Skip to main content
Log in

Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Backgrounds and aims

Mung bean (Vigna radiata (L.) R. Wilczek), a widely cultivated pulse crops in India, experiences severe drought stress during the cultivation period. Apart from the conventional plant breeding and transgenic approaches, the application of plant growth-promoting rhizobacteria (PGPR) has always been a promising approach to improve abiotic stress tolerance in crop plants. The aim of the present study was to investigate the role of mung bean rhizosphere-associated Pseudomonas aeruginosa GGRJ21 strain on drought stress alleviation in the host plant.

Methods

Fluorescent pseudomonads were isolated from mung bean rhizosphere by employing a culture-dependent approach. The role of osmotic stress tolerant P. aeruginosa GGRJ21 on drought stress alleviation in host plants was further examined in both the green house and field conditions.

Results

An elevated production of reactive oxygen species scavenging enzymes and cellular osmolytes; increased root length, shoot length, dry weight, relative water content; and a stronger upregulation of three drought stress-responsive genes, i.e., dehydration-responsive element binding protein (DREB2A), catalase (CAT1), and dehydrin (DHN) were observed in GGRJ21 inoculated plants in comparison with the uninoculated control plants tested under drought conditions. The field experimental data show an increase in biomass and better growth and development in inoculated and stressed plants when compared with untreated and stressed plants.

Conclusion

P. aeruginosa GGRJ21 strain was found to elicit water stress tolerance in mung bean plants by accelerating the accumulation of inherent levels of antioxidant enzymes, cell osmolytes, and consistently expediting the upregulation of stress responsive genes in PGPR-treated plants under water stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752

    Article  PubMed  CAS  Google Scholar 

  • Baki AAA, Anderson JD (1973) Vigour determination in soybean seed by multiple criteria. Crop Sci 13:630–633

    Article  Google Scholar 

  • Balcht A, Smith R (1994) Pseudomonas aeruginosa: infections and treatment. Informa Health Care, UK, ISBN 0-8247-9210-6, pp. 83–84

  • Bashan Y, de-Bashan LE (2005) Bacteria/plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment, vol 1. Elsevier Oxford, UK, pp 103–115

    Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, Kamnev AK, de-Bashan LE (2013) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils 49:465–479

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Env Microbio l 7:1673–1685

    Article  CAS  Google Scholar 

  • Beyer JWF, Fridovich I (1987) Assaying for super oxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  PubMed  CAS  Google Scholar 

  • Bowen GD, Rovira AD (1991) The rhizosphere, the hidden half of the hidden half. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots, the hidden half. Marcel Dekker, Inc, New York, USA, pp 641–629

    Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2007) Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus, a perennial grass of Thar Desert, India. Microb Ecol 54:82–90

    Article  PubMed  Google Scholar 

  • D’Souza-Ault MR, Smith LT, Smith GM (1993) Roles of N acetylglutaminylglutamine amide and glycine betaine in adaptation of Pseudomonas aeruginosa to osmotic stress. Appl Env Microbiol 59:473–478

    Google Scholar 

  • de Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6:242–245

    Article  PubMed  CAS  Google Scholar 

  • de-Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol 61:171–189

    Article  Google Scholar 

  • Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–601

    PubMed Central  PubMed  CAS  Google Scholar 

  • Edwards U, Rogall TH, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nuc Acids Res 17:7843–7853

    Article  CAS  Google Scholar 

  • Egamberdieva D (2012) The management of soil quality and plant productivity in stressed environment with rhizobacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer-Verlag Berlin Heidelberg, Germany, pp 27–40

    Chapter  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Env Microbiol 10:1–9

    CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Fiske CH, Subbarow Y (1925) A colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Gilbert GS, Parke JL, Clayton MK, Handelsman J (1993) Effects of an introduced bacterium on bacterial communities on roots. Ecology 74:840–854

    Article  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26:192–195

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Gururani MA, Upadhyaya CP, Baskar V, VenkateshJelli, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circle 347. University of California Agricultural Experimental station Station, Berkley

    Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agri Biol Chem 42:1825–1831

    Article  CAS  Google Scholar 

  • ISTA (1993) Proceedings of the International Seed Testing Association, international rules for seed testing. Seed Sci Technol 21:25–30

    Google Scholar 

  • Jablasone J, Warrinera K, Griffithsa M (2005) Interactions of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes plants cultivated in a gnotobiotic system. Int J Food Microbiol 99:7–18

    Article  PubMed  Google Scholar 

  • Ji P, Wilson M (2002) Assessment of the importance of similarity in carbon source utilization profiles between the biological control agent and the pathogen in biological control of bacterial speck of tomato. App Environ Microbiol 68:4383–4389

    Article  CAS  Google Scholar 

  • Kar M, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57:315–319

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim Y-C, Glick BR, Bashan Y, Ryu CM (2012) Enhancement of plant drought tolerance by microbes. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer Verlag, Berlin & Heidelberg, Germany pp, pp 383–413

    Chapter  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldàn A (2008) Plant-growth-promoting rhizobacteria and abuscularmycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Kremer RJ, Souissi T (2001) Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr Microbiol 43:182–186

    Article  PubMed  CAS  Google Scholar 

  • Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liddycoat SM, Greenberg BM, Wolyn DJ (2009) The effect of plant growth-promoting rhizobacteria an asparagus seedling and germinating seeds subjected to water stress under greenhouse conditions. Can J Microbiol 55:388–394

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and phaeopigments: spectrophotometric equations. ASLO: Limnol Oceano 12:343–346

    CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Michel BE, Kaufmann MR (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiol 51:914–916

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Myers N, Mittermeir RA, Mittermeir CG, da Fonseca GAB, Kents J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665

    Article  PubMed  CAS  Google Scholar 

  • Nakkeeran S, Fernando WGD, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, The Netherlands, pp 257–296, ISBN 978-1-4020-4152-5

    Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Oliver A, Canton R, Campo P, Baquero F, Blazquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of host plant root system. Appl Environ Microbiol 48:3795–3801

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rahman RN, Geok LP, Basri M, Salleh AB (2005) Physical factors affecting the production of organic solvent-tolerant protease by Pseudomonas aeruginosa strain K. Bioresour Technol 96:429–436

    Article  PubMed  CAS  Google Scholar 

  • Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768

    Article  PubMed  CAS  Google Scholar 

  • Reeves M, Pine L, Neilands JB, Bullows A (1983) Absence of siderophore activity in Legionella sp. grown in iron deficient media. J Bacteriol 154:324–329

    PubMed Central  PubMed  CAS  Google Scholar 

  • Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291

    PubMed Central  PubMed  CAS  Google Scholar 

  • Roberts DP, Dery PD, Yucel I, Buyer JS (2000) Importance of pfk A for rapid growth of Enterobacter cloacae during colonization of crop seed. Appl Environ Microbiol 66:87–91

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fert Soils 46:17–26

    Article  CAS  Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209

    Article  CAS  Google Scholar 

  • Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268

    Article  PubMed  CAS  Google Scholar 

  • Sardessai YN, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog 20:655–660

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG (1994) Regulation and properties of plant catalases. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, Florida, pp 275–315

    Google Scholar 

  • Shahjee HM, Banerjee K, Ahmad F (2002) Comparative analysis of naturally occurring l-amino acid osmolytes and their d-isomers on protection of Escherichia coli against environmental stresses. J Biosci 27:515–520

    Article  PubMed  CAS  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    PubMed Central  PubMed  CAS  Google Scholar 

  • Thapa G, Dey M, Sahoo L, Panda SK (2011) An insight into the drought stress induced alterations in plants. Biol Plant 55:603–613

    Article  CAS  Google Scholar 

  • Tonon G, Kevers C, Faivre-Rampant O, Graziani M, Gaspar T (2004) Effect of NaCl and mannitoliso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. J Plant Physiol 161:701–708

    Article  PubMed  CAS  Google Scholar 

  • USDA (2010) Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. United States Department of Agriculture, Washington, DC

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systematic resistance induced by rhizosphere bacteria. Annu Rev Pathol 36:453–483

    Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, de Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034-research0034.11.doi:10.1186/gb-2002-3-7-research0034

  • Weatherly PE (1950) Studies in the water relations of the cotton plant I. The field measurement of water deficit in leaves. New Phytol 49(1):81–97

    Article  Google Scholar 

  • Wilkening S, Bader A (2004) Quantitative real-time polymerase chain reaction: methodical analysis and mathematical model. J Biomol Tech 15:107–111

    PubMed Central  PubMed  Google Scholar 

  • Yuwono T, Handayani D, Soedarsono J (2005) The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aus J Agri Res 56:715–721

    Article  Google Scholar 

  • Ziska LH (2011) Climate change, carbon dioxide and global crop production: food security and uncertainty. In: Dinar A, Mendelsohn R (eds) Handbook on climate change and agriculture. Edward Elgar Publishing Ltd, Cheltenham and Camberley, UK, pp 9–31

    Google Scholar 

Download references

Acknowledgments

The work is supported by a Network Project (AMAAS), sponsored by the Indian Council of Agricultural Research (ICAR), the Government of India, New Delhi. The authors are thankful to the Director, CSIR-NEIST, and the Head, Biotechnology Division, CSIR-NEIST, for providing necessary facilities to carry out the work. The authors are also thankful to the MAEP Division, CSIR-NEIST for providing necessary area in experimental farm to conduct the field experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratul Saikia.

Additional information

Responsible Editor: Jesus Mercado-Blanco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 13 kb)

Table S2

(DOCX 16 kb)

Fig. S1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarma, R.K., Saikia, R. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377, 111–126 (2014). https://doi.org/10.1007/s11104-013-1981-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1981-9

Keywords

Navigation