Skip to main content
Log in

Leaf-rust resistance in rye (Secale cereale L.). 1. Genetic analysis and mapping of resistance genes Pr1 and Pr2

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Genetic analysis of resistance to leaf rust in rye (Puccinia recondita f. sp. secalis) led to the identification of two dominant resistance genes, Pr1 and Pr2. Both genes proved to be effective against a local leaf-rust population as well as a subset of single-pustule isolates (SPIs) the latter of which comprised SPIs with very high virulence complexity. Resistance conferred by Pr1 and Pr2 was expressed in detached-leaf tests of seedlings as well as in field tests of adult plants. Molecular marker analysis allowed us to map Pr1 in the proximal part of rye chromosome 6RL, whereas Pr2 was assigned to the distal part of chromosome 7RL. These results are discussed in view of homoeology relationships among Triticeae. A proposal is submitted for the designation of resistance genes to rye leaf rust which would avoid interference with existing gene-symboling in respect to wheat leaf-rust resistances introgressed from rye into wheat or triticale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anikster Y, Bushnell WR, Eilam T, Manisterski J, Roelfs AP (1997) Puccinia recondita causing leaf rust on cultivated wheats, wild wheats and rye. Can J Bot 75:2082–2096

    Google Scholar 

  • Autrique E, Singh RP, Tanksley SD, Sorrells ME (1995) Molecular markers for four leaf rust resistance genes introgressed into wheats from wild relatives. Genome 38:75–83

    CAS  Google Scholar 

  • Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482

    CAS  Google Scholar 

  • Bariana HS, McIntosh RA (1994) Characterisation and origin of rust and powdery mildew resistance genes in VPM1 wheat. Euphytica 76:53–61

    Google Scholar 

  • Bartoš P, Bareš I (1971) Leaf and stem rust resistance of hexaploid wheat cultivars Salzmünder Bartweizen and Weique. Euphytica 20:435–440

    Google Scholar 

  • Benito C, Frade IM, Orellana J, Carrillo JM (1990) Linkage and cytogenetic maps of genes controlling endosperm storage proteins and isozymes in rye (Secale cereale L.). Theor Appl Genet 79:347–353

    CAS  Google Scholar 

  • Chen XM, Line RF, Leung H (1998) Genome scanning for resistance-gene analogs in rice, barley and wheat by high-resolution electrophoresis. Theor Appl Genet 97:345–355

    Article  CAS  Google Scholar 

  • Chenicek KJ, Hart GE (1987) Identification and chromosomal locations of aconitase gene loci in Triticeae species. Theor Appl Genet 74:261–268

    Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojic P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome realtive to that of wheat. Theor Appl Genet 85:673–680

    CAS  Google Scholar 

  • Driscoll CJ, Anderson LM (1967) Cytogenetic studies of Transec – a wheat-rye translocation line. Can J Genet Cytol 9:375–380

    Google Scholar 

  • Frauenstein K (1985) Untersuchungen zur Schadwirkung des Braunrostes, Puccinia recondita Rob. ex Desm., an Winterroggen. Nachrichtenbl Deut Pflanzenschutzdienst (DDR) 39:177–178

    Google Scholar 

  • Frauenstein K, Reichel A (1978) Zum Erkennen von slow-rusting-Formen bei Roggenbraunrost (Puccinia recondita Rob. ex Desm.). 2. Symposium über Schaderreger in der industriemäßigen Getreideproduktion. Martin-Luther-Universität Halle, Wiss Beitr 14 (S11):403–411

  • Friebe B, Jiang J, Raupp WJ, Gill BS (1994) Molecular cytogenetic analysis of radiation-induced alien genetic transfers in wheat. In: Li ZS, Xin ZY (eds) Proc 8th Int Wheat Genet Symp Beijing, China. China Agriculture Scientech Press, Beijing, pp 519–529

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Google Scholar 

  • Hackauf B, Wehling P (2002a) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25

    CAS  Google Scholar 

  • Hackauf B, Wehling P (2002b) Development of microsatellite markers in rye: map construction. Proc EUCARPIA Rye Meeting, July 4–7, 2001, Radzików, Polen, pp 333–340

  • Kobylanski VD, Solodukhina OV (1983) Damage of important fungal diseases and methods for resistance breeding of short-straw rye. In: Voprosy Sal. i Genetiki zernovych Kult (in Russian). Moskva, pp 140–147

  • Kobylanski VD, Solodukhina OV (1996) Genetic bases and practical breeding utilization of heterogenous resistance of rye to brown rust. Vortr Pflanzenzüchtg 35:155–163

    Google Scholar 

  • Korzun V, Malyshev S, Voylokov AV, Börner A (2001) A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor Appl Genet 102:709–717

    CAS  Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

    CAS  Google Scholar 

  • Lessner B, Sperling U (1995) Charakterisierung von Roggen-Braunrost-Isolaten mit Hilfe von Roggen-Inzuchtlinien. 46. Tagung der Vereinigung österreichischer Pflanzenzüchter, Gumpenstein, pp 127–132

  • Linz A, Wehling P (1998) Identification and mapping of major leaf rust resistance genes in rye. Beitr Züchtungsforsch 4:23–24

    Google Scholar 

  • McIntosh RA, Friebe B, Jiang J, The D, Gill BS (1995) Cytogenetical studies in wheat. XVI. Chromosome location of a new gene for resistance to leaf rust in a Japanese wheat-rye translocation line. Euphytica 82:141–147

    Google Scholar 

  • Melz G, Sybenga J (1994) The 3rd workshop of rye genetics and cytogenetics – revision and completion of the genetic map of rye, October 25–28, 1993, Groß Lüsewitz, Germany. Genet Polon 35:131–132

    Google Scholar 

  • Mettin D, Blüthner WD, Schlegel R (1973) Additional evidence on spontaneous 1B/1R wheat-rye substitutions and translocations. In: Sears ER, Sears LMS (eds) Proc 4th Int Wheat Genet Symp Columbia, Missouri, USA, pp 179–184

  • Miedaner T, Sperling U (1995) Effect of leaf rust on yield components of winter rye hybrids and assessment of quantitative resistance. J Phytopathol 143:725–730

    Google Scholar 

  • Miedaner T, Gey A-KM, Sperling U, Geiger HH (2002) Quantitative-genetic analysis of leaf-rust resistance in seedling and adult-plant stages of inbred lines and their testcrosses in winter rye. Plant Breed 121:475–479

    Article  Google Scholar 

  • Musa GLC, Dyck PL, Samborski DJ (1984) The inheritance of resistance in rye to Puccinia recondita f. sp. secalis and f. sp. tritici. Can J Plant Sci 64:511–519

    Google Scholar 

  • Roux SR, Ruge B, Linz A, Wehling P (2000) Leaf rust resistance in rye – evaluation, genetic analysis and molecular mapping. Acta Phytopathol Entomol Hung 35:65–73

    CAS  Google Scholar 

  • Ruge B, Roux SR, Linz A, Wehling P (1999) Erschließung und molekulare Charakterisierung von Resistenzen gegen Braunrost bei Roggen (Secale cereale L.). Vortr Pflanzenzüchtg 46:169–176

    Google Scholar 

  • Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972

    CAS  PubMed  Google Scholar 

  • Sacco F, Suarez EY, Naranjo T (1998) Mapping of the leaf rust resistance gene Lr3 on chromosome 6B of Sinvalocho MA wheat. Genome 41:686–690

    CAS  Google Scholar 

  • Salvo-Garrido H, Laurie DA, Jaffe B, Snape JW (2001) An RFLP map of diploid Hordeum bulbosum L. and comparison with maps of barley (H. vulgare L.) and wheat (Triticum aestivum L.). Theor Appl Genet 103:869–880

    CAS  Google Scholar 

  • Schlegel R, Melz G, Korzun V (1998) Genes, marker and linkage data of rye (Secale cereale L.): 5th updated inventory. Euphytica 101:23–67

    Article  CAS  Google Scholar 

  • Schmidt-Stohn G, Wehling P (1983) Genetic control of esterase isoenzymes in rye (Secale cereale L.). Theor Appl Genet 64:109–115

    CAS  Google Scholar 

  • Senft P, Wricke G (1996) An extended map of rye (Secale cereale L.). Plant Breed 115:508–510

    Google Scholar 

  • Singh SJ, McIntosh RA (1990) Linkage and expression of genes for resistance to leaf rust and stem rust in triticale. Genome 33:115–118

    CAS  Google Scholar 

  • Singh NK, Shepherd KW, McIntosh RA (1990) Linkage mapping of genes for resistance to leaf, stem and stripe rusts, and ω-secalins on the short arm of rye chromosome 1R. Theor Appl Genet 80:609–616

    CAS  Google Scholar 

  • Solodukhina OV (1994) Rye resistance to brown rust and powdery mildew: the potential of hereditary variability (in Russian). Genetika 30:616–618

    Google Scholar 

  • Solodukhina OV (2002) Genetic characterization of rye accessions with regard to leaf rust resistance. Russian J Genet 38:399–407

    Article  CAS  Google Scholar 

  • Sperling U, Lessner B, Scholz M, Wehling P, Gey A-K, Geiger HH, Miedaner T (1996) Qualitative and quantitative variation for resistance of winter rye to leaf rust. Vortr Pflanzenzüchtg 35:175

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap version 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

  • Wehling P (1985) Electrophoretic analysis of ten enzyme systems in rye: linkage relationships and chromosomal location of isozyme loci. EUCARPIA Meeting of the Cereal Section on Rye, June 11th–13th 1985, Svalöf, Sweden, pp 101–124

    Google Scholar 

  • Wilkie S (1989) Isolation of genomic DNA. In: Clark MS (ed) Plant molecular biology – a laboratory manual. Springer Verlag Berlin, Heidelberg New York, pp 3–14

  • Wolfe MS (1963) Use of benzimidazole in the study of wheat powdery mildew. Trans British Mycol Soc 46:620

    Google Scholar 

  • Zeller FJ (1973) 1B/1R wheat-rye chromosome substitutions and translocations. Proc 4th Int Wheat Genet Symp, Missouri, Agric Exp Station Columbia, Missouri USA, pp 209–222

  • Zeller FJ, Hsam SLK (1983) Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. In: Sakamoto S (ed) Proc 6th Int Wheat Genet Symp, Kyoto, Japan, pp 161–173

Download references

Acknowledgements

We thank K.J. Leonard and M.E. Hughes (Cereal Disease Laboratory, USDA-ARS), as well as P.F. Bertrand (University of Georgia), Chair of the Committee for the Standardization of Common Names for Plant Diseases of the American Phytopathological Society, for helpful advice. This study was supported in part by the Deutsche Forschungsgemeinschaft (DFG) under project no. WE 2079/3-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Wehling.

Additional information

Communicated by F. Salamini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehling, P., Linz, A., Hackauf, B. et al. Leaf-rust resistance in rye (Secale cereale L.). 1. Genetic analysis and mapping of resistance genes Pr1 and Pr2 . Theor Appl Genet 107, 432–438 (2003). https://doi.org/10.1007/s00122-003-1263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1263-7

Keywords

Navigation