Skip to main content

Advertisement

Log in

Bacterial Mitigation of Drought Stress in Plants: Current Perspectives and Future Challenges

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Climate change is emerging as a crucial issue with global attention and leading to abiotic stress conditions. There are different abiotic stress which affects the crop production among which drought is known to be most destructive stress affecting crop productivity and world’s food security. Different approaches are under consideration to increase adaptability of the plants under drought stress with plant–microbe interactions being a greater area of focus. Stress-adaptive microbes either from the rhizosphere, internal tissue, or aerial parts of plants have been reported which through different mechanisms help the plants to cope up with drought and also promote their growth. These mechanisms include the accumulation of osmolytes, decrease in the inhibitory levels of ethylene by aminocyclopropane-1-carboxylate (ACC) deaminase enzyme, and furnishing the unavailable nutrients to plants. Microbial genera including Azotobacter, Bacillus, Ochrobactrum, Pseudomonas, and Serratia are known to be self-adaptive and growth promoters under drought stressed conditions. Stress-adaptive plant growth promoting (PGP) microbes thus are excellent candidates for stress alleviation in drought environment to provide maximum benefits to the plants. The present review deals with the effect of the drought stress on plants, biodiversity of the drought-adaptive microbes, mechanisms of the drought stress alleviation through enhancement of stress alleviators, reduction of the stress aggravators, and modification of the molecular pathways as well as the multiple PGP attributes of the drought-adaptive microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: Pubmed)

Fig. 3

Similar content being viewed by others

References

  1. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132. https://doi.org/10.1016/j.copbio.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  2. Barnawal D, Singh R, Singh RP (2019) Role of Plant Growth Promoting Rhizobacteria in Drought Tolerance: Regulating Growth Hormones and Osmolytes. In: Singh AK, Kumar A, Singh PK (eds) PGPR Amelioration in Sustainable Agriculture. Woodhead Publishing, pp 107–128. https://doi.org/10.1016/B978-0-12-815879-1.00006-9

  3. Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125. https://doi.org/10.1016/j.apsoil.2016.04.009

    Article  Google Scholar 

  4. Nagarajan S, Nagarajan S (2010) Abiotic tolerance and crop improvement. In: Pareek A, Sopory SK, Bohnert HJ (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Netherlands, Dordrecht, pp 1–11

    Google Scholar 

  5. Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27(6):744–752. https://doi.org/10.1016/j.biotechadv.2009.05.026

    Article  CAS  PubMed  Google Scholar 

  6. Kour D, Khan SS, Kaur T, Kour H, Singh G, Yadav A, Yadav AN (2022) Drought adaptive microbes as bioinoculants for the horticultural crops. Heliyon 8(5): e09493. https://doi.org/10.1016/j.heliyon.2022.e09493

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kim Y-C, Glick BR, Bashan Y, Ryu C-M (2012) Enhancement of plant drought tolerance by microbes. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer, Berlin, Heidelberg, pp 383–413

    Chapter  Google Scholar 

  8. Papworth A, Maslin M, Randalls S (2015) Is climate change the greatest threat to global health? The Geogr J 181(4):413–422. https://doi.org/10.1111/geoj.12127

    Article  Google Scholar 

  9. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant Drought Stress: Effects, Mechanisms and Management. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable Agriculture. Springer Netherlands, Dordrecht, pp 153–188. https://doi.org/10.1007/978-90-481-2666-8_12

  10. Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS, Saxena AK (2020) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India Sect B Biol Sci 90:785–795. https://doi.org/10.1007/s40011-019-01151-4

  11. Ali SZ, Sandhya V, Rao LV (2014) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 64(2):493–502. https://doi.org/10.1007/s13213-013-0680-3

    Article  CAS  Google Scholar 

  12. Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. https://doi.org/10.3389/fpls.2013.00356

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kumaravel S, Thankappan S, Raghupathi S, Uthandi S (2018) Draft genome sequence of plant growth-promoting and drought-tolerant Bacillus altitudinis FD48, isolated from rice phylloplane. Genome Announc 6(9):e00019-e118. https://doi.org/10.1128/genomeA.00019-18

    Article  PubMed  PubMed Central  Google Scholar 

  14. Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8(1):1–16. https://doi.org/10.1038/s41598-018-21921-w

    Article  CAS  Google Scholar 

  15. Shirinbayan S, Khosravi H, Malakouti MJ (2019) Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Appl Soil Ecol 133:138–145. https://doi.org/10.1016/j.apsoil.2018.09.015

    Article  Google Scholar 

  16. Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS, Saxena AK (2020) Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 3(1):23–34. https://doi.org/10.1007/s42398-020-00094-1

    Article  Google Scholar 

  17. Kumar V, Joshi S, Pant NC, Sangwan P, Yadav AN, Saxena A, Singh D (2019) Molecular approaches for combating multiple abiotic stresses in crops of arid and semi-arid region. In: Singh SP, Upadhyay SK, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Springer, Singapore, pp 149–170. https://doi.org/10.1007/978-981-15-0690-1_8

    Chapter  Google Scholar 

  18. Chakraborty U, Chakraborty B, Chakraborty A, Dey P (2013) Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol 29(5):789–803. https://doi.org/10.1007/s11274-012-1234-8

    Article  CAS  PubMed  Google Scholar 

  19. Niu X, Song L, Xiao Y, Ge W (2018) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580. https://doi.org/10.3389/fmicb.2017.02580

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chandra D, Srivastava R, Glick BR, Sharma AK (2018) Drought-tolerant Pseudomonas spp improve the growth performance of finger millet (Eleusine coracana (L) Gaertn) under non-stressed and drought-stressed conditions. Pedosphere 28(2):227–240. https://doi.org/10.1016/S1002-0160(18)60013-X

    Article  CAS  Google Scholar 

  21. Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS, Saxena AK (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  22. Kawamitsu Y, Driscoll T, Boyer JS (2000) Photosynthesis during desiccation in an intertidal alga and a land plant. Plant Cell Physiol 41(3):344–353. https://doi.org/10.1093/pcp/41.3.344

    Article  CAS  PubMed  Google Scholar 

  23. Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A, Sayyed RZ, Hesham AE-L, Dhaliwal HS, Saxena AK (2019) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management, Volume 1: Rhizobacteria in abiotic stress management. Springer, Singapore, pp 255–308

    Chapter  Google Scholar 

  24. Desclaux D, Roumet P (1996) Impact of drought stress on the phenology of two soybean (Glycine max L Merr) cultivars. Field Crops Res 46(1–3):61–70. https://doi.org/10.1016/0378-4290(95)00086-0

    Article  Google Scholar 

  25. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    Article  CAS  PubMed  Google Scholar 

  26. Farooq M, Basra S, Wahid A, Ahmad N, Saleem B (2009) Improving the drought tolerance in rice (Oryza sativa L) by exogenous application of salicylic acid. J Agron Crop Sci 195(4):237–246. https://doi.org/10.1111/j.1439-037X.2009.00365.x

    Article  CAS  Google Scholar 

  27. Hsiao A (2000) Effect of water deficit on morphological and physiological characterizes in rice (Oryza sativa). J Agric 3:93–97

    Google Scholar 

  28. Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, Heidelberg, pp 205–224

    Chapter  Google Scholar 

  29. Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66(1):35–42. https://doi.org/10.1007/s13213-015-1112-3

    Article  CAS  Google Scholar 

  30. Egamberdieva D, Wirth SJ, Alqarawi AA, Abd-Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104. https://doi.org/10.3389/fmicb.2017.02104

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62(1):21–30. https://doi.org/10.1007/s10725-010-9479-4

    Article  CAS  Google Scholar 

  32. Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer Singapore, Singapore, pp 163–200

    Chapter  Google Scholar 

  33. Khalid A, Arshad M, Zahir Z (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(3):473–480. https://doi.org/10.1046/j.1365-2672.2003.02161.x

    Article  CAS  PubMed  Google Scholar 

  34. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598. https://doi.org/10.1007/s13213-010-0117-1

    Article  Google Scholar 

  35. Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70(15–16):1876–1893. https://doi.org/10.1016/j.phytochem.2009.05.020

    Article  CAS  PubMed  Google Scholar 

  36. Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee I-J, Hussain A (2018) Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76(2):117–127. https://doi.org/10.1007/s13199-018-0545-4

    Article  CAS  Google Scholar 

  37. Ashraf MA, Iqbal M, Rasheed R, Hussain I, Perveen S, Mahmood S (2018) Chapter 16 - Dynamic Proline Metabolism: Importance and Regulation in Water-Limited Environments. In: Ahmad P, Ahanger MA, Singh VP, Tripathi DK, Alam P, Alyemeni MN (eds) Plant Metabolites and Regulation Under Environmental Stress. Academic Press, pp 323–336

    Google Scholar 

  38. Martínez-Gallegos V, Bautista-Cruz A, Martínez-Martínez L, Sánchez-Medina PS (2018) First report of phosphate-solubilizing bacteria associated with Agave angustifolia. Int J Agric Biol 20:1298–1302. https://doi.org/10.17957/IJAB/15.0630

    Article  Google Scholar 

  39. Toribio-Jiménez J, Rodríguez-Barrera MÁ, Hernández-Flores G, Ruvacaba-Ledezma JC, Castellanos-Escamilla M, Romero-Ramírez Y (2017) Isolation and screening of bacteria from Zea mays plant growth promoters. Rev Int Contam Ambient 33:143–150. https://doi.org/10.20937/RICA.2017.33.esp01.13

    Article  Google Scholar 

  40. Priyadharsini P, Muthukumar T (2017) The root endophytic fungus Curvularia geniculata from Parthenium hysterophorus roots improves plant growth through phosphate solubilization and phytohormone production. Fungal Ecol 27:69–77. https://doi.org/10.1016/j.funeco.2017.02.007

    Article  Google Scholar 

  41. Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58(4):371–377. https://doi.org/10.1007/s00284-008-9339-x

    Article  CAS  PubMed  Google Scholar 

  42. Castillo P, Escalante M, Gallardo M, Alemano S, Abdala G (2013) Effects of bacterial single inoculation and co-inoculation on growth and phytohormone production of sunflower seedlings under water stress. Acta Physiol Plant 35(7):2299–2309. https://doi.org/10.1007/s11738-013-1267-0

    Article  CAS  Google Scholar 

  43. Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316. https://doi.org/10.1038/nchembio.164

    Article  CAS  PubMed  Google Scholar 

  44. Bao A-K, Wang S-M, Wu G-Q, Xi J-J, Zhang J-L, Wang C-M (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L). Plant Sci 176(2):232–240. https://doi.org/10.1016/j.plantsci.2008.10.009

    Article  CAS  Google Scholar 

  45. Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87(5):455–462. https://doi.org/10.1139/B09-023

    Article  CAS  Google Scholar 

  46. Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97(20):9155–9164. https://doi.org/10.1007/s00253-013-5193-2

    Article  CAS  PubMed  Google Scholar 

  47. Zou Y-N, Wang P, Liu C-Y, Ni Q-D, Zhang D-J, Wu Q-S (2017) Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Sci Rep 7(1):1–10. https://doi.org/10.1038/srep41134

    Article  CAS  Google Scholar 

  48. Serraj R, Sinclair T (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell Environ 25(2):333–341. https://doi.org/10.1046/j.1365-3040.2002.00754.x

    Article  Google Scholar 

  49. Ali F, Bano A, Fazal A (2017) Recent methods of drought stress tolerance in plants. Plant Growth Regul 82(3):363–375. https://doi.org/10.1007/s10725-017-0267-2

    Article  CAS  Google Scholar 

  50. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6(9):431–438. https://doi.org/10.1016/S1360-1385(01)02052-0

    Article  CAS  PubMed  Google Scholar 

  51. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010

    Article  CAS  PubMed  Google Scholar 

  52. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97. https://doi.org/10.1016/j.tplants.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  53. Nahar K, Hasanuzzaman M, Fujita M (2016) Roles of osmolytes in plant adaptation to drought and salinity. In: Iqbal N, Nazar R, Khan AN (eds) Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, India, New Delhi, pp 37–68

    Chapter  Google Scholar 

  54. Vanderlinde EM, Harrison JJ, Muszyński A, Carlson RW, Turner RJ, Yost CK (2010) Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv viciae 3841. FEMS Microbiol Ecol 71(3):327–340. https://doi.org/10.1111/j.1574-6941.2009.00824.x

    Article  CAS  PubMed  Google Scholar 

  55. Wang C-J, Yang W, Wang C, Gu C, Niu D-D, Liu H-X, Wang Y-P, Guo J-H (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS ONE 7(12):e52565. https://doi.org/10.1371/journal.pone.0052565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32(2):245–258. https://doi.org/10.1007/s00344-012-9292-6

    Article  CAS  Google Scholar 

  57. Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi A (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106(1):51–57. https://doi.org/10.1007/s00122-002-1063-5

    Article  CAS  PubMed  Google Scholar 

  58. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208(15):2819–2830. https://doi.org/10.1242/jeb.01730

    Article  CAS  PubMed  Google Scholar 

  59. Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5(3):250–257. https://doi.org/10.1016/S1369-5266(02)00255-8

    Article  CAS  PubMed  Google Scholar 

  60. Rozwadowski KL, Khachatourians GG, Selvaraj G (1991) Choline oxidase, a catabolic enzyme in Arthrobacter pascens, facilitates adaptation to osmotic stress in Escherichia coli. J Bacteriol 173(2):472–478. https://doi.org/10.1128/jb.173.2.472-478.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gupta N, Thind SK, Bains NS (2014) Glycine betaine application modifies biochemical attributes of osmotic adjustment in drought stressed wheat. Plant Growth Regul 72(3):221–228. https://doi.org/10.1007/s10725-013-9853-0

    Article  CAS  Google Scholar 

  62. Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynthesis Res 44(3):243–252. https://doi.org/10.1007/BF00048597

    Article  CAS  Google Scholar 

  63. Zhao X-X, Liang C, Fang Y, Wang Y-Q, Wang W (2007) Effect of glycinebetaine on function of thylakoid membranes in wheat flag leaves under drought stress. Biol Plant 51(3):584–588. https://doi.org/10.1007/s10535-007-0128-3

    Article  CAS  Google Scholar 

  64. Ma Q-Q, Wang W, Li Y-H, Li D-Q, Zou Q (2006) Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. J Plant Physiol 163(2):165–175. https://doi.org/10.1016/j.jplph.2005.04.023

    Article  CAS  PubMed  Google Scholar 

  65. Raza SH, Athar HR, Ashraf M, Hameed A (2007) Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ Exp Bot 60(3):368–376. https://doi.org/10.1016/j.envexpbot.2006.12.009

    Article  CAS  Google Scholar 

  66. Wang G, Zhang X, Li F, Luo Y, Wang W (2010) Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica 48(1):117–126. https://doi.org/10.1007/s11099-010-0016-5

    Article  CAS  Google Scholar 

  67. Forni C, Duca D, Glick BR (2017) Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410(1–2):335–356. https://doi.org/10.1007/s11104-016-3007-x

    Article  CAS  Google Scholar 

  68. Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol. https://doi.org/10.1146/annurev.arplant.59.032607.092945

    Article  PubMed  Google Scholar 

  69. Jain NK, Roy I (2009) Effect of trehalose on protein structure. Protein Sci 18(1):24–36. https://doi.org/10.1002/pro.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kosar F, Akram NA, Sadiq M, Al-Qurainy F, Ashraf M (2019) Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. J Plant Growth Regul 38(2):606–618. https://doi.org/10.1007/s00344-018-9876-x

    Article  CAS  Google Scholar 

  71. Teramoto N, Sachinvala ND, Shibata M (2008) Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules 13(8):1773–1816. https://doi.org/10.3390/molecules13081773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Paul S, Paul S (2014) Trehalose induced modifications in the solvation pattern of N-methylacetamide. J Phys Chem B 118(4):1052–1063. https://doi.org/10.1021/jp407782x

    Article  CAS  PubMed  Google Scholar 

  73. Crowe JH (2007) Trehalose as a “Chemical Chaperone.” In: Csermely P, Vígh L (eds) Molecular aspects of the stress response: chaperones, membranes and networks. Springer, New York, pp 143–158

    Chapter  Google Scholar 

  74. Rodríguez-Salazar J, Suárez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296(1):52–59. https://doi.org/10.1111/j.1574-6968.2009.01614.x

    Article  CAS  PubMed  Google Scholar 

  75. Vílchez JI, Tang Q, Kaushal R, Wang W, Lv S, He D, Chu Z, Zhang H, Liu R, Zhang H (2018) Complete genome sequence of Bacillus megaterium strain TG1-E1, a plant drought tolerance-enhancing bacterium. Microbiol Resour Announc 7(12):e00842-e1818. https://doi.org/10.1128/MRA.00842-18

    Article  PubMed  PubMed Central  Google Scholar 

  76. Asaf S, Khan AL, Khan MA, Imran QM, Yun B-W, Lee I-J (2017) Osmoprotective functions conferred to soybean plants via inoculation with Sphingomonas sp. LK11 and exogenous trehalose. Microbiol Res 205:135–145. https://doi.org/10.1016/j.micres.2017.08.009

    Article  CAS  PubMed  Google Scholar 

  77. Chand K, Shah S, Sharma J, Paudel MR, Pant B (2020) Isolation, characterization, and plant growth-promoting activities of endophytic fungi from a wild orchid Vanda cristata. Plant Signal Behav 15(5):1744294. https://doi.org/10.1080/15592324.2020.1744294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tahir M, Khalid U, Khan MB, Shahid M, Ahmad I, Akram M, Ijaz M, Hussain M, Farooq ABU, Naeem MA (2019) Auxin and 1-Aminocyclopropane-1-carboxylate deaminase activity exhibiting rhizobacteria improved maize quality and productivity under drought conditions. Int J Agri Biol 21:943–954. https://doi.org/10.17957/IJAB/15.0979

    Article  CAS  Google Scholar 

  79. Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75(3):145–152. https://doi.org/10.1007/BF02895849

    Article  Google Scholar 

  80. Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9(1):689–701. https://doi.org/10.1080/17429145.2014.902125

    Article  Google Scholar 

  81. Alami Y, Champolivier L, Merrien A, Heulin T (1999) The role of Rhizobium sp., a rhizobacterium that produces exopolysaccharide in the aggregation of the rhizospherical soil of the sunflower: Effects on plant growth and resistance to hydric constraints. Oleagineux Corps Gras Lipides (France)

  82. Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6(1):1–14. https://doi.org/10.1080/17429145.2010.535178

    Article  CAS  Google Scholar 

  83. Ghosh D, Gupta A, Mohapatra S (2019) A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. World J Microbiol Biotechnol 35(6):1–15. https://doi.org/10.1007/s11274-019-2659-0

    Article  CAS  Google Scholar 

  84. Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. https://doi.org/10.1155/2019/6730305

    Article  Google Scholar 

  85. Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81(6):1001–1012. https://doi.org/10.1007/s00253-008-1760-3

    Article  CAS  PubMed  Google Scholar 

  86. Kaushal M (2019) Portraying rhizobacterial mechanisms in drought tolerance: a way forward toward sustainable agriculture. In: Singh AK, Kumar A, Singh PK (eds) PGPR amelioration in sustainable agriculture. Woodhead Publishing, pp 195–216

    Chapter  Google Scholar 

  87. Loreto F, Schnitzler J-P (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15(3):154–166. https://doi.org/10.1016/j.tplants.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  88. Niinemets Ü (2010) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 15(3):145–153. https://doi.org/10.1016/j.tplants.2009.11.008

    Article  CAS  PubMed  Google Scholar 

  89. Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE 9(5):e96086. https://doi.org/10.1371/journal.pone.0096086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y, Lee Y-H, Cho BH, Yang K-Y, Ryu C-M, Kim YC (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21(8):1067–1075. https://doi.org/10.1094/MPMI-21-8-1067

    Article  CAS  PubMed  Google Scholar 

  91. Yasmin H, Rashid U, Hassan MN, Nosheen A, Naz R, Ilyas N, Sajjad M, Azmat A, Alyemeni MN (2021) Volatile organic compounds produced by Pseudomonas pseudoalcaligenes alleviated drought stress by modulating defense system in maize (Zea mays L). Physiol Plant 172(2):896–911. https://doi.org/10.1111/ppl.13304

    Article  CAS  PubMed  Google Scholar 

  92. Deikman J (1997) Molecular mechanisms of ethylene regulation of gene transcription. Physiol Plant 100(3):561–566. https://doi.org/10.1111/j.1399-3054.1997.tb03061.x

    Article  CAS  Google Scholar 

  93. Abeles FB, Morgan PW, Saltveit ME Jr (2012) Ethylene in plant biology. Academic Press

    Google Scholar 

  94. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26(5–6):227–242. https://doi.org/10.1080/07352680701572966

    Article  CAS  Google Scholar 

  95. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648. https://doi.org/10.1007/s10295-007-0240-6

    Article  CAS  PubMed  Google Scholar 

  96. Hussain Wani S, Brajendra Singh N, Haribhushan A, Iqbal Mir J (2013) Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Curr Genomics 14(3):157–165. https://doi.org/10.2174/1389202911314030001

    Article  Google Scholar 

  97. Rana A, Kabi SR, Verma S, Adak A, Pal M, Shivay YS, Prasanna R, Nain L (2015) Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro-and micronutrients in grains in rice–wheat cropping sequence. Cogent Food Agric 1(1):1037379. https://doi.org/10.1080/23311932.2015.1037379

    Article  CAS  Google Scholar 

  98. Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L). Pedosphere 18(5):611–620. https://doi.org/10.1016/S1002-0160(08)60055-7

    Article  Google Scholar 

  99. Zahir Z, Munir A, Asghar H, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963

    CAS  PubMed  Google Scholar 

  100. Saleem AR, Brunetti C, Khalid A, Della Rocca G, Raio A, Emiliani G, De Carlo A, Mahmood T, Centritto M (2018) Drought response of Mucuna pruriens (L) DC inoculated with ACC deaminase and IAA producing rhizobacteria. PLoS ONE 13(2):e0191218. https://doi.org/10.1371/journal.pone.0191218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chandra D, Srivastava R, Sharma A (2018) Influence of IAA and ACC deaminase producing fluorescent pseudomonads in alleviating drought stress in wheat (Triticum aestivum). Agric Res 7(3):290–299. https://doi.org/10.1007/s40003-018-0305-y

    Article  CAS  Google Scholar 

  102. Chandra D, Srivastava R, Gupta VV, Franco CM, Sharma AK (2019) Evaluation of ACC-deaminase-producing rhizobacteria to alleviate water-stress impacts in wheat (Triticum aestivum L) plants. Can J Microbiol 65(5):387–403. https://doi.org/10.1139/cjm-2018-0636

    Article  CAS  PubMed  Google Scholar 

  103. Hernández I, Cela J, Alegre L, Munné-Bosch S (2012) Antioxidant defenses against drought stress. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer, Berlin, Heidelberg, pp 231–258

    Chapter  Google Scholar 

  104. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481. https://doi.org/10.1146/annurev.arplant.58.032806.103946

    Article  CAS  PubMed  Google Scholar 

  105. Rinalducci S, Murgiano L, Zolla L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59(14):3781–3801. https://doi.org/10.1093/jxb/ern252

    Article  CAS  PubMed  Google Scholar 

  106. Spoel SH, Loake GJ (2011) Redox-based protein modifications: the missing link in plant immune signalling. Curr Opin Plant Biol 14(4):358–364. https://doi.org/10.1016/j.pbi.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  107. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  108. Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Signal 8(9–10):1757–1764. https://doi.org/10.1089/ars.2006.8.1757

    Article  CAS  PubMed  Google Scholar 

  109. Del Río LA, Corpas FJ, Sandalio LM, Palma JM, Barroso JB (2003) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55(2):71–81. https://doi.org/10.1002/tbmb.718540875

    Article  PubMed  Google Scholar 

  110. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410. https://doi.org/10.1016/S1360-1385(02)02312-9

    Article  CAS  PubMed  Google Scholar 

  111. Štajner D, Kevrešan S, Gašić O, Mimica-Dukić N, Zongli H (1997) Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet. Biol Plant 39(3):441. https://doi.org/10.1023/A:1001000830977

    Article  Google Scholar 

  112. Ighodaro O, Akinloye O (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54(4):287–293. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

  113. Niki E (1993) Antioxidant defenses in eukariotic cells: an overview. In: Poli G, Albano E, Dianzani MU (eds) Free radicals: from basic science to medicine. Birkhäuser Basel, Basel, pp 365–373

    Chapter  Google Scholar 

  114. Han H, Lee K (2005) Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1(3):216–221

    Google Scholar 

  115. Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7(2):096–102. https://doi.org/10.4172/1948-5948.1000188

    Article  CAS  Google Scholar 

  116. Gusain YS, Singh U, Sharma A (2015) Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L). Afr J Biotechnol 14(9):764–773. https://doi.org/10.5897/AJB2015.14405

    Article  Google Scholar 

  117. Tiepo AN, Constantino LV, Madeira TB, Gonçalves LSA, Pimenta JA, Bianchini E, de Oliveira ALM, Oliveira HC, Stolf-Moreira R (2020) Plant growth-promoting bacteria improve leaf antioxidant metabolism of drought-stressed Neotropical trees. Planta 251(4):1–11. https://doi.org/10.1007/s00425-020-03373-7

    Article  CAS  Google Scholar 

  118. Bhargava S, Sawant K (2013) Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed 132(1):21–32. https://doi.org/10.1111/pbr.12004

    Article  CAS  Google Scholar 

  119. Osakabe Y, Osakabe K, Shinozaki K, Tran L-SP (2014) Response of plants to water stress. Front Plant Sci 5:86. https://doi.org/10.3389/fpls.2014.00086

    Article  PubMed  PubMed Central  Google Scholar 

  120. Xoconostle-Cazares B, Ramirez-Ortega FA, Flores-Elenes L, Ruiz-Medrano R (2010) Drought tolerance in crop plants. Am J Plant Physiol 5(5):241–256. https://doi.org/10.3923/ajpp.2010.241.256

    Article  Google Scholar 

  121. Kandasamy S, Loganathan K, Muthuraj R, Duraisamy S, Seetharaman S, Thiruvengadam R, Ponnusamy B, Ramasamy S (2009) Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Sci 7(1):47. https://doi.org/10.1186/1477-5956-7-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Datta S (2013) Impact of climate change in Indian horticulture-a review. Int J Sci, Environ Technol 2(4):661–671

    Google Scholar 

  123. Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377(1–2):111–126. https://doi.org/10.1007/s11104-013-1981-9

    Article  CAS  Google Scholar 

  124. Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117. https://doi.org/10.1016/j.plaphy.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  125. Kakar K, Xl R, Nawaz Z, Cui ZQ, Li B, Xie GL, Hassan M, Ali E, Sun GC (2016) A consortium of rhizobacterial strains and biochemical growth elicitors improve cold and drought stress tolerance in rice (Oryza sativa L). Plant Biol 18(3):471–483. https://doi.org/10.1111/plb.12427

    Article  CAS  PubMed  Google Scholar 

  126. Curá JA, Franz DR, Filosofía JE, Balestrasse KB, Burgueño LE (2017) Inoculation with Azospirillum sp and Herbaspirillum sp bacteria increases the tolerance of maize to drought stress. Microorganisms 5(3):41. https://doi.org/10.3390/microorganisms5030041

    Article  CAS  PubMed Central  Google Scholar 

  127. Hou X, Wu F, Wang X-J, Sun Z-T, Zhang Y, Yang M-T, Bai H, Li S, Bai J-G (2018) Bacillus methylotrophicus CSY-F1 alleviates drought stress in cucumber (Cucumis sativus) grown in soil with high ferulic acid levels. Plant Soil 431(1–2):89–105. https://doi.org/10.1007/s11104-018-3748-9

    Article  CAS  Google Scholar 

  128. Ghosh D, Sen S, Mohapatra S (2017) Modulation of proline metabolic gene expression in Arabidopsis thaliana under water-stressed conditions by a drought-mitigating Pseudomonas putida strain. Ann Microbiol 67(10):655–668. https://doi.org/10.1007/s13213-017-1294-y

    Article  CAS  Google Scholar 

  129. Yadav AN, Kour D, Abdel-Azeem AM, Dikilitas M, Hesham AE, Ahluwalia AS (2022) Microbes for agricultural and environmental sustainability. J Appl Biol Biotech 10(S1):1–5. https://doi.org/10.7324/JABB.2022.10s101

    Article  Google Scholar 

  130. Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68(3):411–420. https://doi.org/10.1007/s10725-012-9730-2

    Article  CAS  Google Scholar 

  131. Maxton A, Singh P, Masih SA (2018) ACC deaminase-producing bacteria mediated drought and salt tolerance in Capsicum annuum. J Plant Nutr 41(5):574–583. https://doi.org/10.1080/01904167.2017.1392574

    Article  CAS  Google Scholar 

  132. Omara AE-D, Elbagory M (2018) Enhancement of plant growth and yield of wheat (Triticum aestivum L) under drought conditions using plant-growth-promoting bacteria. Annu Res Rev Biol 28:1–18. https://doi.org/10.9734/ARRB/2018/44181

    Article  Google Scholar 

  133. Yadav AN, Kour D, Ahluwalia AS (2021) Soil and phytomicrobiomes for plant growth and soil fertility. Plant Sci Today 8(sp1):1–5. https://doi.org/10.14719/pst.1523

    Article  CAS  Google Scholar 

  134.  Yadav AN (2021) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9(1):1-4. https://doi.org/10.7324/JABB.2021.91ed

    Article  Google Scholar 

  135. Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32(1):122–130. https://doi.org/10.1007/s00344-012-9283-7

    Article  CAS  Google Scholar 

  136. Zhao R, Guo W, Bi N, Guo J, Wang L, Zhao J, Zhang J (2015) Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl Soil Ecol 88:41–49. https://doi.org/10.1016/j.apsoil.2014.11.016

    Article  Google Scholar 

  137. Gusain YS, Singh U, Sharma A (2014) Enhance activity of stress related enzymes in rice (Oryza sativa L) induced by plant growth promoting fungi under drought stress. Afr J Agric Res 9(19):1430–1434. https://doi.org/10.5897/AJAR2014.8575

    Article  CAS  Google Scholar 

  138. Guleria S, Walia A, Chauhan A, Shirkot C (2016) Genotypic and phenotypic profile of alkalophile proteolytic Bacillus sp associated with rhizosphere of apple trees in trans Himalayas. Proc Natl Acad Sci India Section B: Biol Sci 86(2):331–341. https://doi.org/10.1007/s40011-014-0447-z

    Article  CAS  Google Scholar 

  139. Kumar AS, Sridar R, Uthandi S (2017) Mitigation of drought in rice by a phyllosphere bacterium Bacillus altitudinis FD48. Afr J Microbiol Res 11(45):1614–1625. https://doi.org/10.5897/AJMR2017.8610

    Article  Google Scholar 

  140. Chen C, Xin K, Liu H, Cheng J, Shen X, Wang Y, Zhang L (2017) Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 7(1):1–14. https://doi.org/10.1038/srep41564

    Article  CAS  Google Scholar 

  141. Ghorchiani M, Etesami H, Alikhani HA (2018) Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agric Ecosyst Environ 258:59–70. https://doi.org/10.1016/j.agee.2018.02.016

    Article  CAS  Google Scholar 

  142. Vaishnav A, Choudhary DK (2019) Regulation of drought-responsive gene expression in Glycine max L Merrill is mediated through Pseudomonas simiae strain AU. J Plant Growth Regul 38(1):333–342. https://doi.org/10.1007/s00344-018-9846-3

    Article  CAS  Google Scholar 

  143. Miranda-Ríos JA, Ramírez-Trujillo JA, Nova-Franco B, Beltrán LFL-A, Iturriaga G, Suárez-Rodríguez R (2015) Draft genome sequence of Arthrobacter chlorophenolicus strain Mor30 16, isolated from the bean rhizosphere. Genome Announc 3(3):e00360-e415. https://doi.org/10.1128/genomeA.00360-15

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sandhya V, Shrivastava M, Ali SZ, Prasad VSSK (2017) Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russ Agric Sci 43(1):22–34. https://doi.org/10.3103/S1068367417010165

    Article  Google Scholar 

  145. Kumar M, Mishra S, Dixit V, Kumar M, Agarwal L, Chauhan PS, Nautiyal CS (2016) Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L). Plant Signal Behav 11(1):e1071004. https://doi.org/10.1080/15592324.2015.1071004

    Article  CAS  PubMed  Google Scholar 

  146. Raheem A, Shaposhnikov A, Belimov AA, Dodd IC, Ali B (2018) Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L) under drought stress. Arch Agron Soil Sci 64(4):574–587. https://doi.org/10.1080/03650340.2017.1362105

    Article  CAS  Google Scholar 

  147. Erdogan U, Cakmakci R, Varmazyarı A, Turan M, Erdogan Y, Kıtır N (2016) Role of inoculation with multi-trait rhizobacteria on strawberries under water deficit stress. Zemdirbyste-Agriculture 103(1):67–76. https://doi.org/10.13080/z-a.2016.103.009

    Article  Google Scholar 

  148. Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73(2):121–131. https://doi.org/10.1007/s10725-013-9874-8

    Article  CAS  Google Scholar 

  149. Gou W, Tian L, Ruan Z, Zheng P, Chen F, Zhang L, Cui Z, Zheng P, Li Z, Gao M (2015) Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by tree plant growth promoting Rhizobacteria (PGPR) strains. Pak J Bot 47(2):581–586

    CAS  Google Scholar 

  150. Kumaravel S, Thankappan S, Raghupathi S, Uthandi S (2018) Draft genome sequence of plant growth-promoting and drought-tolerant Bacillus altitudinis FD48, isolated from rice phylloplane. Genome Announc. https://doi.org/10.1128/genomeA.00019-18

    Article  PubMed  PubMed Central  Google Scholar 

  151. Manzanera M, Narváez-Reinaldo JJ, García-Fontana C, Vílchez JI, González-López J (2015) Genome sequence of Arthrobacter koreensis 5J12A, a plant growth-promoting and desiccation-tolerant strain. Genome Announc 3(3):e00648-e715. https://doi.org/10.1128/genomeA.00648-15

    Article  PubMed  PubMed Central  Google Scholar 

  152. Luo Y, Zhou M, Zhao Q, Wang F, Gao J, Sheng H, An L (2020) Complete genome sequence of Sphingomonas sp Cra20, a drought resistant and plant growth promoting rhizobacteria. Genomics 112(5):3648–3657. https://doi.org/10.1016/j.ygeno.2020.04.013

    Article  CAS  PubMed  Google Scholar 

  153. Mhamdi R, Ardley J, Tian R, Seshadri R, Reddy T, Pati A, Woyke T, Markowitz V, Ivanova N, Kyrpides N (2015) High-quality permanent draft genome sequence of Ensifer meliloti strain 4H41, an effective salt-and drought-tolerant microsymbiont of Phaseolus vulgaris. Stand Genom Sci 10(1):34. https://doi.org/10.1186/s40793-015-0005-1

    Article  CAS  Google Scholar 

  154. Nishu SD, Hyun HR, Lee TK (2019) Complete genome sequence of drought tolerant plant growth-promoting rhizobacterium Glutamicibacter halophytocola DR408. Microbiol Soc Korea 55(3):300–302. https://doi.org/10.7845/kjm.2019.9087

    Article  Google Scholar 

  155. Zhang Z, Yin L, Li X, Zhang C, Zou H, Liu C, Wu Z (2019) Analyses of the Complete Genome Sequence of the Strain Bacillus pumilus ZB201701 Isolated from Rhizosphere Soil of Maize under Drought and Salt Stress. Microbes Environ 34:310–315. https://doi.org/10.1264/jsme2.ME18096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Manzanera M, Vílchez J, García-Fontana C, Calvo C, González-López J (2015) Genome sequence of Leucobacter sp 4J7B1, a plant-osmoprotectant soil microorganism. Genome Announc. https://doi.org/10.1128/genomeA.00398-15

    Article  PubMed  PubMed Central  Google Scholar 

  157. Manzanera M, García-Fontana C, Vílchez JI, González-López J (2015) Genome sequence of Rhodococcus sp 4J2A2, a desiccation-tolerant bacterium involved in biodegradation of aromatic hydrocarbons. Genome Announc. https://doi.org/10.1128/genomeA.00592-15

    Article  PubMed  PubMed Central  Google Scholar 

  158. Manzanera M, Santa-Cruz-Calvo L, Vílchez J, García-Fontana C, Silva-Castro G, Calvo C (2014) Genome sequence of Arthrobacter siccitolerans 4 J27, a xeroprotectant-producing desiccation-tolerant microorganism. Genome Announc. https://doi.org/10.1128/genomeA.00526-14

    Article  PubMed  PubMed Central  Google Scholar 

  159. Akbari DL, Golkiya B, Bhadania RA (2015) Draft genome sequence of the endophytic bacterium Pantoea ananatis MR5 isolated from Cenchrus biflorus-A drought tolerant plant. J Pure Appl Microbiol 9(3):2671–2673

    CAS  Google Scholar 

  160. Parakhia MV, Tomar RS, Malaviya BJ, Dhingani RM, Rathod VM, Thakkar JR, Golakiya B (2014) Draft genome sequence of the endophytic bacterium Enterobacter spp MR1, isolated from drought tolerant plant (Butea monosperma). Indian J Microbiol 54(1):118–119. https://doi.org/10.1007/s12088-013-0429-5

    Article  CAS  PubMed  Google Scholar 

  161. Wang Z, Solanki MK, Yu Z-X, Yang L-T, An Q-L, Dong D-F, Li Y-R (2019) Draft genome analysis offers insights into the mechanism by which Streptomyces chartreusis WZS021 increases drought tolerance in sugarcane. Front Microbiol 9:3262. https://doi.org/10.3389/fmicb.2018.03262

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Department of Environment, Science & Technology (DEST), Shimla

Author information

Authors and Affiliations

Authors

Contributions

ANY conceived the original idea, designed the paper, and DK wrote the manuscript.

Corresponding author

Correspondence to Ajar Nath Yadav.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kour, D., Yadav, A.N. Bacterial Mitigation of Drought Stress in Plants: Current Perspectives and Future Challenges. Curr Microbiol 79, 248 (2022). https://doi.org/10.1007/s00284-022-02939-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02939-w

Navigation