Skip to main content
Log in

Reactive oxygen species, antioxidants and signaling in plants

  • Review
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of many metabolic reactions, such as photosynthesis, photo respiration and respiration, Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Oxidative stress occurs when there is a serious imbalance between the production of ROS and antioxidative defence. ROS participate in signal transduction, but also modify cellular components and cause damage. ROS is highly reactive molecules and can oxidize all types of cellular components. Various enzymes involved in ROS-scavenging have been manipulated and over expressed or down regulated. An overview of the literature is presented in terms of primary antioxidant free radical scavenging and redox signaling in plant cells. Special attention is given to ROS and ROS-anioxidant interaction as a metabolic interface for different types of signals derived from metabolisms and from the changing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Abreu IA, Saraiva LM, Soares CM, Teixeira M, Cabelli DE (2001) The mechanism of superoxide scavenging byArchaeoglobus fulgidus neelarredoxin. J Biol Chem276: 38995–39001

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev Plant Biol55: 373–99

    Article  PubMed  CAS  Google Scholar 

  • Boo YC, Jung J (1999) Water deficit induced oxidative stress and Antioxidative defence in rice plants. J Plant Physiol51: 255–261

    Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: BB Buchanan, W Gruissem, RL Jones, eds, Biochemistry and Molecular Biology of Plants. ASPR Rockvitle, pp 1158

    Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EC, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell12: 323–37

    PubMed  CAS  Google Scholar 

  • Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, Brazma A, Jones N, Bahler J, (2003) Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell14: 214–29

    Article  PubMed  CAS  Google Scholar 

  • Christman MF, Morgan RW, Jacobson FS, Ames BN (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins inSalmonella typhimurium. Cell,41: 753–762

    Article  PubMed  CAS  Google Scholar 

  • Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A, Mullineaux P (1999). Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell11: 1277–92

    Article  PubMed  CAS  Google Scholar 

  • del Rio LA, Sandalio LA, Corpus FJ, Lopez-Huertas E, Palma JM, Pastori GM (1998) Activated oxygen mediated metabolic functions of the peroxisomes. Physiol Plant104: 673–680

    Article  Google Scholar 

  • Desikan R, Mackerness S, Hancock JT, Neill SJ (2001) Regulation of theArabidopsis transcriptome by oxidative stress. Plant Physiol127: 159–72

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Neill SJ, Hancock JT (2000) Hydrogen peroxide-induced gene expression inArabidopsis thaliana. Free Rad. Biol. Med28: 773–78

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Reynolds A, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on gene expression inArabidopsis suspension cultures. Biochem. J.330: 115–120

    PubMed  CAS  Google Scholar 

  • Fecht-Christoffers MM, Maier P, Horst WJ (2003) Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance ofVigna unguiculate. Physol Plant117: 237–244

    Article  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of aging. Nature408: 239–247

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell17: 1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol141: 341–345

    Article  PubMed  CAS  Google Scholar 

  • Gasch A, Spellman P, Kao C, Harel O, Eisen M, Storz G, Botsteim D, Brown P (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell11: 4241–57

    PubMed  CAS  Google Scholar 

  • Harinasut P, Poonsopa D, Roengmongkoi K, Charoensataporn R (2003) Salt effects on antioxidant enzymes in mulberry cultivar. Science Asia29: 109–113

    Article  CAS  Google Scholar 

  • Hsu SY, Kao CH (2003) The protective effect of free radical scavengers and metal chelators on polyethylene glycol-treated leaves. Biol Plant46: 617–619

    Article  CAS  Google Scholar 

  • Jonak C, Ökresz L, Bögre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signaling. Curr. Opin. Plant Biol5: 415–24

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen J, Mullineaux PC (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science284: 654–57

    Article  PubMed  CAS  Google Scholar 

  • Keles Y, Oncel I (2002) Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci163: 783–790

    Article  CAS  Google Scholar 

  • Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxidants and Redox Slg8: 152–162

    Article  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA97: 2940–45

    Article  PubMed  CAS  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature384: 557–560

    Article  CAS  Google Scholar 

  • Lee DH, Lee CB (2000) Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci159: 75–85

    Article  PubMed  CAS  Google Scholar 

  • Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep26: 591–598

    Article  PubMed  CAS  Google Scholar 

  • Liang YC (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil209: 217–224

    Article  CAS  Google Scholar 

  • Lopez-Huertas E, Corpus FJ, Sandalio LM, del Rio LA (1999) Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation, Biochem J337: 531–536

    Article  PubMed  CAS  Google Scholar 

  • McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med108: 652–659

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci7: 405–410

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci9: 1360–1385

    Article  Google Scholar 

  • Möller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Ann Rev Plant Physiol Plant Mol Biol52: 561–591

    Article  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad T, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. USA100: 358–63

    Article  PubMed  CAS  Google Scholar 

  • Moseyko N, Zhu T, Chang HS, Wang X, Feldman LJ (2002) Transcription profiling of the early gravitropic response inArabidopsis using high-density oligonucleotide probe microarrays. Plant Physiol130: 720–28

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux PM, Karpiniski S, Baker NR (2006) Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants. Plant Physiol14: 346–350

    Article  Google Scholar 

  • Nagamiya K, Motohashi T, Nakao K, Prodhan SH, Hattori E, Hirose, Ozawa K, Ohkawa Y, Takabe T, Takabe T, Komamine A (2007) Enhancement of salt tolerance in transgenic rice expressing anEscherichia coli catalase gene,kat E. Plant Biotechnol Rep1: 49–5

    Article  Google Scholar 

  • Nobuhiro S, Mittler R (2006) Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant.126: 45–51

    Article  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol49: 249–279

    Article  CAS  Google Scholar 

  • Pfannschmidt T, Schutze K, Fey V, Sherameti I, Oelmuller R (2003) Chloroplast redox control of nuclear gene expression-A new class of plastid signals in interorganellar communication. Antioxidants and Redox Sig5: 95–101

    Article  CAS  Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase-ascorbate-glu-tathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol126: 445–462

    Article  PubMed  CAS  Google Scholar 

  • Pourcel L, Routaboul JM, Cheynier V (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Sci12: 29–36

    Article  CAS  Google Scholar 

  • Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inze D, Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J32: 329–42

    Article  PubMed  CAS  Google Scholar 

  • Sanan-Mishra N, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys452: 55–68

    Article  Google Scholar 

  • Sarowar S, Kim EN, Kim YJ, Ok SH, Kim KD, Hwang BK, Shin JS (2005) Overexpression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. Plant Sci.169: 55–63

    Article  CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol101: 7–12

    PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis R, Brown P (1995) Quantitative monitoring of gene expression patterns with complementary DNA microarray. Science270: 467–470

    Article  PubMed  CAS  Google Scholar 

  • Serres JB, Mittler R (2006) The Roles of Reactive Oxygen Species in Plant Cells. Plant Physiology 2006;141: 311

    Article  Google Scholar 

  • Shaaltiel Y, Chua NH, Gepstein S, Gressel J (1988) Dominant pleiotropy controls enzymes co-segregating with paraquet resistance inConyza bonariensis. Theor Appl Genet75: 850–856

    CAS  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relativeLycopersicon pennellii to salt-dependent oxidative stress: the antioxidative system. Physiol Plant.112: 487–494

    Article  PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Wu G, Zhang JH, Lu ZH, Hu YC (2007) Changes of some anti-oxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Biointerfaces59: 113–119

    Article  Google Scholar 

  • Smirnoff N (2000) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol125: 27–58

    Article  Google Scholar 

  • Spychalla JP, Desbough SL (1990) Superoxide dismutase, Catalase, and alpha-tocopherol content of stored potato tubers. Plant Physiol94: 1214–1218

    Article  PubMed  CAS  Google Scholar 

  • Srivalli B, Chinnusamy V, Khanna-Chopra R (2003) Antioxidant defense in response to abiotic stresses in plants, J Plant Biol30: 121–139

    Google Scholar 

  • Stohr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot57: 463–470

    Article  PubMed  Google Scholar 

  • Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCI salinity. Plant Sci16: 613–619

    Article  Google Scholar 

  • Van Breusegem F, Vranova E, Dat JF, Inzé D (2001) The role of active oxygen species in plant signal transduction. Plant Sci161: 405–414

    Article  Google Scholar 

  • Vranova E, Atichartpongkul S, Villarroel, Van Montagu M, Inze D, Van Camp W (2002) Comprehensive analysis of gene expression inNicotiana tabacum leaves acclimated to oxidative stress. Proc. Natl. Acad. Sci. USA99: 10870–75

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Wei ZK, Shao HB (2007) The mutual responses of higher plants to environment: physiological and microbiological aspects. Biointerfaces59: 113–119

    Article  CAS  Google Scholar 

  • Zhang T, Liu V, Xue L, Xu S, Chen T, Yang T, Zhang L, An L (2006) Molecular cloning and characterization of a novel MAP kinase gene inChorispora bungeana. Plant Physiol Biochem44: 78–84

    Article  PubMed  CAS  Google Scholar 

  • Zheng M, Wang X, Templeton L, Smulski D, LaRossa R, Storz G (2001) DNA microarray-mediated transcriptional profiling of theEscherichia coli response to hydrogen peroxide. Journal of Bacteriol183: 4562–4570

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaiz Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, P., Sarwat, M. & Sharma, S. Reactive oxygen species, antioxidants and signaling in plants. J. Plant Biol. 51, 167–173 (2008). https://doi.org/10.1007/BF03030694

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030694

Keywords

Navigation