Skip to main content
Log in

Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Among cereal crops, rye is one of the most tolerant species to aluminum. A candidate gene approach was used to determine the likely molecular identity of an Al tolerance locus (Alt4). Using PCR primers designed from a wheat aluminum tolerance gene encoding an aluminum-activated malate transporter (TaALMT1), a rye gene (ScALMT1) was amplified, cloned and sequenced. Subsequently, the ScALMT1 gene of rye was found to be located on 7RS by PCR amplification using the wheat–rye addition lines. SNP polymorphisms for this gene were detected among the parents of three F2 populations that segregate for the Alt4 locus. A map of the rye chromosome 7R, including the Alt4 locus ScALMT1 and several molecular markers, was constructed showing a complete co-segregation between Alt4 and ScALMT1. Furthermore, expression experiments were carried out to clarify the function of this candidate gene. Briefly, the ScALMT1 gene was found to be primarily expressed in the root apex and upregulated when aluminum was present in the medium. Five-fold differences in the expression were found between the Al tolerant and the Al non-tolerant genotypes. Additionally, much higher expression was detected in the rye genotypes than the moderately tolerant “Chinese Spring” wheat cultivar. These results suggest that the Alt4 locus encodes an aluminum-activated organic acid transporter gene that could be utilized to increase Al tolerance in Al sensitive plant species. Finally, TaALMT1 homologous sequences were identified in different grasses and in the dicotyledonous plant Phaseolus vulgaris. Our data support the hypothesis of the existence of a common mechanism of Al tolerance encoded by a gene located in the homoeologous group four of cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aniol A (1984) Introduction of aluminum tolerance into aluminum sensitive wheat cultivars. Zeitschrift Fur Pflanzenzuchtung-J Plant Breed 93:331–339

    CAS  Google Scholar 

  • Aniol A (2004) Chromosomal location of aluminum tolerance genes in rye. Plant Breed 123:132–136

    Article  CAS  Google Scholar 

  • Aniol A, Gustafson JP (1984) Chromosome location of genes-controlling aluminum tolerance in wheat, rye, triticale. Can J Genet Cytol 26:701–705

    Google Scholar 

  • Aniol A, Madej L (1996) Genetic variation for aluminum tolerance in rye. Vortr Pflanzenz chtg 35:201–211

    Google Scholar 

  • Aniol A, Hill RD, Larter EN (1980) Aluminum tolerance of spring rye inbred lines. Crop Sci 20:205–208

    Article  CAS  Google Scholar 

  • Basu U, Mcdonaldstephens JL, Archambault DJ, Good AG, Briggs KG et al (1997) Genetic and physiological analysis of doubled-haploid, aluminum-resistant lines of wheat provide evidence for the involvement of a 23 kD, root exudate polypeptide in mediating resistance. Plant Soil 196:283–288

    Article  CAS  Google Scholar 

  • Bednarek PT Piotr M, Renata L, Beata Mylknw EE (2003) Saturating rye genetic map with amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers. J Appl Genet 44(1):21–33

    PubMed  CAS  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear-DNA amounts in angiosperms. Philos Trans R Soc Lond Ser B Biol Sci 274:227–274

    CAS  Google Scholar 

  • Borner A, Korzun V, Voylokov AV, Weber WE (1999) Detection of quantitative trait loci on chromosome 5R of rye (Secale cereale L.). Theor Appl Genet 98:1087–1090

    Article  CAS  Google Scholar 

  • Brondani C, Paiva E (1996) ‘‘RFLP’’ analysis of aluminum tolerance in chromosome 2 in maize. Pesquisa Agropecuaria Brasileira 31:575–579

    Google Scholar 

  • Brosche M, Strid A (1999) Cloning, expression, molecular characterization of a small pea gene family regulated by low levels of ultraviolet B radiation and other stresses. Plant Physiol 121:479–487

    Article  PubMed  CAS  Google Scholar 

  • Claros MG, Vonheijne G (1994) Toppred-Ii—an improved software for membrane-protein structure predictions. Comput Appl Biosci 10:685–686

    PubMed  CAS  Google Scholar 

  • Cruz-Ortega R, Cushman JC, Ownby JD (1997) cDNA clones encoding 1,3-beta-glucanase and a fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots. Plant Physiol 114:1453–1460

    Article  PubMed  CAS  Google Scholar 

  • Cserzo M, Eisenhaber F, Eisenhaber B, Simon I (2002) On filtering false positive transmembrane protein predictions. Protein Eng 15:745–752

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum-Aestivum L). 2. Aluminum-stimulated excretion of malic-acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T et al (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL et al (1993) Chromosomal rearrangements in the Rye genome relative to that of wheat. Theor Appl Genet 85:673–680

    CAS  Google Scholar 

  • Ermolayev V, Weschke W, Manteuffel R (2003) Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. J Exp Bot 54:2745–2756

    Article  PubMed  CAS  Google Scholar 

  • Ezaki B, Yamamoto Y, Matsumoto H (1995) Cloning and sequencing of the Cdnas induced by aluminum treatment and P-I starvation in cultured tobacco cells. Physiologia Plantarum 93:11–18

    Article  CAS  Google Scholar 

  • Ezaki B, Tsugita S, Matsumoto H (1996) Expression of a moderately anionic peroxidase is induced by aluminum treatment in tobacco cells: Possible involvement of peroxidase isozymes in aluminum ion stress. Physiologia Plantarum 96:21–28

    Article  CAS  Google Scholar 

  • Foy C (1983) The physiology of plant adaptation to mineral stress. Iowa State J Res 57:355–392

    CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) Physiology of metal toxicity in plants. Annu Rev Plant Physiol Plant Mol Biol 29:511–566

    CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95(5):1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Gallego FJ, Benito C (1997) Genetic control of aluminum tolerance in rye (Secale cereale L.). Theor Appl Genet 95:393–399

    Article  CAS  Google Scholar 

  • Gallego FJ, Calles B, Benito C (1998a) Molecular markers linked to the aluminum tolerance gene Alt1 in rye (Secale cereale L). Theor Appl Genet 97:1104–1109

    Article  CAS  Google Scholar 

  • Gallego FJ, Lopez-Solanilla E, Figueiras AM, Benito C (1998b) Chromosomal location of PCR fragments as a source of DNA markers linked to aluminum tolerance genes in rye. Theor Appl Genet 96:426–434

    Article  CAS  Google Scholar 

  • Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25

    Article  CAS  Google Scholar 

  • Hamel F, Breton C, Houde M (1998) Isolation and characterization of wheat aluminum-regulated genes: possible involvement of aluminum as a pathogenesis response elicitor. Planta 205:531–538

    Article  PubMed  CAS  Google Scholar 

  • Hamilton CA, Good AG, Taylor GJ (2001) Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol 125:2068–2077

    Article  PubMed  CAS  Google Scholar 

  • Haug A (1984) Molecular aspects of aluminum toxicity. Crc Crit Rev Plant Sci 1:345–373

    CAS  Google Scholar 

  • Higgins DG, Sharp PM (1988) Clustal—a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Article  PubMed  CAS  Google Scholar 

  • Hoekenga OA, Vision TJ, Shaff JE, Monforte AJ, Lee GP et al (2003) Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta × Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol 132:936–948

    Article  PubMed  CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Piñeros MA, Cançado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743

    Article  PubMed  CAS  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Than MHM, Pestsova EG, Roder MS, Malyshev SV et al (2005) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags (vol 110, pg 990, 2005). Theor Appl Genet 110:990–991

    Article  CAS  Google Scholar 

  • Kim BY, Baier AC, Somers DJ, Gustafson JP (2001) Aluminum tolerance in triticale, wheat, and rye. Euphytica 120:329–337

    Article  CAS  Google Scholar 

  • Kobayashi Y, Koyama H (2002) QTL analysis of Al tolerance in recombinant inbred lines of Arabidopsis thaliana. Plant Cell Physiol 43:1526–1533

    Article  PubMed  CAS  Google Scholar 

  • Kochian LVPC (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kochian LV, Pence NS, Letham DLD, Pineros MA, Magalhaes JV et al (2002) Mechanisms of metal resistance in plants: aluminum and heavy metals. Plant Soil 247:109–119

    Article  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MAPC (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  PubMed  CAS  Google Scholar 

  • Korzun V, Malyshev S, Voylokov AV, Borner A (2001) A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor Appl Genet 102:709–717

    Article  CAS  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Krogh A, Larsson B, Vonheijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Larsen PB, Tai CY, Kochian LV, Howell SH (1996) Arabidopsis mutants with increased sensitivity to aluminum. Plant Physiol 110:743–751

    Article  PubMed  CAS  Google Scholar 

  • Larsen PB, Degenhardt J, Tai CY, Stenzler LM, Howell SH et al (1998) Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol 117:9–18

    Article  PubMed  CAS  Google Scholar 

  • Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363

    PubMed  CAS  Google Scholar 

  • Li XF, Ma JF, Matsumoto HPC (2000) Pattern of aluminum-induced secretion of organic acids differs between rye and wheat. Plant Physiol 123:1537–1543

    Article  PubMed  CAS  Google Scholar 

  • Little R (1988) Plant–soil interactions at low Ph problem-solving—the genetic approach. Commun Soil Sci Plant Anal 19:1239–1257

    CAS  Google Scholar 

  • Luo MC, Dvorak J (1996) Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese Spring wheat. Euphytica 91:31–35

    CAS  Google Scholar 

  • Ma JF, Furukawa J (2003) Recent progress in the research of external Al detoxification in higher plants: a minireview. J Inorg Biochem 97:46–51

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Taketa S, Yang ZM (2000) Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiol 122:687–694

    Article  PubMed  CAS  Google Scholar 

  • Ma XF, Wanous MK, Houchins K, Milla MAR, Goicoechea PG et al (2001) Molecular linkage mapping in rye (Secale cereale L.). Theor Appl Genet 102:517–523

    Article  CAS  Google Scholar 

  • Ma HX, Bai GH, Carver BF, Zhou LL (2005) Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66. Theor Appl Genet 112:51–57

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes JV, Garvin DF, Wang YH, Sorrells ME, Klein PE et al (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167:1905–1914

    Article  PubMed  CAS  Google Scholar 

  • Matos M, Camacho MV, Pérez-Flores V, Pernaute B, Pinto-Carnide O et al (2005) A new aluminum tolerance gene located on rye chromosome arm 7RS. Theor Appl Genet 111:360–369

    Article  PubMed  CAS  Google Scholar 

  • Miedaner T, Glass C, Dreyer F, Wilde P, Wortmann H et al (2000) Mapping of genes for male-fertility restoration in ‘Pampa’ CMS winter rye (Secale cereale L.). Theor Appl Genet 101:1226–1233

    Article  CAS  Google Scholar 

  • Miftahudin T, Scoles GJ, Gustafson JP (2002) AFLP markers tightly linked to the aluminum-tolerance gene Alt3 in rye (Secale cereale L.). Theor Appl Genet 104:626–631

    Article  CAS  Google Scholar 

  • Miftahudin T, Scoles GJ, Gustafson JP (2004) Development of PCR-based codominant markers flanking the Alt3 gene in rye. Genome 47:231–238

    Article  PubMed  CAS  Google Scholar 

  • Miftahudin T, Chikmawati T, Ross K, Scoles GJ, Gustafson JP (2005) Targeting the aluminum tolerance gene Alt3 region in rye, using rice/rye micro-colinearity. Theor Appl Genet 110:906–913

    Article  PubMed  CAS  Google Scholar 

  • Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminum tolerance in snapbeans—root exudation of citric-acid. Plant Physiol 96:737–743

    Article  PubMed  CAS  Google Scholar 

  • Mugwira LM, Elgawhary SM, Patel SU (1978) Aluminum tolerance in triticale, wheat and rye as measured by root-growth characteristics and aluminum concentration. Plant Soil 50:681–690

    Article  CAS  Google Scholar 

  • Naranjo T, Fernandez-Rueda P (1991) Homeology of rye chromosome arms to wheat. Theor Appl Genet 82:577–586

    Article  Google Scholar 

  • Naranjo T, Fernandez-Rueda P, Maestra B (1997) Chromosome rearrangements and homoeologous pairing: implications for the introgression of alien genes into wheat. In: Lelley T (ed) Current topics in plant cytogenetics related to plant improvement. WUV-Universitätsverlag, Austria, pp 198–205

    Google Scholar 

  • Nguyen VT, Nguyen BD, Sarkarung S, Martinez C, Paterson AH et al (2002) Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Mol Genet Genomics 267:772–780

    Article  PubMed  CAS  Google Scholar 

  • Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN et al (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor Appl Genet 106:583–593

    PubMed  CAS  Google Scholar 

  • Persson B, Argos P (1997) Prediction of membrane protein topology utilizing multiple sequence alignments. J Protein Chem 16:453–457

    Article  PubMed  CAS  Google Scholar 

  • Raman H, Moroni JS, Sato K, Read BJ, Scott BJ (2002) Identification of AFLP and microsatellite markers linked with an aluminum tolerance gene in barley (Hordeum vulgare L.). Theor Appl Genet 105:458–464

    Article  PubMed  CAS  Google Scholar 

  • Raman H, Zhang K, Appels R, Moroni S, Cakir M et al (2003) Molecular mapping and mechanism of aluminum tolerance in five doubled haploid populations of Triticum aestivum L (Bread wheat). In: Proceedings of 10th international wheat genetics symposium, Italy, pp 404–406

  • Raman H, Zhang K, Cakir M, Appels R, Garvin DF et al (2005) Molecular characterization and mapping of ALMT1, the aluminum-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48:781–791

    PubMed  CAS  Google Scholar 

  • Rao IM, Zeigler RS, Vera R, Sarkarung S (1993) Selection and breeding for acid-soil tolerance in crops. Bioscience 43:454–465

    Article  Google Scholar 

  • Richards KD, Gardner RC (1994) The effect of aluminum treatment on wheat roots—expression of heat-shock, histone and Shh genes. Plant Sci 98:37–45

    Article  CAS  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418

    Article  PubMed  CAS  Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Article  Google Scholar 

  • Rodriguez-Milla MA, Gustafson JP (2001) Genetic and physical characterization of chromosome 4DL in wheat. Genome 44:883–892

    Article  Google Scholar 

  • Rodriguez-Milla MA, Butler E, Huete AR, Wilson CF, Anderson O et al (2002) Expressed sequence tag-based gene expression analysis under aluminum stress in Rye. Plant Physiol 130:1706–1716

    Article  CAS  Google Scholar 

  • Rost B (1996) PHD: predicting one-dimensional protein structure by profile-based neural networks. In: Computer Methods for Macromolecular Sequence Analysis, pp 525–539

  • Ryan PR, Ditomaso JM, Kochian LV (1993) Aluminum toxicity in root —an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446

    CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995) Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–110

    Article  CAS  Google Scholar 

  • Samac DA, Tesfaye M (2003) Plant improvement for tolerance to aluminum in acid soils—a review. Plant Cell Tissue Organ Cult 75:189–207

    Article  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ et al (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Savenstrand H, Brosche M, Angehagen M, Strid A (2000) Molecular markers for ozone stress isolated by suppression subtractive hybridization: specificity of gene expression and identification of a novel stress-regulated gene. Plant Cell Environ 23:689–700

    Article  CAS  Google Scholar 

  • Sibov ST, Gaspar M, Silva MJ, Ottoboni LMM, Arruda P et al (1999) Two genes control aluminum tolerance in maize: genetic and molecular mapping analyses. Genome 42:475–482

    Article  CAS  Google Scholar 

  • Sivaguru M, Ezaki B, He ZH, Tong HY, Osawa H et al (2003) Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. Plant Physiol 132:2256–2266

    Article  PubMed  CAS  Google Scholar 

  • Snowden KC, Gardner RC (1993) 5 Genes induced by aluminum in wheat (Triticum aestivum L) roots. Plant Physiol 103:855–861

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Gustafson JP (1995) The expression of aluminum stress induced polypeptides in a population segregating for aluminum tolerance in wheat (Triticum aestivum L). Genome 38:1213–1220

    CAS  PubMed  Google Scholar 

  • Stolen O, Andersen S (1978) Inheritance of tolerance to low soil-Ph in barley. Hereditas 88:101–105

    Google Scholar 

  • Tang Y, Sorrells ME, Kochian LV, Garvin DF (2000) Identification of RFLP markers linked to the barley aluminum tolerance gene Alp. Crop Sci 40:778–782

    Article  CAS  Google Scholar 

  • Tusnady GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Wendel JF, Cronn RC, Alvarez I, Liu B, Small RL et al (2002) Intron size and genome size in plants. Mol Biol Evol 19:2346–2352

    PubMed  CAS  Google Scholar 

  • Yamaguchi M, Sasaki T, Sivaguru M, Yamamoto Y, Osawa H et al (2005) Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1). Plant Cell Physiol 46:812–816

    Article  PubMed  CAS  Google Scholar 

  • Yu LH, Umeda M, Liu JY, Zhao NM, Uchimiya H (1998) A novel MT gene of rice plants is strongly expressed in the node portion of the stem. Gene 206:29–35

    Article  PubMed  CAS  Google Scholar 

  • Zheng SJ, Ma JJ, Matsumoto H (1998) High aluminum resistance in buckwheat – I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol 117:745–751

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the comments of A. Ramos on the manuscript. We wish to thank A.J. Lukaszewski for kindly providing the wheat–rye disomic addition lines. This work was supported by the research grants AGL 2003-06470 from the Ministerio de Educación y Ciencia de España, PR1/05 from the Universidad Complutense and PR27/05-13599 from the Santander/Complutense. G. Fontecha is a recipient of Programa Alban predoctoral fellowship (UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Gallego.

Additional information

Communicated by P. Langridge.

G. Fontecha and J. Silva-Navas contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontecha, G., Silva-Navas, J., Benito, C. et al. Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theor Appl Genet 114, 249–260 (2007). https://doi.org/10.1007/s00122-006-0427-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0427-7

Keywords

Navigation