Skip to main content

Antioxidant Defensive Mechanisms to Regulate Cellular Redox Homeostatic Balance

  • Chapter
  • First Online:
Reactive Oxygen Species in Plants

Abstract

The genesis of reactive oxygen species (ROS) is a ubiquitous consequence faced by the aerobic life on exposure to biotic and abiotic stress. The excess accumulation of ROS in plant cells imposes threat to their survival, hence the effective regulation is the utmost priority. In order to survive under severe conditions, plants harbor an arsenal of enzymatic and non-enzymatic antioxidants, which have power to limit abundance of ROS in cellular environment. The major enzymatic antioxidants that appear in plant cell encompasses superoxide dismutase (SOD), catalase (CAT), peroxidases (POX), ascorbate peroxidases (APX), glutathione peroxidases (GPX), glutathione reductases (GR), monodehydroascorbate reductases (MDHAR) and dehydroascorbate reductases (DHAR). The crucial non-enzymatic antioxidants with ability to quench harmful ROS comprises vitamins like ascorbate (AsA) and tocopherols, low molecular weight glutathione (GSH), polyphenols such as flavonoids, and carotenoids. These antioxidants are localized in cellular compartments such as chloroplast, cytosol, mitochondria, peroxisomes, apoplast, nucleus, and vacuoles, where they act either alone or in conjugation, interrupting production as well as accumulation of ROS. In particular, enzymes like GR, MDHAR, DHAR, and APX; and low molecular weight AsA and GSH, together function in an Asada-Halliwell cycle (AsA-GSH cycle) to eliminate excess hydrogen peroxide (H2O2) from the plant cell. The effective functioning of antioxidant network is imperative for plants to struggle and survive in harsh circumstance. Therefore, understanding the regulatory process for ROS quenching could be effective in fostering stress tolerance in plants. The chapter highlights the role and function of various antioxidants in maintaining cellular redox equilibrium under stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuelsoud W, Cortleven A, Schmülling T (2020) Photoperiod stress alters the cellular redox status and is associated with an increased peroxidase and decreased catalase activity. bioRxiv. https://doi.org/10.1101/2020.03.05.978270

  • Agami RA (2014) Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biol Plant 58(2):341–347

    Article  CAS  Google Scholar 

  • Agati G, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174(1):77–89

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3):167–173

    Article  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Azooz MM, Nabi G (2009) Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants. Bot Res Int 2(1):11–20

    CAS  Google Scholar 

  • Ahmed IM, Cao F, Zhang M, Chen X, Zhang G, Wu F (2013) Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PLoS One 8(10):e77869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbudak MA, Filiz E, Vatansever R, Kontbay K (2018) Genome-wide identification and expression profiling of ascorbate peroxidase (APX) and glutathione peroxidase (GPX) genes under drought stress in sorghum (Sorghum bicolor L.). J Plant Growth Regul 37(3):925–936

    Article  CAS  Google Scholar 

  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613

    Article  PubMed  PubMed Central  Google Scholar 

  • Alzahrani SM, Alaraidh IA, Migdadi H, Alghamdi S, Khan MA, Ahmad P (2019) Physiological, biochemical, and antioxidant properties of two genotypes of Vicia faba grown under salinity stress. Pak J Bot 51(3):786–798

    Article  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Bao M, Wang L, Khan I, Ullah E, Tung SA, Samad RA, Shahzad B (2015) Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res 22(21):17022–17030

    Article  CAS  Google Scholar 

  • Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, Mohamed AA, Thangavel P, Devi GD, Vasudhevan P, Sofo A, Khan NA, Misra AN, Lukatin AS, Singh HP, Pereira E, Tuteja N (2016) Catalase and ascorbate peroxidase—representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res 23(19):19002–19029

    Article  CAS  Google Scholar 

  • Ansari MI, Jalil SU, Ansari SA, Hasanuzzaman M (2021) GABA shunt: a key-player in mitigation of ROS during stress. Plant Growth Regul 94(2):131–149

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Bartoli CG, Guiamet JJ, Kiddle GUY, Pastori GM, Di Cagno R, Theodoulou FL, Foyer CH (2005) Ascorbate content of wheat leaves is not determined by maximal l-galactono-1, 4-lactone dehydrogenase (GalLDH) activity under drought stress. Plant Cell Environ 28(9):1073–1081

    Article  CAS  Google Scholar 

  • Bartoli CG, Buet A, Gergoff Grozeff G, Galatro A, Simontacchi M (2017) Ascorbate-glutathione cycle and abiotic stress tolerance in plants. In: Ascorbic acid in plant growth, development and stress tolerance. Springer, Cham, pp 177–200

    Chapter  Google Scholar 

  • Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    Article  CAS  PubMed  Google Scholar 

  • Belin C, Bashandy T, Cela J, Delorme-Hinoux V, Riondet C, Reichheld JP (2015) A comprehensive study of thiol reduction gene expression under stress conditions in Arabidopsis thaliana. Plant Cell Environ 38(2):299–314

    Article  CAS  PubMed  Google Scholar 

  • Bertini R, Zack Howard OM, Dong HF, Oppenheim JJ, Bizzarri C, Sergi R, Caselli G, Pagliei S, Romines B, Wilshire JA, Mengozzi M, Nakamura H, Yodoi J, Pekkari K, Gurunath R, Holmgren A, Herzenberg LA, Herzenberg LA, Ghezzi P (1999) Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells. J Exp Med 189(11):1783–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt I, Tripathi BN (2011) Plant peroxiredoxins: catalytic mechanisms, functional significance and future perspectives. Biotechnol Adv 29(6):850–859

    Article  CAS  PubMed  Google Scholar 

  • Bilska K, Wojciechowska N, Alipour S, Kalemba EM (2019) Ascorbic acid—The little-known antioxidant in woody plants. Antioxidants 8(12):645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boo YC, Jung J (1999) Water deficit—induced oxidative stress and antioxidative defenses in rice plants. J Plant Physiol 155(2):255–261

    Article  CAS  Google Scholar 

  • Broad RC, Bonneau JP, Hellens RP, Johnson AA (2020) Manipulation of ascorbate biosynthetic, recycling, and regulatory pathways for improved abiotic stress tolerance in plants. Int J Mol Sci 21(5):1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang-Quan W, Rui-Chang L (2008) Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress. Acta Physiol Plant 30(6):841–847

    Article  Google Scholar 

  • Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278(47):46869–46877

    Article  CAS  PubMed  Google Scholar 

  • Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177(3):143–155

    Article  CAS  Google Scholar 

  • Cohen A, Hacham Y, Welfe Y, Khatib S, Avice JC, Amir R (2020) Evidence of a significant role of glutathione reductase in the sulfur assimilation pathway. Plant J 102(2):246–261

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci 93(18):9970–9974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amelia V, Aversano R, Chiaiese P, Carputo D (2018) The antioxidant properties of plant flavonoids: their exploitation by molecular plant breeding. Phytochem Rev 17(3):611–625

    Article  Google Scholar 

  • Da Fonseca-Pereira P, Daloso DM, Gago J, Nunes-Nesi A, Araújo WL (2019) On the role of the plant mitochondrial thioredoxin system during abiotic stress. Plant Signal Behav 14(6):1592536

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai L, Li J, Harmens H, Zheng X, Zhang C (2020) Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiol Biochem 149:86–95

    Article  CAS  PubMed  Google Scholar 

  • Deutsch JC (2000) Dehydroascorbic acid. J Chromatogr A 881(1-2):299–307

    Article  CAS  PubMed  Google Scholar 

  • Devi SR, Yamamoto Y, Matsumoto H (2003) An intracellular mechanism of aluminum tolerance associated with high antioxidant status in cultured tobacco cells. J Inorg Biochem 97(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Dias MC, Pinto DC, Silva A (2021) Plant flavonoids: chemical characteristics and biological activity. Molecules 26(17):5377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding S, Lei M, Lu Q, Zhang A, Yin Y, Wen X, Zhang L, Lu C (2012) Enhanced sensitivity and characterization of photosystem II in transgenic tobacco plants with decreased chloroplast glutathione reductase under chilling stress. Biochim Biophys Acta Bioener 1817(11):1979–1991

    Article  CAS  Google Scholar 

  • Ding H, Wang B, Han Y, Li S (2020) The pivotal function of dehydroascorbate reductase in glutathione homeostasis in plants. J Exp Bot 71(12):3405–3416

    Article  CAS  PubMed  Google Scholar 

  • Dolzhenko Y, Bertea CM, Occhipinti A, Bossi S, Maffei ME (2010) UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha× piperita L.). J Photochem Photobiol B Biol 100(2):67–75

    Article  CAS  Google Scholar 

  • Doupis G, Bertaki M, Psarras G, Kasapakis I, Chartzoulakis K (2013) Water relations, physiological behavior and antioxidant defence mechanism of olive plants subjected to different irrigation regimes. Sci Hortic 153:150–156

    Article  CAS  Google Scholar 

  • Du YY, Wang PC, Chen J, Song CP (2008) Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J Integr Plant Biol 50(10):1318–1326

    Article  CAS  PubMed  Google Scholar 

  • Du H, Kim S, Hur YS, Lee MS, Lee SH, Cheon CI (2015) A cytosolic thioredoxin acts as a molecular chaperone for peroxisome matrix proteins as well as antioxidant in peroxisome. Mol Cells 38(2):187

    Article  PubMed  PubMed Central  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127(1):57–65

    Article  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225(5):1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Eyidogan F, Öz MT (2007) Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol Plant 29(5):485–493

    Article  CAS  Google Scholar 

  • Fenech M, Amaya I, Valpuesta V, Botella MA (2019) Vitamin C content in fruits: biosynthesis and regulation. Front Plant Sci 9:2006

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferdinando MD, Brunetti C, Fini A, Tattini M (2012) Flavonoids as antioxidants in plants under abiotic stresses. In: Ahmad P, Prasad M (eds) Abiotic stress responses in plants. Springer, New York, NY, pp 159–179

    Chapter  Google Scholar 

  • Ferreres F, Figueiredo R, Bettencourt S, Carqueijeiro I, Oliveira J, Gil-Izquierdo A, Pereira DM, Valentao P, Andrade PB, Duarte P, Barcelo AR, Sottomayor M (2011) Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: an H2O2 affair? J Exp Bot 62(8):2841–2854

    Article  CAS  PubMed  Google Scholar 

  • Fogelman E, Kaplan A, Tanami Z, Ginzberg I (2011) Antioxidative activity associated with chilling injury tolerance of muskmelon (Cucumis melo L.) rind. Sci Hortic 128(3):267–273

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1):2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Kyndt T, Hancock RD (2020) Vitamin C in plants: novel concepts, new perspectives, and outstanding issues. Antioxid Redox Signal 32(7):463–485

    Article  CAS  PubMed  Google Scholar 

  • Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MA, Thomas TL, McClung CR (1996) Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol 112(1):327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajewska E, Skłodowska M (2008) Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth Regul 54(2):179–188

    Article  CAS  Google Scholar 

  • Gapińska M, Skłodowska M, Gabara B (2008) Effect of short-and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant 30(1):11–18

    Article  Google Scholar 

  • Garnik EY, Belkov VI, Tarasenko VI, Korzun MA, Konstantinov YM (2016) Glutathione reductase gene expression depends on chloroplast signals in Arabidopsis thaliana. Biochem Mosc 81(4):364–372

    Article  CAS  Google Scholar 

  • Geigenberger P, Thormählen I, Daloso DM, Fernie AR (2017) The unprecedented versatility of the plant thioredoxin system. Trends Plant Sci 22(3):249–262

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  PubMed  Google Scholar 

  • Gomez JM, Hernandez JA, Jimenez A, Del Rio LA, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radic Res 31(sup1):11–18

    Article  Google Scholar 

  • Gruszecki WI, Strzaŀka K (1991) Does the xanthophyll cycle take part in the regulation of fluidity of the thylakoid membrane? Biochim Biophys Acta Bioener 1060(3):310–314

    Article  CAS  Google Scholar 

  • Gutteridge JM, Halliwell B (2000) Free radicals and antioxidants in the year 2000: a historical look to the future. Ann N Y Acad Sci 899(1):136–147

    Article  CAS  PubMed  Google Scholar 

  • Hacham Y, Schuster G, Amir R (2006) An in vivo internal deletion in the N-terminus region of Arabidopsis cystathionine γ-synthase results in CGS expression that is insensitive to methionine. Plant J 45(6):955–967

    Article  CAS  PubMed  Google Scholar 

  • Han QH, Huang B, Ding CB, Zhang ZW, Chen YE, Hu C, Zhou LJ, Huang Y, Liao JQ, Yuan S, Yuan M (2017) Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings. Front Plant Sci 8:785

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Silva JA, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261–315

    Chapter  Google Scholar 

  • Hasanuzzaman M, Alam M, Nahar K, Mohsin SM, Bhuyan MHM, Parvin K, Hawrylak-Nowak B, Fujita M (2019a) Silicon-induced antioxidant defense and methylglyoxal detoxification works coordinately in alleviating nickel toxicity in Oryza sativa L. Ecotoxicology 28(3):261–276

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHM, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019b) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8(9):384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHM, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Zhao T, Yin Z, Liu J, Cheng Y, Xu J (2020) The phytochrome-interacting transcription factor CsPIF8 contributes to cold tolerance in citrus by regulating superoxide dismutase expression. Plant Sci 298:110584

    Article  CAS  PubMed  Google Scholar 

  • Herbette S, de Labrouhe DT, Drevet JR, Roeckel-Drevet P (2011) Transgenic tomatoes showing higher glutathione peroxydase antioxidant activity are more resistant to an abiotic stress but more susceptible to biotic stresses. Plant Sci 180(3):548–553

    Article  CAS  PubMed  Google Scholar 

  • Hernández JA, Ferrer MA, Jiménez A, Barceló AR, Sevilla F (2001) Antioxidant systems and O2.−/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127(3):817–831

    Article  PubMed  PubMed Central  Google Scholar 

  • Horemans N, Foyer CH, Potters G, Asard H (2000) Ascorbate function and associated transport systems in plants. Plant Physiol Biochem 38(7-8):531–540

    Article  CAS  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25(3):385–395

    CAS  Google Scholar 

  • Houben M, Van de Poel B (2019) 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene. Front Plant Sci 10:695

    Article  PubMed  PubMed Central  Google Scholar 

  • Huseynova IM, Aliyeva DR, Aliyev JA (2014) Subcellular localization and responses of superoxide dismutase isoforms in local wheat varieties subjected to continuous soil drought. Plant Physiol Biochem 81:54–60

    Article  CAS  PubMed  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Corpas FJ (2021) Nitric oxide and hydrogen sulfide coordinately reduce glucose sensitivity and decrease oxidative stress via ascorbate-glutathione cycle in heat-stressed wheat (Triticum aestivum L.) plants. Antioxidants 10(1):108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalil SU, Ansari MI (2008) Plant microbiome and its functional mechanism in response to environmental stress. Int J Green Pharm 12:S81. https://doi.org/10.22377/ijgp.v12i01.1603

    Article  Google Scholar 

  • Jalil SU, Ansari MI (2020a) Stress implications and crop productivity. In: Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Springer, Singapore, pp 73–86

    Google Scholar 

  • Jalil SU, Ansari MI (2020b) Physiological role of Gamma-aminobutyric acid in salt stress tolerance. In: Salt and drought stress tolerance in plants. Springer, Cham, pp 337–350

    Chapter  Google Scholar 

  • Jamdhade AR, Sunkar R, Hivrale VK (2017) Zymographic method for distinguishing different classes of superoxide dismutases in plants. In: Plant stress tolerance. Humana Press, New York, NY, pp 221–227

    Chapter  Google Scholar 

  • Jouili H, Bouazizi H, El Ferjani E (2011) Plant peroxidases: biomarkers of metallic stress. Acta Physiol Plant 33(6):2075–2082

    Article  CAS  Google Scholar 

  • Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5(6):709–725

    CAS  Google Scholar 

  • Kim YS, Kim IS, Shin SY, Park TH, Park HM, Kim YH, Lee GS, Kang HG, Lee SH, Yoon HS (2014) Overexpression of dehydroascorbate reductase confers enhanced tolerance to salt stress in rice plants (Oryza sativa L. japonica). J Agron Crop Sci 200(6):444–456

    Article  CAS  Google Scholar 

  • Kokotkiewicz A, Bucinski A, Luczkiewicz M (2014) Light and temperature conditions affect bioflavonoid accumulation in callus cultures of Cyclopia subternata Vogel (honeybush). Plant Cell Tissue Organ Cult 118(3):589–593

    Article  CAS  Google Scholar 

  • Kováčik J, Klejdus B, Bačkor M (2009) Phenolic metabolism of Matricaria chamomilla plants exposed to nickel. J Plant Physiol 166(13):1460–1464

    Article  PubMed  Google Scholar 

  • Kukavica B, Vučinić Ž, Vuletić M (2005) Superoxide dismutase, peroxidase, and germin-like protein activity in plasma membranes and apoplast of maize roots. Protoplasma 226(3):191–197

    Article  CAS  PubMed  Google Scholar 

  • Kukavica B, Mojović M, Vucčinić Ž, Maksimović V, Takahama U, Jovanović SV (2009) Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production. Plant Cell Physiol 50(2):304–317

    Article  CAS  PubMed  Google Scholar 

  • Kukreja S, Nandwal AS, Kumar N, Sharma SK, Unvi V, Sharma PK (2005) Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant 49(2):305–308

    Article  CAS  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750

    Article  Google Scholar 

  • Kumar P, Kumar Tewari R, Nand Sharma P (2007) Excess nickel–induced changes in antioxidative processes in maize leaves. J Plant Nutr Soil Sci 170(6):796–802

    Article  CAS  Google Scholar 

  • Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2013) Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250(5):1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Kumutha D, Ezhilmathi K, Sairam RK, Srivastava GC, Deshmukh PS, Meena RC (2009) Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes. Biol Plant 53(1):75–84

    Article  CAS  Google Scholar 

  • Latowski D, Surówka E, Strzałka K (2010) Regulatory role of components of ascorbate–glutathione pathway in plant stress tolerance. In: Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 1–53

    Google Scholar 

  • Lee ES, Kang CH, Park JH, Lee SY (2018) Physiological significance of plant peroxiredoxins and the structure-related and multifunctional biochemistry of peroxiredoxin 1. Antioxid Redox Signal 28(7):625–639

    Article  CAS  PubMed  Google Scholar 

  • Leung DW (2018) Studies of catalase in plants under abiotic stress. In: Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 27–39

    Chapter  Google Scholar 

  • Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139(4):421–434

    CAS  PubMed  Google Scholar 

  • Li C, Li J, Du X, Zhang J, Zou Y, Liu Y, Li Y, Lin H, Li H, Liu D, Lu H (2022) Chloroplast thylakoidal ascorbate peroxidase, PtotAPX, has enhanced resistance to oxidative stress in Populus tomentosa. Int J Mol Sci 23(6):3340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebthal M, Maynard D, Dietz KJ (2018) Peroxiredoxins and redox signaling in plants. Antioxid Redox Signal 28(7):609–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Yu K, He T, Li F, Zhang D, Liu J (2013) The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. Sci World J 2013:658793

    Google Scholar 

  • Liu W, Huang L, Liang X, Liu L, Sun C, Lin X (2021) Heat shock induces cross adaptation to aluminum stress through enhancing ascorbate-glutathione cycle in wheat seedlings. Chemosphere 278:130397

    Article  CAS  PubMed  Google Scholar 

  • Lüthje S, Martinez-Cortes T (2018) Membrane-bound class III peroxidases: unexpected enzymes with exciting functions. Int J Mol Sci 19(10):2876

    Article  PubMed  PubMed Central  Google Scholar 

  • Maoka T (2020) Carotenoids as natural functional pigments. J Nat Med 74(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Martí MC, Florez-Sarasa I, Camejo D, Ribas-Carbó M, Lázaro JJ, Sevilla F, Jiménez A (2011) Response of mitochondrial thioredoxin PsTrx o 1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves. J Exp Bot 62(11):3863–3874

    Article  PubMed  PubMed Central  Google Scholar 

  • Marty L, Siala W, Schwarzländer M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reiccheld JP, Hell R (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci 106(22):9109–9114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marty L, Bausewein D, Müller C, Bangash SAK, Moseler A, Schwarzländer M, Müller-Schüssele SJ, Zechmann B, Riondet C, Balk J, Wirtz M, Hell R, Reichheld JP, Meyer AJ (2019) Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems. New Phytol 224(4):1569–1584

    Article  CAS  PubMed  Google Scholar 

  • Mata-Pérez C, Spoel SH (2019) Thioredoxin-mediated redox signalling in plant immunity. Plant Sci 279:27–33

    Article  PubMed  Google Scholar 

  • Mehla N, Sindhi V, Josula D, Bisht P, Wani SH (2017) An introduction to antioxidants and their roles in plant stress tolerance. In: Reactive oxygen species and antioxidant Systems in Plants: role and regulation under abiotic stress. Springer, Singapore, pp 1–23

    Google Scholar 

  • Meisrimler CN, Buck F, Lüthje S (2014) Alterations in soluble Class III peroxidases of maize shoots by flooding stress. Proteomes 2(3):303–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61(15):4197–4220

    Article  CAS  PubMed  Google Scholar 

  • Mishra P, Bhoomika K, Dubey RS (2013) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250(1):3–19

    Article  CAS  PubMed  Google Scholar 

  • Munné-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162(7):743–748

    Article  PubMed  Google Scholar 

  • Munné-Bosch S, Falk J (2004) New insights into the function of tocopherols in plants. Planta 218(3):323–326

    Article  PubMed  Google Scholar 

  • Najami N, Janda T, Barriah W, Kayam G, Tal M, Guy M, Volokita M (2008) Ascorbate peroxidase gene family in tomato: its identification and characterization. Mol Gen Genomics 279(2):171–182

    Article  CAS  Google Scholar 

  • Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142(4):1364–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Arisi ACM, Jouanin L, Foyer CH (1998) Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol 118(2):471–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35(2):454–484

    Article  CAS  PubMed  Google Scholar 

  • Noshi M, Yamada H, Hatanaka R, Tanabe N, Tamoi M, Shigeoka S (2017) Arabidopsis dehydroascorbate reductase 1 and 2 modulate redox states of ascorbate-glutathione cycle in the cytosol in response to photooxidative stress. Biosci Biotechnol Biochem 81(3):523–533

    Article  CAS  PubMed  Google Scholar 

  • Nourredine Y, Naima A, Dalila H, Habib S, Karim S (2015) Changes of peroxidase activities under cold stress in annuals populations of Medicago. Mol Plant Breed 6:1–9

    Google Scholar 

  • Olszowy M (2019) What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol Biochem 144:135–143

    Article  CAS  PubMed  Google Scholar 

  • Ozyigit II, Filiz E, Vatansever R, Kurtoglu KY, Koc I, Öztürk MX, Anjum NA (2016) Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Front Plant Sci 7:301

    Article  PubMed  PubMed Central  Google Scholar 

  • Palma JM, López-Huertas E, Corpas FJ, Sandalio LM, Gómez M, Del Río LA (1998) Peroxisomal manganese superoxide dismutase: purification and properties of the isozyme from pea leaves. Physiol Plant 104(4):720–726

    Article  CAS  Google Scholar 

  • Palma JM, Mateos RM, López-Jaramillo J, Rodríguez-Ruiz M, González-Gordo S, Lechuga-Sancho AM, Corpas FJ (2020) Plant catalases as NO and H2S targets. Redox Biol 34:101525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey S, Fartyal D, Agarwal A, Shukla T, James D, Kaul T, Negi YK, Arora S, Reddy MK (2017) Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front Plant Sci 8:581

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandhair V, Sekhon BS (2006) Reactive oxygen species and antioxidants in plants: an overview. J Plant Biochem Biotechnol 15(2):71–78

    Article  CAS  Google Scholar 

  • Pang CH, Wang BS (2010) Role of ascorbate peroxidase and glutathione reductase in ascorbate–glutathione cycle and stress tolerance in plants. In: Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 91–113

    Chapter  Google Scholar 

  • Paolacci AR, D’Ovidio R, Marabottini R, Nali C, Lorenzini G, Abenavoli MR, Badiani M (2001) Research note: ozone induces a differential accumulation of phenyalanine ammonia-lyase, chalcone synthase and chalcone isomerase RNA transcripts in sensitive and resistant bean cultivars. Funct Plant Biol 28(5):425–428

    Article  CAS  Google Scholar 

  • Park AK, Kim IS, Do H, Jeon BW, Lee CW, Roh SJ, Shin SC, Park H, Kim YS, Kim YH, Yoon HS, Lee JH, Kim HW (2016) Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativa L japonica. Sci Rep 6(1):1–10

    Google Scholar 

  • Parsons HT, Fry SC (2012) Oxidation of dehydroascorbic acid and 2, 3-diketogulonate under plant apoplastic conditions. Phytochemistry 75:41–49

    Article  CAS  PubMed  Google Scholar 

  • Passaia G, Margis-Pinheiro M (2015) Glutathione peroxidases as redox sensor proteins in plant cells. Plant Sci 234:22–26

    Article  CAS  PubMed  Google Scholar 

  • Passaia G, Fonini LS, Caverzan A, Jardim-Messeder D, Christoff AP, Gaeta ML, Mariath JEDA, Margis R, Margis-Pinheiro M (2013) The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci 208:93–101

    Article  CAS  PubMed  Google Scholar 

  • Rajput VD, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S (2021) Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 10(4):267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratajczak E, Dietz KJ, Kalemba EM (2019) The occurrence of peroxiredoxins and changes in redox state in Acer platanoides and Acer pseudoplatanus during seed development. J Plant Growth Regul 38(1):298–314

    Article  CAS  Google Scholar 

  • Raza A, Su W, Gao A, Mehmood SS, Hussain MA, Nie W, Lv Y, Zou X, Zhang X (2021) Catalase (CAT) gene family in rapeseed (Brassica napus L.): genome-wide analysis, identification, and expression pattern in response to multiple hormones and abiotic stress conditions. Int J Mol Sci 22(8):4281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regalado C, Arvizu OP, Garcia-Almendarez BE, Whitaker JR (1999) Purification and properties of two acid peroxidases from brussels sprouts (Brassica oleraceae L.). J Food Biochem 23(4):435–450

    Article  CAS  Google Scholar 

  • Río LAD, Corpas FJ, López-Huertas E, Palma JM (2018) Plant superoxide dismutases: function under abiotic stress conditions. In: Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 1–26

    Google Scholar 

  • Rodríguez De Luna SL, Ramírez-Garza RE, Serna Saldívar SO (2020) Environmentally friendly methods for flavonoid extraction from plant material: impact of their operating conditions on yield and antioxidant properties. Sci World J 2020:6792069

    Article  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–166

    Article  CAS  PubMed  Google Scholar 

  • Roupakias DG, McMillin DE, Scandalios JG (1980) Chromosomal location of the catalase structural genes in Zea mays using BA translocations. Theor Appl Genet 58(5):211–218

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2012) Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant 34(3):835–847

    Article  CAS  Google Scholar 

  • Sabeh F, Wright T, Norton SJ (1993) Purification and characterization of a glutathione peroxidase from the Aloe vera plant. Enzyme Protein 47:92–98

    Article  CAS  PubMed  Google Scholar 

  • Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M (2021) Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10(2):277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachdev S, Jaiswal P, Ansari MI (2022) Coordinated of reactive oxygen functions species metabolism and defense systems in abiotic stress tolerance. In: Advancements in developing abiotic stress-resilient plants: basic mechanisms to trait improvements. CRC Press, Boca Raton, p 23

    Chapter  Google Scholar 

  • Sadeghi F, Samsampour D, Seyahooei MA, Bagheri A, Soltani J (2020) Fungal endophytes alleviate drought-induced oxidative stress in mandarin (Citrus reticulata L.): toward regulating the ascorbate–glutathione cycle. Sci Hortic 261:108991

    Article  CAS  Google Scholar 

  • Saga G, Giorgetti A, Fufezan C, Giacometti GM, Bassi R, Morosinotto T (2010) Mutation analysis of violaxanthin de-epoxidase identifies substrate-binding sites and residues involved in catalysis. J Biol Chem 285(31):23763–23770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saibi W, Brini F (2018) Superoxide dismutase (SOD) and abiotic stress tolerance in plants: an overview. In: Magliozzi S (ed) Superoxide dismutase: structure, synthesis and applications. Nova Science Publishers, New York, pp 101–142

    Google Scholar 

  • Šamec D, Karalija E, Šola I, Vujčić Bok V, Salopek-Sondi B (2021) The role of polyphenols in abiotic stress response: the influence of molecular structure. Plants 10(1):118

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena SC, Salvi P, Kamble NU, Joshi PK, Majee M, Arora S (2020) Ectopic overexpression of cytosolic ascorbate peroxidase gene (Apx1) improves salinity stress tolerance in Brassica juncea by strengthening antioxidative defense mechanism. Acta Physiol Plant 42(4):1–14

    Article  Google Scholar 

  • Semida WM, Abd El-Mageed TA, Howladar SM, Rady MM (2016) Foliar-applied alpha-tocopherol enhances salt-tolerance in onion plants by improving antioxidant defence system. Aust J Crop Sci 10(7):1030–1039

    Article  CAS  Google Scholar 

  • Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Vangronsveld WJ, Cuypers A (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35(2):334–346

    Article  CAS  PubMed  Google Scholar 

  • Sevilla F, Camejo D, Ortiz-Espín A, Calderón A, Lázaro JJ, Jiménez A (2015) The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. J Exp Bot 66(10):2945–2955

    Article  CAS  PubMed  Google Scholar 

  • Shainberg O, Rubin B, Rabinowitch HD, Libal Y, Tel-Or E (2000) Acclimation of beans to oxidative stress by treatment with sublethal iron levels. J Plant Physiol 157(1):93–99

    Article  CAS  Google Scholar 

  • Sharma I, Ahmad P (2014) Catalase: a versatile antioxidant in plants. In: Oxidative damage to plants. Academic Press, Amsterdam, pp 131–148

    Chapter  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46(3):209–221

    Article  CAS  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019a) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019b) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7):285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53(372):1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Silva EN, Vieira SA, Ribeiro RV, Ponte LF, Ferreira-Silva SL, Silveira JA (2013) Contrasting physiological responses of Jatropha curcas plants to single and combined stresses of salinity and heat. J Plant Growth Regul 32(1):159–169

    Article  CAS  Google Scholar 

  • Skadsen RW, Schulze-Lefert P, Herbst JM (1995) Molecular cloning, characterization and expression analysis of two catalase isozyme genes in barley. Plant Mol Biol 29(5):1005–1014

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosyn (Doctoral dissertation, thesis and function). Crit Rev Biochem Mol Biol 35:291–314

    Article  CAS  PubMed  Google Scholar 

  • Spicher L, Almeida J, Gutbrod K, Pipitone R, Dörmann P, Glauser G, Rossi M, Kessler F (2017) Essential role for phytol kinase and tocopherol in tolerance to combined light and temperature stress in tomato. J Exp Bot 68(21-22):5845–5856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64(1):1–16

    Article  CAS  Google Scholar 

  • Stephenie S, Chang YP, Gnanasekaran A, Esa NM, Gnanaraj C (2020) An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. J Funct Foods 68:103917

    Article  CAS  Google Scholar 

  • Strzałka K, Kostecka-Gugała A, Latowski D (2003) Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russ J Plant Physiol 50(2):168–173

    Article  Google Scholar 

  • Su Y, Guo J, Ling H, Chen S, Wang S, Xu L, Allan AC, Que Y (2014) Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS One 9(1):e84426

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudan J, Negi B, Arora S (2015) Oxidative stress induced expression of monodehydroascorbate reductase gene in Eleusine coracana. Physiol Mol Biol Plants 21(4):551–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultana S, Khew CY, Morshed MM, Namasivayam P, Napis S, Ho CL (2012) Overexpression of monodehydroascorbate reductase from a mangrove plant (AeMDHAR) confers salt tolerance on rice. J Plant Physiol 169(3):311–318

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Li L, Wang X, Wu S, Wang X (2011) Ascorbate–glutathione cycle of mitochondria in osmoprimed soybean cotyledons in response to imbibitional chilling injury. J Plant Physiol 168(3):226–232

    Article  CAS  PubMed  Google Scholar 

  • Sytykiewicz H, Kozak A, Leszczyński B, Sempruch C, Łukasik I, Sprawka I, Kmiec K, Kurowska M, Kopczynska A, Czerniewicz P (2018) Transcriptional profiling of catalase genes in juglone-treated seeds of maize (Zea mays L.) and wheat (Triticum aestivum L.). Acta Biol Hung 69(4):449–463

    Article  CAS  PubMed  Google Scholar 

  • Szőllősi R, Varga IS, Erdei L, Mihalik E (2009) Cadmium-induced oxidative stress and antioxidative mechanisms in germinating Indian mustard (Brassica juncea L.) seeds. Ecotoxicol Environ Saf 72(5):1337–1342

    Article  PubMed  Google Scholar 

  • Szymańska R, Kruk J (2008) Tocopherol content and isomers’ composition in selected plant species. Plant Physiol Biochem 46(1):29–33

    Article  PubMed  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  CAS  PubMed  Google Scholar 

  • Tang K, Zhan JC, Yang HR, Huang WD (2010) Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings. J Plant Physiol 167(2):95–102

    Article  CAS  PubMed  Google Scholar 

  • Tanyolac D, Ekmekçi Y, Ünalan Ş (2007) Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 67(1):89–98

    Article  CAS  PubMed  Google Scholar 

  • Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro M (2004) Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. J Mol Evol 59(6):761–770

    Article  CAS  PubMed  Google Scholar 

  • Tenhaken R (2015) Cell wall remodeling under abiotic stress. Front Plant Sci 5:771

    Article  PubMed  PubMed Central  Google Scholar 

  • Turan Ö, Ekmekçi Y (2011) Activities of photosystem II and antioxidant enzymes in chickpea (Cicer arietinum L.) cultivars exposed to chilling temperatures. Acta Physiol Plant 33(1):67–78

    Article  CAS  Google Scholar 

  • Veljović Jovanović S, Kukavica B, Vidović M, Morina F, Menckhoff L (2018) Class III peroxidases: functions, localization and redox regulation of isoenzymes. In: Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 269–300

    Chapter  Google Scholar 

  • Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP (2009) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 75(11):1468–1476

    Article  CAS  PubMed  Google Scholar 

  • Wang QJ, Sun H, Dong QL, Sun TY, Jin ZX, Hao YJ, Yao YX (2016) The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotechnol J 14(10):1986–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Cheng Y, Chen D, Liu D, Hu M, Dong J, Zhang X, Song L, Shen F (2019) The catalase gene family in cotton: genome-wide characterization and bioinformatics analysis. Cells 8(2):86

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu TM, Lin WR, Kao CH, Hong CY (2015) Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice. Plant Mol Biol 87(6):555–564

    Article  CAS  PubMed  Google Scholar 

  • Wutipraditkul N, Boonkomrat S, Buaboocha T (2011) Cloning and characterization of catalases from rice, Oryza sativa L. Biosci Biotechnol Biochem 75(10):1900–1906

    Article  CAS  PubMed  Google Scholar 

  • Xiao M, Li Z, Zhu L, Wang J, Zhang B, Zheng F, Zhao B, Zhang H, Wang Y, Zhang Z (2021) The multiple roles of ascorbate in the abiotic stress response of plants: antioxidant, cofactor, and regulator. Front Plant Sci 12:592

    Article  Google Scholar 

  • Yadav P, Yadav T, Kumar S, Rani B, Jain V, Malhotra SP (2014) Partial purification and characterization of ascorbate peroxidase from ripening ber (Ziziphus mauritiana L) fruits. Afr J Biotechnol 13(32). https://doi.org/10.5897/AJB2013.12193

  • Yamada Y, Fujiwara T, Sato T, Igarashi N, Tanaka N (2002) The 2.0 Å crystal structure of catalase-peroxidase from Haloarcula marismortui. Nat Struct Biol 9(9):691–695

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Takahashi S, Heshiki R (1999) The tropical fig Ficus microcarpa L. f. cv. golden leaves lacks heat-stable dehydroascorbate reductase activity. Plant Cell Physiol 40(6):640–646

    Article  CAS  Google Scholar 

  • Yang DY, Ma NN, Zhuang KY, Zhu SB, Liu ZM, Yang XH (2017) Overexpression of tomato SlGGP-LIKE gene improves tobacco tolerance to methyl viologen-mediated oxidative stress. J Plant Physiol 209:31–41

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wang S, Eltayeb AE, Uddin M, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231(3):609–621

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D, Ioki M, Aono M, Kubo A, Kamada H, Inoue Y, Saji H (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47(2):304–308

    Article  CAS  PubMed  Google Scholar 

  • Yousuf PY, Hakeem KUR, Chandna R, Ahmad P (2012) Role of glutathione reductase in plant abiotic stress. In: Abiotic stress responses in plants. Springer, New York, NY, pp 149–158

    Chapter  Google Scholar 

  • Zafra A, Castro AJ, Alché JDD (2018) Identification of novel superoxide dismutase isoenzymes in the olive (Olea europaea L.) pollen. BMC Plant Biol 18(1):1–16

    Article  Google Scholar 

  • Zamocky M, Furtmüller PG, Obinger C (2008) Evolution of catalases from bacteria to humans. Antioxid Redox Signal 10(9):1527–1548

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A (2017) Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus. Front Plant Sci 8:953

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang CJ, Zhao BC, Ge WN, Zhang YF, Song Y, Sun DY, Guo Y (2011) An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice. Plant Physiol 157(4):1884–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YJ, Wang W, Yang HL, Li Y, Kang XY, Wang XR, Yang ZL (2015) Molecular properties and functional divergence of the dehydroascorbate reductase gene family in lower and higher plants. PLoS One 10(12):e0145038

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Smith JAC, Harberd NP, Jiang C (2016) The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. Plant Mol Biol 91(6):651–659

    Article  CAS  PubMed  Google Scholar 

  • Zlatev ZS, Lidon FC, Ramalho JC, Yordanov IT (2006) Comparison of resistance to drought of three bean cultivars. Biol Plant 50(3):389–394

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sachdev, S., Ansari, S.A., Ansari, M.I. (2023). Antioxidant Defensive Mechanisms to Regulate Cellular Redox Homeostatic Balance. In: Reactive Oxygen Species in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-19-9884-3_9

Download citation

Publish with us

Policies and ethics