCouch SR, Sorrells ME (1995b) Comparative mapping in grasses. Oat relationships. Mol Gen Genet (in press)

  • Werner JE, Endo TR, Gill BS (1992) Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci USA 89:11307–11311

    Google Scholar 

  • Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130

    Google Scholar 

  • Xie DX, Devos KM, Moore G, Gale MD (1993) RFLP-based maps of the homoeologous group 5 chromosomes of bread wheat (Triticum aestivum L.). Theor Appl Genet 87:70–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Saedler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Deynze, A.E., Nelson, J.C., Yglesias, E.S. et al. Comparative mapping in grasses. Wheat relationships. Molec. Gen. Genet. 248, 744–754 (1995). https://doi.org/10.1007/BF02191715

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02191715

Key words

Navigation