Skip to main content
Log in

Reactive Oxygen Species and Antioxidants in Plants: An Overview

  • Mini Review
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plants exposed to biotic and abiotic stresses generate more reactive oxygen species (ROS) than their capacity to scavenge them. Biological molecules are susceptible to attack by ROS, including several proteins, polyunsaturated fatty acids and nucleic acids. The cellular arsenal for scavenging ROS and toxic organic radicals include ascorbate, glutathione, tocopherol, carotenoids, polyphenols, alkaloids and other compounds. Enzymatic antioxidants including superoxide dismutase, peroxidase, catalase and glutathione reductase detoxify either by quenching toxic compounds or regenerating antioxidants involving reducing power. Various aspects relating to sensors for ROS and signaling role of ROS in plants, improvement of antioxidant systems in transgenic plants and functional genomics approaches used to unravel the reactive oxygen gene network has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

ABA:

abscisic acid

CAT:

catalase

Car:

carotenoid

POD:

peroxidase

SOD:

superoxide dismutase

GSH:

glutathione (reduced)

References

  1. Krieger-Liszkay A, J Exp Bot, 56 (2005) 337.

    Article  PubMed  CAS  Google Scholar 

  2. Blokhina O, Virolainen E & Fagerstedt KV, Annals of Bot, 91 (2003) 179.

    Article  CAS  Google Scholar 

  3. Vranova E, Inze D & Brcusegem VF, J Exp Bot, 53 (2002) 1227.

    Google Scholar 

  4. Bhattacharjee S, Curr Sci, 89 (2005) 1113.

    CAS  Google Scholar 

  5. Mittler R, Vanderauwera S, Gollery M & Breusegem FV, Trends in Plant Sci, 9 (2004) 490.

    Article  CAS  Google Scholar 

  6. Davletava S, Schlauch K, Coutu J & Mittler R, Plant Physiol, 139 (2005) 847.

    Article  Google Scholar 

  7. Foyer CH & Noctor G, Plant Cell Envir, 28 (2005) 1056.

    Article  CAS  Google Scholar 

  8. Meinhard M, Rodrigues PI & Grill E, Planta, 214 (2002) 775.

    Article  PubMed  CAS  Google Scholar 

  9. Kwak JM, Mori IC, Pei Z, Leonhard N, Torres MA, Dangl J, Bloom RE, Bodde S, Jones JDG & Scbralder JI, The EMBO J, 22 (2003) 2623.

    Article  CAS  Google Scholar 

  10. Knight MR, Plant Physiol, 128 (2002) 682.

    Article  PubMed  Google Scholar 

  11. Yang T, & Poovaiah BW, Proc Nat Acad Sci, USA, 99 (2002) 4097.

    Article  CAS  Google Scholar 

  12. Smirnoff N, Antioxidants and reactive oxygen species in plants, Blackwell Publishing (2005).

    Book  Google Scholar 

  13. Inze D & Montagu MV, In Oxidative stress in plants (D Inze, MV Montagu, Editors), Taylor & Francis (2002) p 1.

  14. Arora A, Sairam RK & Srivastava GC, Curr Sci, 82 (2002) 1227.

    CAS  Google Scholar 

  15. Mittler R, Trends in Plant Sci, 7 (2002) 405.

    Article  CAS  Google Scholar 

  16. Oven M, Page JE, Zenk MH & Kutchan TM, J Biol Chem, 277 (2002) 4747.

    Article  PubMed  CAS  Google Scholar 

  17. Alscher R G, Erturk N & Heath L S, J Exp Bot, 53 (2002) 1331.

    Article  PubMed  CAS  Google Scholar 

  18. Rio LA, Sandalio LM, Altomare DA & Zilinskas BA, J Exp Bot, 54 (2003) 923.

    Article  PubMed  Google Scholar 

  19. Samis K, Bowley S & McKersie B, J Exp Bot, 53 (2002) 1343

    Article  PubMed  CAS  Google Scholar 

  20. Polle A, In Oxidative stress and the molecular biology of antioxidant defenses (JG Scandalios, Editor), Cold Spring Harbor Lab press (1997) p 623.

  21. Almedia JM, Fidalgo F, Confraria A, Santos A, Pires H & Santos I, Functional Plant Biol, 32 (2005) 707.

    Article  Google Scholar 

  22. Munne-Bosch S, New Phytologist, 166 (2005) 363.

    Article  PubMed  CAS  Google Scholar 

  23. Heinze M, Kieff S & Tenberge KB, In Antioxidants in higher plants (G Noga, M Schmitz, Editors), Proc Intn Workshop on Antioxidants in Higher Plants, Ravensburg (1997) p 92.

  24. Baier M, Kandlbinder A, Golldark D & Dietz KJ, Plant Cell & Environ, 28 (2005) 1012.

    Article  CAS  Google Scholar 

  25. Dietz KJ, Stork T, Finkemeier I, Lamkemeyer P, Li VVX, El-Tayeb MA, Michel KP, Baier M & Pistorius E, In Photoprotection, photoinhibition, gene regulation and environment, (B Demmig-Adams, VV Adams, A Matto, Editors), Kluwer Academic Press (2004) p 291.

  26. Chew O, Rudhe C, Glaser E & Whelan J, Plant Mol Biol, 53 (2003) 341.

    Article  PubMed  CAS  Google Scholar 

  27. Rizhsky L, Hallak-Herr E, Breusegem FV, Rachmdevitchi S, Barr JE, Rodermer S, Inze D & Mittler R, The Plant J, 32 (2002) 379.

    Article  Google Scholar 

  28. Foyer C, In Antioxidants in higher plants (RG Alscher, JL Hess, Editors) CRC Press, Boca Raton, (1993) pp 31–58.

  29. Simrnoff N, Running JA & Gatzek S, In Vitamin C: Its function and biochemistry in animals and plants (H Asard, JM May, N Smirnoff, Editors), Bios Scientific, London (2004) p 1.

  30. Mahan JR & Wanjura DF, Crop Sci, 45 (2005) 193.

    Article  CAS  Google Scholar 

  31. Gomez LD, Vanacker H, Buchner P, Noctor G & Foyer CH, Plant Physiol, 134 (2004) 1662.

    Article  PubMed  CAS  Google Scholar 

  32. Prasad MNV, Heavy metal stress in plants, Springer, (2004).

    Book  Google Scholar 

  33. Larson RA, In Naturally occurring antioxidants (RA Larson, Editor), CRC Press, Boca Raton (1997) p 83.

  34. Yordanov I, Velikova V & Tsonev T, Bulg J Plant Physiol, Special Issue (2003) 187.

    Google Scholar 

  35. Sattler SE, Cahoon EB, Coughlam SJ & DellaPenna D, Plant Physiol, 132 (2003) 2184.

    Article  PubMed  CAS  Google Scholar 

  36. Munne-Bosch S & Falk J, Planta, 218 (2004) 323.

    Article  PubMed  CAS  Google Scholar 

  37. Sattler S E, Gilliland M, Magallanes L, Pollard M & DellaPenna D, Plant Cell, 16 (2004) 1419.

    Article  PubMed  CAS  Google Scholar 

  38. Castelluccio C, Paganga G, Melikian N, Bolwell GP, Pridham J, Sampson J & Rice-Evans C, FEBS Lett, 368 (1995) 188.

    Article  PubMed  CAS  Google Scholar 

  39. Elstner E F, Obwald W, Volpert R & Schempp H, Acta Hort, 381 (2003) 304.

    Google Scholar 

  40. Rice-Evans CA, Miller N & Paganga G, Trends Plant Sci, 2 (1997) 152.

    Article  Google Scholar 

  41. Shetty K, In Food biotechnology (K Shetty, G Paliyath, AL Pometto, RE Levin, Editors), CRC Press, Boca Raton (2005) p 825.

  42. Woo HH, Kuleck G, Hirsch AM & Hawes MC, In Flavonoids in cell function, (B Buslig, J Manthey, Editors), Springer (2002) p 51.

  43. Gray DA, Auerback RH, Hill SE, Wang R, Campbell G & South JB, J Cereal Sci, 32 (2000) 89.

    Article  CAS  Google Scholar 

  44. Carbonaro M, J Agric Food Chem, 50 (2002) 5458.

    Article  PubMed  CAS  Google Scholar 

  45. Rigo A, Vianello FV, Clementi G, Rossetto M, Scarpa M, Virhovsek U & Mattlivi F, J Agri Food Chem, 48 (2000) 1996.

    Article  CAS  Google Scholar 

  46. Yamamoto M, Nakatsuka S, Otani, Kohmoto K & Nishimura S, Phytopathology, 90 (2000) 595.

    Article  PubMed  CAS  Google Scholar 

  47. Kocsy G, Laurie R, Szalar G, Szilagyr V, Simon-Sarkadf L, Galiba G & Ronde JA, Physiol Plant, 124 (2005) 227.

    Article  CAS  Google Scholar 

  48. He Y, Liu Y, Cao W, Huai M, Xu B & Huang B, Crop Sci, 45 (2005) 988.

    Article  CAS  Google Scholar 

  49. Charlie O’D, Virginia Vegetable, Small fruits & Specialty Crops, 2 (2003) 6.

    Google Scholar 

  50. Dudits D, Proc of the 7th Hungarian Congress on Plant Physiol, (2002) S1–01.

    Google Scholar 

  51. Ward S, Genetically Modified Crops, Agronomy News Autumn, 21 (2001) 5.

    Google Scholar 

  52. Jain RK, Saini N, Jain S & Singh R, Indian J Biotech, 2 (2005) 121.

    Google Scholar 

  53. Ohe M, Yoshiko M & Shigeru S, Sci Access, (2005) S20–010.

    Google Scholar 

  54. Pastori G, Foyer CH & Mullineaux P, J Exp Bot, 51 (1998) 387.

    Google Scholar 

  55. Sairam R K, Deshmukh P S & Saxena D C, Biol Plant, 41 (1998) 387.

    Article  CAS  Google Scholar 

  56. Oliver MJ, Dowd SE, Zaragoza J, Mauget SA & Payton PR, Ameri Soc Plant Biol Annual Meeting Paper No. 156 (2004).

    Google Scholar 

  57. Foyer CH & Noctor G, The Plant Cell, 17 (2005) 1866.

    Article  PubMed  CAS  Google Scholar 

  58. Kim C, Lee S, Park H, Bae C, Cheong Y, Choi Y, Han C, Lee S, Lim C & Cho M, Mol Plant Microbe Interact, 13 (2000) 470.

    Article  PubMed  CAS  Google Scholar 

  59. Dunwell JM, Moya-Leon MA & Herrera R, Biol Res, 34 (2001) 3.

    Article  Google Scholar 

  60. Stears RL, Martinsky T, Scbena M, Trends in Microarray Analysis, Nat Med, 9 (2003) 140.

    CAS  Google Scholar 

  61. Mathesius U, Keizers G, Natera SH, Weinmann JJ, Diordjevic MA, Rolfe BG, Proteomics, 1 (2001) 1424.

    Article  PubMed  CAS  Google Scholar 

  62. Sumner LW, Mendes P & Dixon RA, Phytochemistry, 62 (2003) 817.

    Article  PubMed  CAS  Google Scholar 

  63. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG & Thomashow MF, Plant J, 41 (2005) 195.

    Article  PubMed  CAS  Google Scholar 

  64. Devletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev Ludwikow A, Gallois P & Sadowski J, Cellular & Mol Biol Lett, 9 (2004) 829.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Sekhon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandhair, V., Sekhon, B.S. Reactive Oxygen Species and Antioxidants in Plants: An Overview. J. Plant Biochem. Biotechnol. 15, 71–78 (2006). https://doi.org/10.1007/BF03321907

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321907

Key words

Navigation