Skip to main content
Log in

Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The present study was carried out to examine the effects of seed soaking in 1 mM ascorbic acid (AA) or 1 mM proline on the growth, content of photosynthetic pigments and proline, relative water content, electrolyte leakage, antioxidant enzymes and leaf anatomy of Hordeum vulgare L. Giza 124 seedlings grown in greenhouse under 100 or 200 mM NaCl. The plants exposed to the NaCl stress exhibited a significant reduction in growth, relative water content, leaf photosynthetic pigments, soluble sugars, as well as alterations in leaf anatomy. However, the treatment with AA or proline ameliorated the stress generated by NaCl and improved the above mentioned parameters. NaCl increased electrolyte leakage, proline content, and activities of antioxidant enzymes (SOD, CAT, and POX). The antioxidant enzymes and leaf anatomy exhibited considerable changes in response to AA or proline application in the absence or presence of NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

ascorbic acid

Car:

carotenoids

CAT:

catalase

Chl:

chlorophyll

EL:

electrolyte leakage

POD:

peroxidase

RWC:

relative water content

SOD:

superoxide dismutase

References

  • Ali, G., Srivastava, P.S., Iqbal, M.: Proline accumulation, protein pattern and photosynthesis in regenerants grown under NaCl stress. — Biol. Plant. 42: 89–95, 1999.

    Article  CAS  Google Scholar 

  • Ali, Q., Ashraf, M., Athar, H.U.R.: Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. — Pak. J. Bot. 39: 1133–1144, 2007.

    Google Scholar 

  • Alqurainy, F.: Responses of bean and pea to vitamin C under salinity stress. — Res. J. agr. biol. Sci. 3: 714–722, 2007.

    CAS  Google Scholar 

  • Association of Official Agricultural Chemists: Official Methods of Analysis. 15th Ed. — Benjamin Franklin Station, Washington 1990.

  • Arafa, A.A., Khafagy, M.A., El-Banna, M.F.: The effect of glycinebetaine or ascorbic acid on grain germination and leaf structure of sorghum plants grown under salinity stress. — Aust. J. Crop Sci. 3: 294–304, 2009.

    CAS  Google Scholar 

  • Arnon, D.I.: Copper enzymes in isolated chloroplast. Polyphenol-oxidase in Beta vulgaris L. — Plant Physiol. 24: 1–5, 1949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashraf, M., Athar, H.R., Harris, P.J.C., Kwon, T.R.: Some prospective strategies for improving crop salt tolerance. — Adv. Agron. 97: 45–110, 2008.

    Article  CAS  Google Scholar 

  • Ashraf, M., Foolad, M.R.: Roles of glycinebetaine and proline in improving plant abiotic stress tolerance. — Environ. exp. Bot. 59: 206–216, 2007.

    Article  CAS  Google Scholar 

  • Ashraf, M., Rahmatullah, R., Ahmad, R., Bhatti, A.S., Afzal, M., Sarwar, A. Maqsood, M. A. Kanwal, S.: Amelioration of salt stress in sugarcane (Saccharum officinarum L.) by supplying potassium and silicon in hydroponics. — Pedosphere 20:153-162, 2010.

    Google Scholar 

  • Athar, H.R., Khan, A., Ashraf, M.: Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. — Environ. exp. Bot. 63: 224–231, 2008.

    Article  CAS  Google Scholar 

  • Athar, H.R., Khan, A., Ashraf, M.: Inducing salt tolerance in wheat by exogenously applied ascorbic acid through different modes. — J. Plant Nutr. 32: 1799–1817, 2009.

    Article  CAS  Google Scholar 

  • Azevedo, R.A., Carvalho, R.F., Cia, M.C., Gratão, P.L.: Sugarcane under pressure: an overview of biochemical and physiological studies of abiotic stress. — Trop. Plant Biol. 4: 42–51, 2011.

    Article  CAS  Google Scholar 

  • Azooz, M.M.: Proteins, sugars and ion leakage as a selection criterion for the salt tolerance of three sorghum cultivars at seedling stage grown under NaCl and nicotinamide. — Int. J. agr. Biol. 6: 27–35, 2004.

    CAS  Google Scholar 

  • Azooz, M.M., Shaddad, M.A., Abdel Latef, A.A.: The accumulation and compartmentation of proline in relation to salt tolerance of three sorghum cultivars. — Indian J. Plant Physiol. 9: 1–8, 2004.

    CAS  Google Scholar 

  • Bandurska, H.: Does proline accumulated in the leaves of water deficit stressed barley plants confine cell membrane injuries? II. Proline accumulation during hardening and its involvement in reducing membrane injuries in leaves subjected to severe osmotic stress. — Acta Physiol. Plant. 23: 483–490, 2001.

    Article  CAS  Google Scholar 

  • Bassuony, F.M., Hassanein, R.A., Baraka, D.M., Khalil, R.R.: Physiological effects of nicotinamide and ascorbic acid on Zea mays plant grown under salinity stress. II. Changes in nitrogen constituent, protein profiles, protease enzyme and certain inorganic cations. — Aust. J. appl. Sci. 2: 350–359, 2008.

    CAS  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Beltagi, M.S.: Exogenous ascorbic acid (vitamin C) induced anabolic changes for salt tolerance in chick pea (Cicer arietinum L.) plants. — Afr. J. Plant Sci. 2: 118–123, 2008.

    Google Scholar 

  • Bohnert, H.J., Jensen, R.G.: Strategies for engineering waterstress tolerance in plants. — Trends Biotechnol. 14: 89–97, 1996.

    Article  CAS  Google Scholar 

  • Celik, O., Atak, C.: The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. — Turk. J. Biol. 36: 327–338, 2012.

    Google Scholar 

  • Conklin, P.L.: Recent advances in the role and biosynthesis of ascorbic acid in plants. — Plant Cell Environ. 24: 383–394, 2001.

    Article  CAS  Google Scholar 

  • Conklin, P.L., Barth, C.: Ascorbic acid: a familiar small molecule intertwined in the response of plants to ozone, pathogens and the onset of senescence. — Plant Cell Environ. 27: 959–970, 2004.

    Article  CAS  Google Scholar 

  • Dionisio-Sese, M.L., Tobita, S.: Antioxidant responses of rice seedlings to salinity stress. — Plant Sci. 135: 1–9, 1998.

    Article  CAS  Google Scholar 

  • Dolatabadian, A., Saleh, R.J.: Impact of exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. — Notulae bot. agrobot. Cluj-Napoca 37: 165–172, 2009.

    CAS  Google Scholar 

  • Everard, J.D., Gucci, R., Kann, S.C., Flore, J.A., Loescher, W. H.: Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L) at various levels of root zone salinity. — Plant Physiol. 106: 281–292, 1994.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ferreira-Silva, S.L., Voigt, E.L., Silva, E.N., Maia, J.M., Aragao, T.C.R.: Partial oxidative protection by enzymatic and non-enzymatic components in cashew leaves under high salinity. — Biol. Plant. 56: 172–176, 2012.

    Article  CAS  Google Scholar 

  • Fridovich, I.: Superoxide dismutase. — Annu. Rev. Biochem. 44: 147–159, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Gurmani, A.R., Bano, A., Salim, M.: Effect of growth regulators on growth, yield and ion accumulation of rice (Oryza sativa L.) under salt stress. — Pak. J. Bot. 38: 1415–1424, 2006.

    Google Scholar 

  • Hajer, A.S., Malibari, A.A., Al-Zahrani, H.S., Almaghrabi, O.A.: Responses of three tomato cultivars to sea water salinity 1. Effect of salinity on the seedling growth. — Afr. J. Biotechnol. 5: 855–861, 2006.

    CAS  Google Scholar 

  • Hamdia, M.A., Shaddad, M.A.K.: Salt tolerance of crop plants. — J. Stress Physiol. Biochem. 6: 64–90, 2010.

    Google Scholar 

  • Hare, P.D., Cress, W.A., Van Staden, J.: Proline synthesis and degradation: a model system for elucidating stress related signal transduction. — J. exp. Bot. 50:413-434, 1999.

    Google Scholar 

  • Hartzendorf, T., Rolletschek, H.: Effect of NaCl-salinity on amino acid and carbohydrate contents of Phragmites australis. — Aquat. Bot. 69: 195–208, 2001.

    Article  CAS  Google Scholar 

  • Hoque, M.A., Okuma, E., Banau, M.N.A., Nakamura, Y., Shimoishi, Y., Murata, N.: Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betain by increasing antioxidants enzyme activity. — J. Plant Physiol. 64: 553–561, 2007.

    Article  CAS  Google Scholar 

  • Hussain, G., Al-Jaloud, A.A., Al-Shammary, A.A., Karimulla, S., Al-Asward, S.O.: Effect of saline irrigation on germination and growth parameters of barley (Hordeum vulgare L.) in a pot experiment. — Agr. Water Manage. 34:125–135, 1997.

    Article  Google Scholar 

  • Hussein, M.M., Balbaa, L.K., Gaballah, M.S.: Salicylic acid and salinity effects on growth of maize plants. — Res. J. agr. biol. Sci. 3: 321–328, 2007.

    CAS  Google Scholar 

  • Kaya, C., Tuna, A.L., Dikilitas, M. Cullu, M. A.: Responses of some enzymes and key growth parameters of salt stressed maize plants to foliar and seed applications of kinetin and indole acetic acid. — J. Plant Nutr. 33: 405–422, 2010.

    Article  CAS  Google Scholar 

  • Khan, A., Ahmad, M.S.A., Athar, H.R., Ashraf, M.: Interactive effect of foliarly applied ascorbic acid and salt stress on wheat (Triticum aestivum L.) at the seedling stage. — Pak. J. Bot. 38:1407-1414, 2006.

    Google Scholar 

  • Khan, A., Iqbal, I., Shah, A., Ahmad, A., Ibrahim, M.: Alleviation of adverse effects of salt stress in brassica (Brassica campestris) by pre-sowing seed treatment with ascorbic acid. — J. Agr. environ. Sci. 7: 557–560, 2010.

    CAS  Google Scholar 

  • Khosravinejad, H.F.R., Farboondia, T.: Effect of salinity on photosynthetic pigments, respiration and water content in barley varieties. — Pak. J. biol. Sci. 11: 2438–2442, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Long, X.H., Mehta, S.K., Liu, Z.P.: Effect of NO-3-N enrichment on seawater stress tolerance of Jerusalem artichoke (Helianthus tuberosus). — Pedosphere 19: 113–123, 2008.

    Article  Google Scholar 

  • Luck, H.: Catalase estimation. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Vol. 2. Pp. 885–888. Academic Press, New York 1975.

    Google Scholar 

  • Ma, L.J., Yu, C.M., Li, X.M., Li, Y.Y., Wang, L.L., Ma, C.Y., Tao, S.Y., Bu, N.: Pretreatment with NaCl induces tolerance of rice seedlings to subsequent Cd or Cd + NaCl stresses. — Biol. Plant. 57: 567–570, 2013.

    Article  CAS  Google Scholar 

  • Makela, P., Kontturib, M., Pehua, E., Somersaloa, S.: Photosynthetic response to drought and salt stressed tomato and turnip rape plants to foliar applied glycinebetaine. — Physiol. Plant. 105: 45–50, 1999.

    Article  CAS  Google Scholar 

  • Matysik, J., Aliab, B., Mohanty, P.: Molecular mechanism of quenching of reactive oxygen species by proline under stress in plants. — Curr. Sci. 82: 525–532, 2002.

    CAS  Google Scholar 

  • Mer, R.K., Prajith, P.K., Pandya, D.H., Pandey, A.N.: Effect of salts on germination of seeds and growth of young plants of Hordeum vulgare, Triticum aestivum, Cicer arietinum and Brassica juncea. — J. Agron. Crop Sci. 185: 209–216, 2000.

    Article  CAS  Google Scholar 

  • Merkulov, L.J., Ivezić, J., Krstić, B., Kovačev, L., Pajević, S., Vujičić, D: Structural characteristics of leaf blade of differentially drought-tolerant sugar beet genotypes. — In: Vujičić, D. (ed.): Proceedings of the International Symposium: Drought and Plant Production. Pp. 487–492. Agricultural Research Institute “Serbia”, Belgrade 1997.

    Google Scholar 

  • Munns, R.: Comparative physiology of salt and water stress. — Plant Cell Environ. 25: 239–250, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Munns, R.: Genes and salt tolerance: bringing them together. — New Phytol. 167: 645–663, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Nawaz, K., Hussain, K., Majeed, A., Khan, F., Afghan, S., Ali, K.: Fatality of salt stress to plants: morphological, physiological and biochemical aspects. — Afr. J. Biotechnol. 9: 5475–5480, 2010.

    CAS  Google Scholar 

  • Okuma, E., Murakami, Y., Shimoishi, Y., Tada, M., Murata, Y.: Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. — Soil Plant Nutr. 50: 1301–1305, 2004.

    Article  CAS  Google Scholar 

  • Pignocchi, C., Foyer, C.: Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. — Curr. Opin. Plant Biol. 6: 379–389, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Rahman, S.M.D., Miyake, H., Takeoka, Y.: Effects of exogenous glycinebetaine on growth and ultrastructure of salt stressed rice seedlings (Oryza sativa L.) — Plant Prod. Sci. 5: 33–44, 2002.

    Article  CAS  Google Scholar 

  • Raza, S.H., Athar, H.U.R., Ashraf, M.: Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. — Pak. J. Bot. 38: 341–351, 2006.

    Google Scholar 

  • Rhodes, D., Hanson, A.D.: Quaternary ammonium and tertiary sulfonium compounds in higher plants. — Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 357–384, 1993.

    Article  CAS  Google Scholar 

  • Roy, D., Basu, N., Bhunia, A., Banerjee, S.K.: Counteraction of exogenous L-proline with NaCl in salt-sensitive cultivar of rice. — Biol. Plant. 35: 69–72, 1993.

    Article  CAS  Google Scholar 

  • Sass, J.A.: Botanical Microtechnique. 3rd Ed. — The Iowa State University Press, Ames 1961.

    Google Scholar 

  • Serraj, R., Sinclair, T.R.: Osmolyte accumulation: can it really help increase crop yield under drought conditions? — Plant Cell Environ. 25: 333–341, 2002.

    Article  PubMed  Google Scholar 

  • Shah, S.H.: Effects of salt stress on mustard as affected by gibberellic acid application. — Genet. Appl. Plant Physiol. 3391: 97–106, 2007.

    Google Scholar 

  • Smirnoff, N., Wheeler, G.L.: Ascorbic acid in plants: biosynthesis and function. — Crit. Rev. Biochem. mol. Biol. 35: 291–314, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, R.L., Jen, J.J., Morr, C.V.: Changes in soluble and bound peroxidase, IAA oxidase during tomato fruit development. — J. Food Sci. 47: 158–161, 1981.

    Article  CAS  Google Scholar 

  • Tuna, A.L., Kaya, C., Dikilitas, M., Higgs, D.E.B.: The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. — Environ. exp. Bot. 62: 1–9, 2008.

    Article  CAS  Google Scholar 

  • Vinocur, B., Altman, A.: Recent advances in engineering plant tolerance to aboitic stress: achievements and limitations. — Curr. Opin. Biotechnol. 16:123-132, 2005.

    Google Scholar 

  • Yamasaki, S., Dillenburg, L.R.: Measurements of leaf relative water content in Araucaria angustifolia 1. — Rev. brasil. Fisiol. veg. 11: 69–75, 1999.

    Google Scholar 

  • Yancey, P.H., Clark, M.B., Hands, S.C., Bowlus, R.D., Somero, G.N.: Living with water stress: evaluation of osmolyte systems. — Science 217: 1214–1222, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Zhen, A., Bie, Z.L., Huang, Y., Liu, Z.X., Fan, M.L.: Effects of 5-aminolevulinic acid on the H2O2-content and antioxidative enzyme gene expression in NaCl-treated cucumber seedlings. — Biol. Plant. 56: 566–570, 2012.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Agami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agami, R.A. Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biol Plant 58, 341–347 (2014). https://doi.org/10.1007/s10535-014-0392-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0392-y

Additional key words

Navigation