Skip to main content

Antioxidant Defenses Against Drought Stress

  • Chapter
  • First Online:
Plant Responses to Drought Stress

Abstract

Plants possess a battery of structural, physiological, biochemical, and molecular mechanisms to withstand drought periods. During drought, stomatal limitation of photosynthesis, overreduction of the photosynthetic electron transport chain, enhanced photorespiration, and many other processes may result on enhanced formation of reactive oxygen species (ROS) and other oxidizing agents. One of the most important defense mechanisms against drought is the antioxidant system, which detoxifies prooxidants such as ROS and lipid peroxyl radicals, and keeps an adequate cellular redox balance. Antioxidants may be classified in enzymatic (e.g., ascorbate peroxidases, catalases, and superoxide dismutases) or nonenzymatic (syn. low molecular weight) antioxidants (e.g., ascorbate, glutathione, carotenoids, and tocopherols). Antioxidants may scavenge ROS directly or in co-operation with other antioxidants. This co-operation between antioxidants also allows re-cycling of oxidized antioxidants. Moreover, antioxidants are key sensors of the cellular redox status, so they trigger a number of signaling events intended to keep an adequate cellular redox balance. In this chapter, the function of the most important antioxidants in plants and the role of antioxidants in cellular redox homeostasis during drought stress will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APx:

Ascorbate peroxidase

CAT:

Catalase

DHA:

Dehydroascorbate

DHAR:

DHA reductase

Fdred :

Reduced ferredoxin

FTR:

Ferredoxin-thioredoxin reductase

GRx:

Glutaredoxin

GSH:

Reduced glutathione

GSSG:

GSH disulfide (oxidized GSH)

GST:

GSH-S-transferase

MDHA:

Monodehydroascorbate

MDHAR:

MDHA reductase

NPQ:

Non-photochemical quenching

NTR:

NADPH-thioredoxin reductase

PRx:

Peroxiredoxin

PSI/II:

Photosystem I or II

ROS:

Reactive oxygen species

qE:

ΔpH-dependent NPQ

SOD:

Superoxide dismutase

TRx:

Thioredoxin

References

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Atkin OK, Macherel D (2009) The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot 103:581–597

    Article  PubMed  CAS  Google Scholar 

  • Baier M, Dietz KJ (1999) Protective function of chloroplast 2- cysteine peroxiredoxin in photosynthesis. Evidence from transgenic Arabidopsis. Plant Physiol 119:1407–1414

    Article  PubMed  CAS  Google Scholar 

  • Baier M, Noctor G, Foyer CH, Dietz KJ (2000) Antisense suppression of 2-cysteine peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. Plant Physiol 124:823–832

    Article  PubMed  CAS  Google Scholar 

  • Barceló AR, Pomar F, Ferrer MA, Martínez P, Ballesta MC, Pedreño MA (2002) In situ characterization of a NO-sensitive peroxidase in the lignifying xylem of Zinnia elegans. Physiol Plant 114:33–40

    Article  PubMed  Google Scholar 

  • Bartoli CG, Gómez F, Martínez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J Exp Bot 55:1663–1669

    Article  PubMed  CAS  Google Scholar 

  • Begcy K, Mariano ED, Mattiello L, Nunes AV, Mazzafera P, Maia IG, Menossi M (2011) An Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants. PLoS ONE 6:e23776

    Article  PubMed  CAS  Google Scholar 

  • Bickar D, Bonaventura J, Bonaventura C (1982) Cytochrome c oxidase binding of hydrogen peroxide. Biochemistry 21:2661–2666

    Article  PubMed  CAS  Google Scholar 

  • Broin M, Cuiné S, Eymery F, Rey P (2002) The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage. Plant Cell 14:1417–1432

    Article  PubMed  CAS  Google Scholar 

  • Broin M, Rey P (2003) Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS1 2-cysteine peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress. Plant Physiol 132:1335–1343

    Article  PubMed  CAS  Google Scholar 

  • Burton GW, Ingold KU (1984) β-Carotene: an unusual type of lipid antioxidant. Science 224:569–573

    Article  PubMed  CAS  Google Scholar 

  • Caliskan M, Cuming AC (1998) Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination. Plant J 15:165–171

    Article  PubMed  CAS  Google Scholar 

  • Carpena X, Soriano M, Klotz MG, Duckworth HW, Donald LJ, Melik-Adamyan W, Fita I, Loewen PC (2003) Structure of the Clade 1 catalase, CatF of Pseudomonas syringae, at 1.8 Ã… resolution. Proteins 50:423–436

    Article  PubMed  CAS  Google Scholar 

  • Cazzaniga S, Li Z, Niyogi KK, Bassi R, Dall'Osto L (2012) The Arabidopsis sz/1 mutant reveals a critical role of β-carotene in photosystem I photoprotection. Plant Physiol 159:1745–1758

    Article  PubMed  CAS  Google Scholar 

  • Cela J, Chang C, Munné-Bosch S (2011) Accumulation of γ- rather than α-tocopherol alters ethylene signaling gene expression in the vte4 mutant of Arabidopsis thaliana. Plant Cell Physiol 52:1389–1400

    Article  PubMed  CAS  Google Scholar 

  • Cochard H, Froux F, Mayr S, Coutand C (2004) Xylem wall collapse in water-stressed pine needles. Plant Physiol 134:401–408

    Article  PubMed  CAS  Google Scholar 

  • Conn PF, Lambert C, Land EJ, Schalch W, Truscott TG (1992) Carotene–oxygen radical interactions. Free Radic Res Commun 16:401–408

    Article  PubMed  CAS  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species. Production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  PubMed  Google Scholar 

  • Cruz de Carvalho MH, Contour-Ansel D (2008) (h)GR, beans and drought stress. Plant Signal Behav 3:834–835

    Article  PubMed  Google Scholar 

  • Dai S, Schwendtmayer C, Schürmann P, Ramaswamy S, Eklund H (2000) Redox signaling in chloroplasts: cleavage of disulfides by an iron-sulfur cluster. Science 287:655–658

    Article  PubMed  CAS  Google Scholar 

  • Dalton DA, Baird LM, Langeberg L, Taugher CY, Anyan WR, Vance CP, Sarath G (1993) Subcellular localization of oxygen defense enzymes in soybean (Glycine max [L.] Merr.) root nodules. Plant Physiol 102:481–489

    PubMed  CAS  Google Scholar 

  • Davison PA, Hunter CN, Horton P (2002) Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Gilmore AM, Adams WW III (1996) In vivo functions of carotenoids in higher plants. FASEB J 10:403–412

    PubMed  CAS  Google Scholar 

  • Dietz KJ, Horling F, König J, Baier M (2002) The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J Exp Bot 53:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57:1697–1709

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277:30859–30869

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60:1207–1218

    Article  PubMed  CAS  Google Scholar 

  • Duan ZQ, Bai L, Zhao ZG, Zhang GP, Cheng FM, Jiang LX, Chen KM (2009) Drought-stimulated activity of plasma membrane nicotinamide adenine dinucleotide phosphate oxidase and its catalytic properties in rice. J Integr Plant Biol 51:1104–1115

    Article  PubMed  CAS  Google Scholar 

  • Esteban R, Becerril JM, García-Plazaola JI (2009) Lutein epoxide cycle, more than just a forest tale. Plant Signal Behav 4:342–344

    Article  PubMed  CAS  Google Scholar 

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernández JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613

    Article  PubMed  CAS  Google Scholar 

  • Feierabend J (2005) Catalases in plants: molecular and functional properties and role in stress defence. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 101–140

    Google Scholar 

  • Feng Y, Shong N, Rouhier N, Hase T, Kusunoki N, Jacquot JP, Jin C, Xia B (2006) Structural insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site. Biochemistry 45:7998–8008

    Article  PubMed  CAS  Google Scholar 

  • Fonseca S, Chico JM, Solano R (2009) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Fukuzawa K, Gebicki JM (1983) Oxidation of α-tocopherol in micelles and liposomes by the hydroxyl, perhydroxyl and superoxide free radicals. Arch Biochem Biophys 226:242–251

    Article  PubMed  CAS  Google Scholar 

  • Fulda S, Mikkat S, Stegmann H, Horn R (2011) Physiology and proteomics of drought stress acclimation in sunflower (Helianthus annuus L.). Plant Biol 13:632–642

    Article  PubMed  CAS  Google Scholar 

  • Galle A, Csiszar J, Secenji M, Guoth A, Cseuz L, Tari I (2009) Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: Response to water deficit. J Plant Physiol 166:1878–1891

    Article  PubMed  CAS  Google Scholar 

  • George S, Venkataraman G, Parida A (2010) A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol 167:311–318

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Giraud E, Ho LH, Clifton R, Carroll A, Estavillo G, Tan YF, Howell KA, Ivanova A, Pogson BJ, Millar AH, Whelan J (2008) The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol 147:595–610

    Article  PubMed  CAS  Google Scholar 

  • Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol 26:139–145

    Article  PubMed  CAS  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloch KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Article  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    PubMed  CAS  Google Scholar 

  • HaslekÃ¥s C, Grini PE, Nordgard SH, Thorstensen T, Viken MK, Nygaard V, Aalen RB (2003) ABI3 mediates expression of the peroxiredoxin antioxidant AtPER1 gene and induction by oxidative stress. Plant Mol Biol 53:313–326

    Article  PubMed  Google Scholar 

  • Havaux M, Kloppstech K (2001) The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213:953–966

    Article  CAS  Google Scholar 

  • Herbette S, Lenne C, Leblanc N, Julien JL, Drevet JR, Roeckel-Drevet P (2002) Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur J Biochem 269:2414–2420

    Article  PubMed  CAS  Google Scholar 

  • Hernández JA, Ferrer MA, Jiménez A, Barceló AR, Sevilla F (2001) Antioxidant systems and O .−2 H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  PubMed  Google Scholar 

  • Hernández I, Alegre L, Munné-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311

    Article  PubMed  Google Scholar 

  • Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132

    Article  PubMed  CAS  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrante. Trends Plant Sci 5:263–267

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Yoshimura K, Tamoi M, Tamoi M, Takeda T, Shigeoka S (1997) Alternative mRNA splicing of 3’-terminal exons generates ascorbate peroxidase isoenzymes in spinach (Spinacia oleracea) chloroplasts. Biochem J 328:795–800

    PubMed  CAS  Google Scholar 

  • Ito H, Iwabuchi M, Ogawa K (2003) The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol 44:655–660

    Article  PubMed  CAS  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    Article  PubMed  CAS  Google Scholar 

  • Jha B, Sharma A, Mishra A (2011) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep 38:4823–4832

    Article  PubMed  CAS  Google Scholar 

  • Ji W, Zhu Y, Li Y, Yang LA, Zhao XW, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32:1173–1179

    Article  PubMed  CAS  Google Scholar 

  • Jiménez A, Hernández A, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  Google Scholar 

  • Johnson MP, Havaux M, Triantaphylidés C (2007) Elevated zeaxanthin bound to oligomeric LHCII enhances the resistance of Arabidopsis to photooxidative stress by a lipid-protective, antioxidant mechanism. J Biol Chem 282:22605–22618

    Article  PubMed  CAS  Google Scholar 

  • Jubany-Marí T, Munné-Bosch S, Alegre L (2010) Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate. Plant Physiol Biochem 48:351–458

    Article  PubMed  CAS  Google Scholar 

  • Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol 49:1272–1282

    Article  PubMed  CAS  Google Scholar 

  • Keilin D, Hartreef EF (1950) Reaction of methaemoglobin with hydrogen peroxide. Nature 166:513–514

    Article  PubMed  CAS  Google Scholar 

  • Keilin D, Hartreef EF (1955) Catalase, peroxidase and metmyoglobin as catalysts of coupled peroxidatic reactions. Biochem J 60:310–325

    PubMed  CAS  Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266

    PubMed  CAS  Google Scholar 

  • Klotz MG, Loewen PC (2003) The molecular evolution of catalatic hydroperoxidases: evidence for multiple lateral transfer of genes between prokaryota and from bacteria into eukaryota. Mol Biol Evol 20:1098–1112

    Article  PubMed  CAS  Google Scholar 

  • Lee KO, Lee JR, Yoo JY, Jang HH, Moon JC, Jung BG, Chi YH, Park SK, Lee SS, Lim CO, Yun DJ, Cho MJ, Lee SY (2002) GSH-dependent peroxidase activity of the rice (Oryza sativa) glutaredoxin, a thioltransferase. Biochem Biophys Res Commun 296:1152–1156

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1628–1638

    Article  CAS  Google Scholar 

  • Lewis DFV (2002) Oxidative stress: the role of cytochromes P450 in oxygen activation. J Chem Technol Biotechnol 77:1095–1100

    Article  CAS  Google Scholar 

  • Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217:658–667

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Hua X, Guo J, Qi D, Wang L, Liu Z, Jin Z, Chen S, Liu G (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol Lett 30:1275–1280

    Article  PubMed  CAS  Google Scholar 

  • Liu HP, Liu J, Zhang YY, Liu YL (2004) Relationship between ATPase activity and conjugated polyamines in mitochondrial membrane from wheat seedling roots under osmotic stress. J Environ Sci 16:712–716

    CAS  Google Scholar 

  • Llorente F, López-Cobollo RM, Catalá R, Martínez-Zapater JM, Salinas J (2002) A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J 32:13–24

    Article  PubMed  CAS  Google Scholar 

  • López-Carbonell M, Munné-Bosch S, Alegre L (2006) The ascorbate-deficient vtc-1 Arabidopsis mutant shows altered ABA accumulation in leaves and chloroplasts. J Plant Growth Regul 25:137–144

    Article  CAS  Google Scholar 

  • Maiorino M, Ursini F, Bosello V, Toppo S, Tosatto SC, Mauri P, Becker K, Roveri A, Bulato C, Benazzi L, De Palma A, Flohé L (2007) The thioredoxin specificity of Drosophila GPx: a paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases. J Mol Biol 365:1033–1046

    Article  PubMed  CAS  Google Scholar 

  • Mano S, Yamaguchi K, Hayashi M, Nishimura M (1997) Stromal and thylakoid-bound ascorbate peroxidases are produced by alternative splicing in pumpkin. FEBS Lett 413:21–22

    Article  PubMed  CAS  Google Scholar 

  • Marjamaa K, Kukkola EM, Fagerstedt KV (2009) The role of xylem class III peroxidases in lignification. J Exp Bot 60:367–376

    Article  PubMed  CAS  Google Scholar 

  • Markesbery WR, Lovell MA (2006) DNA oxidation in Alzheimer’s disease. Antiox Redox Signal 8:2039–2045

    Article  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymatic function for erythrocuperin (hemecuperin). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Meyer AJ (2008) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165:1390–1403

    Article  PubMed  CAS  Google Scholar 

  • Meyer AJ, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86:435–457

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766

    Article  PubMed  CAS  Google Scholar 

  • Michelet L, Zaffagnini M, Vanacker H, Le Maréchal P, Marchand C, Schroda M, Lemaire SD, Decottignies P (2008) In vivo targets of S-thiolation in Chlamydomonas reinhardtii. J Biol Chem 283:21571–21578

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Whelan J, Soole KL, Day DA (2011) Organization and regulation of mitochondrial respiration in plants. Annu Rev Plant Biol 62:79–104

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Poulos TL (2005) Ascorbate peroxidase. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 87–100

    Google Scholar 

  • Mohr S, Hallak H, de Boitte A, Lapetina EG, Brüne B (1999) Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 274:9427–94230

    Article  PubMed  CAS  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Møller SG, McPherson MJ (1998) Developmental expression and biochemical analysis of the Arabidopsis atao1 gene encoding an H2O2-generating diamine oxidase. Plant J 13:781–791

    Article  PubMed  Google Scholar 

  • Montrichard F, Alkhalfioui F, Yano H, Vensel WH, Hurkman WJ, Buchanan BB (2009) Thioredoxin targets in plants: the first 30 years. J Proteomics 72:452–474

    Article  PubMed  CAS  Google Scholar 

  • Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724

    Article  PubMed  CAS  Google Scholar 

  • Mowla SB, Thomson JA, Farrant JM, Mundree SG (2002) A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker. Planta 215:716–726

    Article  PubMed  CAS  Google Scholar 

  • Munemasa S, Mori IC, Murata Y (2011) Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. Plant Signal Behav 6:939–941

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S, Alegre L (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210:925–931

    Article  PubMed  Google Scholar 

  • Munné-Bosch S, Alegre L (2003) Drought-induced changes in the redox state of α-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiol 131:1816–1825

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S, Weiler EW, Alegre L, Müller M, Düchting P, Falk J (2007) α-Tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants. Planta 225:681–691

    Article  PubMed  CAS  Google Scholar 

  • Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379

    Article  PubMed  CAS  Google Scholar 

  • Nicholls P, Fita I, Loewen P (2001) Enzymology and structure of catalases. Adv Inorg Chem 51:51–106

    Article  CAS  Google Scholar 

  • Nishikimi M, Yamada H, Yagi K (1980) Oxidation by superoxide of tocopherols dispersed in aqueous media with deoxycholate. Biochim Biophys Acta 627:101–108

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Paco L, Galarneau A, Drone J, Fajula F, Bailly C, Pulvin S, Thomas D (2009) Catalase-like activity of bovine met-hemoglobin: interaction with the pseudo-catalytic peroxidation of anthracene traces in aqueous medium. Biotechnol J 4:1460–1470

    Article  PubMed  CAS  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951

    Article  PubMed  CAS  Google Scholar 

  • Pastori GM, Trippi VS (1992) Oxidative stress induces high-rate if glutathione reductase synthesis in a drought-resistant maize strain. Plant Cell Physiol 33:957–961

    CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E (1993) Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu/Zn superoxide dismutases. Theor Appl Genet 85:568–576

    Article  CAS  Google Scholar 

  • Pogson BJ, Rissler HM (2000) Genetic manipulation of carotenoid biosynthesis and photoprotection. Philos Trans R Soc London 355:1395–1403

    Article  CAS  Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462

    Article  PubMed  CAS  Google Scholar 

  • Ramel F, Birtic S, Cuiné S, Triantaphylidès C, Ravanat JL, Havaux M (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158:1267–1278

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (1987) The evolution of vascular land plants in relation to supracellular transport processes. Adv Bot Res 87:1287–1299

    Google Scholar 

  • Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J 276:4666–4681

    Article  PubMed  CAS  Google Scholar 

  • Rey P, Cuiné S, Eymery F, Garin J, Court M, Jacquot JP, Rouhier N, Broin M (2005) Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses. Plant J 41:31–42

    Article  PubMed  CAS  Google Scholar 

  • Rey P, Pruvot G, Becuwe N, Eymery F, Rumeau D, Peltier G (1998) A novel thioredoxin-like protein located in the chloroplast is induced by water deficit in Solanum tuberosum L. plants. Plant J 13:97–107

    Article  PubMed  CAS  Google Scholar 

  • Rinalducci S, Murgiano L, Zolla L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59:3781–3801

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inzé D, Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32:329–342

    Article  PubMed  CAS  Google Scholar 

  • Roldán-Arjona T, Ariza RR (2009) Repair and tolerance of oxidative DNA damage in plants. Mutat Res 681:169–179

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gerard J, de Faÿ E, Meyer Y, Jacquot JP (2001) Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant Physiol 127:1299–1309

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins anf glutathionylation. Annu Rev Plant Biol 59:143–166

    Article  PubMed  CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    Article  PubMed  CAS  Google Scholar 

  • Sandalio LM, Palma JM, del Río LA (1987) Localization of manganese superoxide-dismutase in peroxisomes isolated from Pisum sativum (L). Plant Sci 51:1–8

    Article  CAS  Google Scholar 

  • Sattler SE, Mène-Saffrané L, Farmer EE, Krischke M, Mueller MJ, DellaPenna D (2006) Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants. Plant Cell 18:3706–3720

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T, Takeda T, Yamauchi H, Sano S, Tomizawa KI, Yokota A, Shigeoka S (1998) Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett 428:47–51

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 53–86

    Chapter  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    Article  PubMed  CAS  Google Scholar 

  • Spoel SH, Loake GJ (2011) Redox-based protein modifications: the missing link in plant immune signaling. Curr Opin Plant Biol 14:358–364

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258

    Article  PubMed  CAS  Google Scholar 

  • Stengel A, Benz JP, Soll J, Bölter B (2010) Redox-regulation of protein import into chloroplasts and mitochondria: similarities and differences. Plant Signal Behav 5:105–109

    Article  PubMed  CAS  Google Scholar 

  • Suja G, Gayatri V, Ajay P (2010) A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol 167:311–318

    Article  CAS  Google Scholar 

  • Sun W, Kadima TA, Pickard MA, Dunford HB (1994) Catalase activity of chloroperoxidase and its interaction with peroxidase activity. Biochem Cell Biol 72:321–331

    Article  PubMed  CAS  Google Scholar 

  • Sztajer H, Gamain B, Aumann KD, Slomianny C, Becker K, Brigelius-Flohé R, Flohé L (2001) The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J Biol Chem 276:7397–7403

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JD (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J 14:365–370

    Article  PubMed  CAS  Google Scholar 

  • Torres-Franklin ML, Contour-Ansel D, Zuily-Fodil Y, Pham-Thi AT (2007) Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress. J Plant Physiol 165:514–521

    Article  PubMed  CAS  Google Scholar 

  • Toumi I, Moschou PN, Paschalidis KA, Bouamama B, Ben Salem-Fnayou A, Ghorbel AW, Mliki A, Roubelakis-Angelakis KA (2010) Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. J Plant Physiol 167:519–525

    Article  PubMed  CAS  Google Scholar 

  • Van Camp W, Capiau K, Van Montagu M, Inzé D, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 112:1703–1714

    Article  PubMed  Google Scholar 

  • Van Camp W, Willekens H, Bowler C, Van Montagu M, Inze D (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Bio/Technology 12:165–168

    Article  Google Scholar 

  • Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821

    Article  PubMed  CAS  Google Scholar 

  • Vanderauwera S, Suzuki N, Miller G, van de Cotte B, Morsa S, Ravanat JL, Hegie A, Triantaphylidès C, Shulaev V, Van Montagu MC, Van Breusegem F, Mittler R (2011) Extranuclear protection of chromosomal DNA from oxidative stress. Proc Natl Acad Sci USA 108:1711–1716

    Article  PubMed  CAS  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  PubMed  CAS  Google Scholar 

  • Vieira Dos Santos C, Cuiné S, Rouhier N, Rey P (2005) The Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress. Plant Physiol 138:909–922

    Article  PubMed  CAS  Google Scholar 

  • Votyakova TV, Wallace HM, Dunbar B, Wilson SB (1999) The covalent attachment of polyamines to proteins in plant mitochondria. Eur J Biochem 260:250–257

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heatshock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergi Munné-Bosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hernández, I., Cela, J., Alegre, L., Munné-Bosch, S. (2012). Antioxidant Defenses Against Drought Stress. In: Aroca, R. (eds) Plant Responses to Drought Stress. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32653-0_9

Download citation

Publish with us

Policies and ethics