Skip to main content

Advertisement

Log in

Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Aluminum (Al) inhibits plant growth partly by causing oxidative damage that is promoted by reactive oxygen species and can be prevented by improving antioxidant capacity. Ascorbic acid (AsA), the most abundant antioxidant in plants, is regenerated by the action of monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR). We investigated the role of MDAR and DHAR in AsA regeneration during Al stress using transgenic tobacco (Nicotiana tabacum) plants overexpressing Arabidopsis cytosolic MDAR (MDAR-OX) or DHAR (DHAR-OX). DHAR-OX plants showed better root growth than wild-type (SR-1) plants after exposure to Al for 2 weeks, but MDAR-OX plants did not. There was no difference in Al distribution and accumulation in the root tips among SR-1, DHAR-OX, and MDAR-OX plants after Al treatment for 24 h. However, DHAR-OX plants showed lower hydrogen peroxide content, less lipid peroxidation and lower level of oxidative DNA damage than SR-1 plants, whereas MDAR-OX plants showed the same extent of damage as SR-1 plants. Compared with SR-1 plants, DHAR-OX plants consistently maintained a higher AsA level both with and without Al exposure, while MDAR-OX plants maintained a higher AsA level only without Al exposure. Also, DHAR-OX plants maintained higher APX activity under Al stress. The higher AsA level and APX activity in DHAR-OX plants contributed to their higher antioxidant capacity and higher tolerance to Al stress. These findings show that the overexpression of DHAR, but not of MDAR, confers Al tolerance, and that maintenance of a high AsA level is important to Al tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Al:

Aluminum

APX:

Ascorbate peroxidase

AsA:

Ascorbic acid

DHA:

Dehydroascorbate

DHAR:

Dehydroascorbate reductase

8-OHdG:

8-Hydroxy-2′-deoxyguanosine

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

HS:

Hoagland solution

MDA:

Monodehydroascorbate

MDAR:

Monodehydroascorbate reductase

OX:

Overexpressor

ROS:

Reactive oxygen species

References

  • Achary VMM, Jena S, Panda KK, Panda BB (2008) Aluminum induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol Environ Saf 70:300–310

    Article  PubMed  CAS  Google Scholar 

  • Anderson ME (1985) Determination glutathione and glutathione disulfide in biological samples. Meth Enzymol 113:548–555

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Bartoli CG, Guiamet JJ, Kiddle G, Pastori GM, Cagno RD, Theodoulou FL, Foyer CH (2005) Ascorbate content of wheat leaves is not determined by maximal l-galactono-1, 4-lactone dehydrogenase (GalLDH) activity under drought stress. Plant Cell Environ 28:1073–1081

    Article  CAS  Google Scholar 

  • Basu U, Good G, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24:1269–1278

    Article  CAS  Google Scholar 

  • Bérczi A, Møller M (1998) NADH-monodehydroascorbate oxidoreductase is one of the redox enzymes in spinach leaf plasma membranes. Plant Physiol 116:1029–1036

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating folia ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530

    Article  PubMed  CAS  Google Scholar 

  • Chen LS, Qi YP, Liu XH (2005) Effects of aluminum on light energy utilization and photoprotective systems in citrus leaves. Ann Bot 96:35–41

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970

    Article  CAS  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    PubMed  CAS  Google Scholar 

  • Devi SR, Yamamoto Y, Matsumoto H (2003) An intracellular mechanism of aluminum tolerance associated with high antioxidant status in cultured tobacco cells. J Inorg Biochem 97:59–68

    Article  PubMed  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65

    Article  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–665

    Article  PubMed  CAS  Google Scholar 

  • Ezaki B, Kiyohara H, Matsumoto H, Nakashima S (2007) Overexpression of an auxilin-like gene (F9E10.5) can suppress Al uptake in roots of Arabidopsis. J Exp Bot 58:497–506

    Article  PubMed  CAS  Google Scholar 

  • Ezaki B, Nagao E, Yamamoto Y, Nakashima S, Takashi ET (2008) Wild plants, Andropogon virginicus L. and Miscanthus sinensis Anders, are tolerant to multiple stresses including aluminum, heavy metals and oxidative stresses. Plant Cell Rep 27:951–961

    Article  PubMed  CAS  Google Scholar 

  • Fecht-Christoffers MM, Horst WJ (2005) Does apoplastic ascorbic acid enhance manganese tolerance of Vigna unguiculata and Phaseolus vulgaris? J Plant Nutr Soil Sci 168:590–599

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  • Green MA, Fry SC (2005) Vitamin C degradation in plant cells via enzymic hydrolysis of 4-O-oxalyl-1-threonate. Nature 433:83–87

    Article  PubMed  CAS  Google Scholar 

  • Guo ZF, Tan GQ, Zhu ZH, Lu SY, Zhou BY (2005) Effect of intermediates on ascorbic acid and oxalate biosynthesis of rice and in relation to its stress resistance. Plant Physiol Biochem 43:955–962

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Horemans N, Asard H, Caubergs RJ (1997) The ascorbate carrier of higher plant plasma membranes preferentially translocates the fully oxidized (dehydroascorbate) molecule. Plant Physiol 114:1247–1253

    PubMed  CAS  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Asada K (1984) Inactivation of ascorbate peroxidase in spinach chloroplasts on dark addition of hydrogen peroxide: its protection by ascorbate. Plant Cell Physiol 25:1285–1295

    CAS  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Houde M, Diallo AO (2008) Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines. BMC Genomics 9:400

    Article  PubMed  Google Scholar 

  • Jones DL, Blancaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant Cell Environ 29:1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM, Kwak SS (2003) Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160:347–353

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  PubMed  CAS  Google Scholar 

  • Ma BH, Wan JM, Shen ZG (2007) H2O2 production and antioxidant responses in seeds and early seedlings of two different rice varieties exposed to aluminum. Plant Growth Regul 52:91–100

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Curr Opin Plant Biol 6:379–389

    Article  PubMed  CAS  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induced oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418

    Article  PubMed  CAS  Google Scholar 

  • Rounds MA, Larsen PB (2008) Aluminum-dependent root-growth inhibition in Arabidopsis results from AtATR-regulated cell-cycle arrest. Curr Biol 18:1495–1500

    Article  PubMed  CAS  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  Google Scholar 

  • Stevens R, Page D, Gouble B, Garchery C, Zamir D, Causse M (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31:1086–1096

    Article  PubMed  CAS  Google Scholar 

  • Tahara K, Yamanoshita T, Norisada M, Hasegawa I, Kashima H, Sasaki S, Kojima K (2008) Aluminum distribution and reactive oxygen species accumulation in root tips of two Melaleuca trees differing in aluminum resistance. Plant Soil 307:167–178

    Article  CAS  Google Scholar 

  • Tice KR, Parker DR, DeMason DA (1992) Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat. Plant Physiol 100:309–318

    Article  PubMed  CAS  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Article  PubMed  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang JW, Kao CH (2007) Protective effect of ascorbic acid and glutathione on AlCl3 inhibited growth of rice roots. Biol Plant 51:493–500

    Article  CAS  Google Scholar 

  • Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol 136:3762–3770

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Yamada N, Takeuchi Y (2006) Oxidative DNA damage in cucumber cotyledons irradiated with ultraviolet light. J Plant Res 119:239–246

    Article  PubMed  CAS  Google Scholar 

  • Xue YJ, Tao L, Yang ZM (2008) Aluminum induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. J Agric Food Chem 56:9676–9684

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2003) Oxidative stress triggered by aluminum in plant roots. Plant Soil 255:239–243

    Article  CAS  Google Scholar 

  • Yoshida S, Tamaoki M, Shikano T et al (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thalina. Plant Cell Physiol 47:304–308

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Tanaka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure (DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, L., Wang, S., Eltayeb, A.E. et al. Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231, 609–621 (2010). https://doi.org/10.1007/s00425-009-1075-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-1075-3

Keywords

Navigation