Skip to main content
Log in

Establishment of introgression libraries in hybrid rye (Secale cereale L.) from an Iranian primitive accession as a new tool for rye breeding and genomics

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Genetic diversity of elite breeding material can be increased by introgression of exotic germplasm to ensure long-term selection response. The objective of our study was to develop and characterize the first two rye introgression libraries generated by marker-assisted backcrossing and demonstrate their potential application for improving the baking quality of rye. Starting from a cross between inbred line L2053-N (recurrent parent) and a heterozygous Iranian primitive population Altevogt 14160 (donor) two backcross (BC) and three selfing generations were performed to establish introgression libraries A and B. Amplified fragment length polymorphisms (AFLP® markers) and simple sequences repeats (SSRs) were employed to select and characterize candidate introgression lines (pre-ILs) from BC1 to BC2S3. The two introgression libraries comprise each 40 BC2S3 pre-ILs. For analyzing the phenotypic effects of the exotic donor chromosome segment (DCS) we evaluated the per se performance for pentosan and starch content in replicated field trials at each of four locations in 2005 and 2006. Introgression library A and B cover 74 and 59% of the total donor genome, respectively. The pre-ILs contained mostly two to four homozygous DCS, with a mean length of 12.9 cM (A) and 10.0 cM (B). We detected eight (A) and nine (B) pre-ILs with a significant (P < 0.05) higher pentosan content and two pre-ILs (B) with a significant (P < 0.05) higher starch content than the elite recurrent parent. Thus, our results indicate that exotic genetic resources in rye carry favorable alleles for baking quality traits, which can be exploited for improving the elite breeding material by marker-assisted selection (MAS). These introgression libraries can substantially foster rye breeding programs and provide a promising opportunity to proceed towards functional genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Canady MA, Meglic V, Chetelat RT (2005) A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome 48:685–697

    Article  PubMed  CAS  Google Scholar 

  • Carver BF, Rayburn AL (1994) Comparison of related wheat stocks possessing 1B or 1RS.1BL chromosomes: agronomic performance. Crop Sci 34:1505–1510

    Google Scholar 

  • Chetelat RT, Meglic V (2000) Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 100:232–241

    Article  CAS  Google Scholar 

  • Cochran W, Cox GM (1957) Experimental designs, 2nd edn. Wiley, New York

    Google Scholar 

  • Concibido VC, La Vallee B, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582

    PubMed  CAS  Google Scholar 

  • De Vicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    Google Scholar 

  • Dunnett C (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121

    Article  Google Scholar 

  • Eduardo I, Arus P, Monforte AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 112:139–148

    Article  PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79:175–179

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • Eshed Y, Abu-Abied M, Saranga Y, Zamir D (1992) A genome-wide search for wild-species alleles that increase horticultural yield of processing tomatoes. Theor Appl Genet 93:877–886

    Article  Google Scholar 

  • Eshed Y, Gera G, Zamir D (1996) Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii. Theor Appl Genet 83:1027–1034

    Google Scholar 

  • Finkers R, Van Heusden AW, Meijer-Dekens F, Van Kan JAL, Maris P, Lindhout P (2007) The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor Appl Genet 114:1071–1080

    Article  PubMed  Google Scholar 

  • Frey KJ,Cox TS, Rodgers DM, and Bramel-Cox P (1981) Increasing cereal yields with genes from wild and weedy species, pp 51–68. Journal paper No. J-11254 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, Iowa 50011, USA

  • Geiger HH, Miedaner T (1999) Hybrid rye and heterosis. In: Coors JG, Pandey S (eds) Genetics and exploitation of heterosis in crops. Crop Sci. Soc. America, Madison, pp 439–450

    Google Scholar 

  • Geiger HH, Schnell FW (1970) Cytoplasmatic male sterility in rye (Secale cereale L.). Crop Sci 35:27–38

    Google Scholar 

  • Goodman MM (1997) Broadening the genetic diversity in breeding by use of exotic germplasm. In: CIMMYT. Book of abstracts. The genetics and exploitation of heterosis in crops. An intern. symp., pp 58–59, Mexico

  • Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25

    Article  CAS  Google Scholar 

  • Hackauf B, Wehling P (2003) Development of microsatellite markers in rye: map construction. Plant Breed Seed Sci 48:143–151

    Google Scholar 

  • Hawks JG (1977) The importance of wild germplasm in plant breeding. Euphytica 26:615–621

    Article  Google Scholar 

  • Holland J, Nyquist W, Cervantes-Martinez C (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 2:9–112

    Google Scholar 

  • Howell PM, Marshall DF, Lydiate DJ (1996) Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome 39:348–358

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (2004) Version 8.2. SAS Institute, Cary

  • Jeuken MJW, Lindhout P (2004) The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm. Theor Appl Genet 109:394–401

    Article  PubMed  CAS  Google Scholar 

  • Jeuken M, Pelgrom K, Stam P, Lindhout P (2008) Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F2 population. Theor Appl Genet. doi:10.1007/s00122-008-0718-2

  • Kearsey MJ (2002) QTL analysis: problems and (possible) solutions. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CAB International, New York, pp 45–58

    Google Scholar 

  • Khlestkina EK, Than MHM, Pestsova EG, Röder MS, Malyshev SV, Korzun V, Börner A (2004) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor Appl Genet 109:725–732

    Article  PubMed  CAS  Google Scholar 

  • Kim W, Johnson JW, Graybosch RA, Gaines CS (2004) The effect of T1DL.1RS wheat-rye chromosomal translocation on agronomic performance and end-use quality of soft wheat. Cereal Res Comm 31:301–308

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kunert A, Naz AA, Dedeck O, Pillen K, Leon J (2007) AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides + T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor Appl Genet 115:683–695

    Article  PubMed  CAS  Google Scholar 

  • Lin SY, Sasaki T, Yano M (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet 96:997–1003

    Article  CAS  Google Scholar 

  • Liu S, Zhou R, Dong Y, Li P, Jia J (2006) Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet 112:1360–1373

    Article  PubMed  CAS  Google Scholar 

  • Lübberstedt T, Dussle C, Melchinger AE (1998) Application of microsatellites from maize to teosinte and other relatives of maize. Plant Breed 117:447–450

    Article  Google Scholar 

  • Lukaszewski AJ (1990) Frequency of 1RS-1AL and 1RS-1BL translocations in United States wheats. Crop Sci 30:1151–1153

    Google Scholar 

  • Mank R, Verbakel H, Witsenboer H, and Peleman J (2003) Marker assisted construction of a high resolution introgression line library in tomato using Lycopersicon hirsutum, p 508. In: Plant and animal genomes XI conference, San Diego

  • Matus I, Corey A, Filichkin T, Hayes PM, Vales MI, Kling J, Riera-Lizarazu O, Sato K, Powell W, Waugh R (2003) Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Genome 46:1010–1023

    Article  PubMed  CAS  Google Scholar 

  • Maurer HP, Melchinger AE, Frisch M (2008) Population genetic simulation and data analysis with Plabsoft. Euphytica 161:133–139

    Google Scholar 

  • Miedaner T, Glass C, Dreyer F, Wilde P, Wortmann H, Geiger HH (2000) Mapping of genes for male-fertility restoration in ‘Pampa’ CMS winter rye (Secale cereale L.). Theor Appl Genet 101:1226–1233

    Article  CAS  Google Scholar 

  • Monforte AJ, Tanksley SD (2000) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813

    Article  PubMed  CAS  Google Scholar 

  • Moonen JHE, Zeven AC (1984) SDS-PAGE of the high-molecular-weight subunits of wheat glutenin and characterization of 1R (1B) substitution and 1BL/1RS translocation lines. Euphytica 33:3–8

    Article  CAS  Google Scholar 

  • Oetting WS, Lee HK, Flanders DJ, Wiesner GL, Sellers TA, King RA (1995) Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics 30:450–458

    Article  PubMed  CAS  Google Scholar 

  • Ossent HP (1938) Zehn Jahre Roggenzüchtung in Müncheberg. Züchter 10:255–261

    Google Scholar 

  • Patterson HD, Williams ER (1976) A new class of resolvable incomplete block designs. Biometrica 63:83–92

    Article  Google Scholar 

  • Peleman JD, Rouppe van der Voort J (2003) Breeding by design. Trends Plant Sci 8:330–334

    Article  PubMed  CAS  Google Scholar 

  • Piepho H-P (1999) Stability analysis using the SAS system. Agron J 91:154–160

    Google Scholar 

  • Piepho H-P, Möhring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177:1881–1888

    Article  PubMed  Google Scholar 

  • Pillen K, Zacharias A, Léon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  PubMed  CAS  Google Scholar 

  • Ramsay LD, Jennings DE, Bohuon EJR, Arthur AE, Lydiate DJ, Kearsey MJ, Marshall DF (1996) The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome 39:558–567

    Article  PubMed  CAS  Google Scholar 

  • Ribaut J-M, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rollwitz W (1985) Untersuchungen zur Bewertung von Roggenzuchtmaterial bezüglich Braunrostresistenz und Schaffung von Ausgangsmaterial für die Züchtung. Diss. Rostock, Germany

  • Siangliw J, Jongdee B, Pantuwan G, Toojinda T (2007) Developing KDML105 backcross introgression lines using marker-assisted selection for QTLs associated with drought tolerance in rice. Sci Asia 33:207–214

    Article  Google Scholar 

  • Sušić Z (2005) Experimental and simulation studies on introgressing genomic segments from exotic into elite germplasm of rye (Secale cereale L.) by marker-assisted backcrossing. PhD thesis, University of Hohenheim, Stuttgart, Germany

  • Szalma SJ, Hostert BM, LeDeaux JR, Stuber CW, Holland JB (2007) QTL mapping with near-isogenic lines in maize. Theor Appl Genet 114:1211–1228

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTL from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Utz HF (2001) PLABSTAT: a computer program for the statistical analysis of plant breeding experiments. Institute for plant breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart

  • Van Ooijen JW, Voorrips RE (2001) JoinMap version 3.0: software for the calculation of genetic linkage maps. Plant Research International, Wageningen

  • Von Korff M, Wang H, Léon J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet 109:1736–1745

    Article  CAS  Google Scholar 

  • Von Korff M, Wang H, Leon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nature Rev Genet 2:983–989

    Article  CAS  Google Scholar 

  • Zamir D, Eshed Y (1998) Case history in germplasm introgression: Tomato genetics and breeding using nearly isogenic introgression lines derived from wild species. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, New York, pp 207–217

    Google Scholar 

Download references

Acknowledgments

The present study was financially supported by by the German Federal Ministry of Education and Research, Bonn, the private plant breeding companies Hybro GmbH & Co. KG, Schenkendorf, and KWS LOCHOW GmbH, Bergen, in conjunction with the GABI program “Rye Resources” (BMBF Grant #0312289B) and the German Federal Ministry of Economics (BMWi) in the PRO INNO frame work (Aif Grant #KF0141101MD5). The excellent technical work of Mrs. B. Lieberherr, Universitaet Hohenheim, in constructing the two introgression libraries over the years is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Miedaner.

Additional information

Communicated by F. Ordon.

K. C. Falke, and Z. Sušić are contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falke, K.C., Sušić, Z., Hackauf, B. et al. Establishment of introgression libraries in hybrid rye (Secale cereale L.) from an Iranian primitive accession as a new tool for rye breeding and genomics. Theor Appl Genet 117, 641–652 (2008). https://doi.org/10.1007/s00122-008-0808-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0808-1

Keywords

Navigation