Skip to main content
Log in

Effects of bacterial single inoculation and co-inoculation on growth and phytohormone production of sunflower seedlings under water stress

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The purpose of the study was to measure shoot and root dry matter (DM) and production of auxins, salicylic acid, abscisic acid, and jasmonic acid in sunflower (Helianthus annuus L.) seedlings cultivated under water stress and singly inoculated or co-inoculated with Achromobacter xylosoxidans (SF2) and Bacillus pumilus (SF3 and SF4) bacterial strains. Shoot DM was higher in non-stressed seedlings than in stressed seedlings for all inoculation treatments. Water stress resulted in decreased relative water content and reduction of shoot DM. Root DM was higher in stressed seedlings than in non-stressed seedlings. Salicylic acid was the most abundant phytohormone in shoots of stressed, singly inoculated and co-inoculated seedlings. High salicylic acid content in stressed seedlings suggests that this hormone plays a key role in abiotic stress. Abscisic acid was higher in stressed and co-inoculated seedlings than in non-stressed seedlings but was lower than that of salicylic acid. Auxin profile was similar to that of abscisic acid in co-inoculated seedlings. Shoot jasmonic acid content was increased in stressed seedlings co-inoculated with SF2/SF3 or SF2/SF4. Shoot hormonal profiles were different from those of root, suggesting a differential effect of bacterial inoculation on these plant organs. Our findings will be useful in future strategies to mitigate drought effects on crop plants through bacterial inoculation treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

DM:

Dry matter

ET:

Ethylene

IAA:

Indole-3-acetic acid

JA:

Jasmonic acid

RWC:

Relative water content

SA:

Salicylic acid

References

  • Agele SO (2003) Sunflower responses to weather variations in rainy and dry cropping seasons in a tropical rain forest zone. Int J Biotronics 32:17–33

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting characteristics. Microbiol Res 163:173–181

    Article  PubMed  CAS  Google Scholar 

  • Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48:542–547

    Article  PubMed  CAS  Google Scholar 

  • Arbona V, Gómez-Cadenas A (2008) Hormonal modulation of citrus responses to flooding. J Plant Growth Regul 27:241–250

    Article  CAS  Google Scholar 

  • Arbona V, Argamasilla R, Gómez-Cadenas A (2010) Common and divergent physiological, hormonal and metabolic response of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. J Plant Physiol 167:1342–1350

    Article  PubMed  CAS  Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164:685–694

    Article  PubMed  CAS  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with plant growth promoting Rhizobacteria containing ACC-deaminase partially eliminates the effects of water stress on growth, yield and ripening of Pisum sativum L. Pedosphere 18:611–620

    Article  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: some recent advances. Biotechnol Adv 28:169–183

    Article  PubMed  CAS  Google Scholar 

  • Bandurska H, Stroinski A (2005) The effect of salicylic acid on barely response to water deficit. Act Physiol Plant 27:376–386

    Google Scholar 

  • Bano A, Ullah F, Nosheen A (2012) Role of abscisic acid and drought stress on the activities of antioxidant enzymes in wheat. Plant Soil Environ 58:181–185

    CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423

    Article  PubMed  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotech 74:874–880

    Article  CAS  Google Scholar 

  • Casanovas E, Barassi C, Sueldo R (2002) Azospirillum inoculation mitigates waters stress effect in maize seedlings. Cereal Res Comm 30:343–350

    Google Scholar 

  • Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    Article  Google Scholar 

  • Catinot J, Buchala A, Abou-Mansour E, Métraux JP (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582:473–478

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Sig Behav 4:493–496

    Article  CAS  Google Scholar 

  • Chini A, Grant JJ, Seki M, Shinozaki K, Loake G (2004) Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS 1 and ABI1. The Plant J 38:810–822

    Article  CAS  Google Scholar 

  • Cohen A, Bottini R, Piccoli PN (2008) Azospirllum brasilense sp. 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul 54:97–103

    Article  CAS  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    Article  CAS  Google Scholar 

  • Creelman RA, Mullet E (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114–4119

    Article  PubMed  CAS  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • De Ollas C, Hernando B, Arbona V, Gómez-Cadenas A (2012) Jasmonic acid transient accumulation is needed for abscísico acid increase in citrus roots under drought stress conditions. Physiol Plant. doi:10.1111/j.1399-3054.2012.01659.x

    PubMed  Google Scholar 

  • Dempsey DA, Vloth AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. American Soc of Plant Biol. doi:10.1199/tab.0156 The Arabidopsis book

    Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crops salinity stress. J Exp Bot 63:3415–3428

    Article  PubMed  CAS  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    Article  CAS  Google Scholar 

  • Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A (2005) Simultaneous determinación of multiple phytohormones in plants extracts by liquid chromatography-electrospray tandem mass spectrometry. J Agric Food Chem 53:8437–8442

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo MVB, Burity HA, Martínez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. App Soil Ecol 40:182–188

    Article  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotech 76:1145–1152

    Article  CAS  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2010) Native bacteria from sunflower roots produce salicylic acid and improve seedling growth under water deficit stress. Curr Microbiol 61:485–493

    Article  PubMed  CAS  Google Scholar 

  • Fragniere C, Serrano M, Abou-Mansour E, Metroux JP, L′Haridon F (2011) Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett 585:1847–1852

    Article  PubMed  CAS  Google Scholar 

  • Garcion C, Lohmann A, Lamodiere E, Catinot J, Buchala A, Doermann P, Metroux JP (2008) Characterization and biological function of the isochorismate synthase2 gene of Arabidopsis. Plant Physiol 147:1279–1287

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 4:109–117

    Article  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Hamayun M, Khan SA, Shinawari ZK, Khan AL, Ahmad N, Lee I (2010) Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean. Pak J Bot 42:977–986

    CAS  Google Scholar 

  • Hao JH, Wang XL, Dong CJ, Zhang ZG, Shang QM (2011) Salicylic acid induces stomatal closure by modulating endogenous hormone levels in cucumber cotyledons. Russ J Plant Physiol 58:906–913

    Article  CAS  Google Scholar 

  • Harb A, Krishnan A, Ambavaram MM, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271

    Article  PubMed  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300

    Article  Google Scholar 

  • Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162

    Article  PubMed  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2008) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agr Biol 11:100–105

    Google Scholar 

  • Janda T, Szalai G, Tari I, Páldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180

    Article  CAS  Google Scholar 

  • Jiang F, Chen L, Belimov AA, Shaposhnikov AI, Gong F, Meng X, Hartung W, Jeschke DW, Davies W, Dodd IC (2012) Multiple impacts of the plant growth-promoting Rhizobacterium Variovorax paradoxus 5C–2 on nutrient and ABA relations of Pisum sativum. J of Exp Bot 63:6421–6430

    Article  CAS  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    Article  PubMed  CAS  Google Scholar 

  • Klambt HD (1962) Conversion in plants of benzoic acid to salicylic acid and its b-D-glucoside. Nature 196:491

    Article  Google Scholar 

  • Lee HI, Leon J, Raskin I (1995) Biosynthesis and metabolism of salicylic acid. Proc Natl Acad Sci USA 92:4076–4079

    Article  PubMed  CAS  Google Scholar 

  • Lu GH, Ren DL, Wang XQ, Wu JK, Zhao MS (2010) Evaluation on drought tolerance of maize hybrids in China. J. Maize Sci 3:20–24

    Google Scholar 

  • Mahouachi J, Arbona V, Gómez-Cadenas A (2007) Hormonal changes in papaya seedlings subjected to progressive water stress and re-watering. Plant Growth Regul 53:43–51

    Article  CAS  Google Scholar 

  • Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM its ability to modulate plant growth. Eur J Soil Biol 45:73–80

    Article  CAS  Google Scholar 

  • Marasco EK, Schmidt-Dannert C (2008) Identification of bacterial carotenoid cleavage dioxygenase homologues that cleave the interphenyl α-β double bond of stilbene derivatives via a monooxygenase reaction. ChemBioChem 9:1450–1461

    Article  PubMed  CAS  Google Scholar 

  • Marulanda A, Barea JM, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    Article  CAS  Google Scholar 

  • Molina A, Bueno P, Marín MC, Rodríguez-Rosales MP, Belver A, Venema K (2002) Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytol 156:409–415

    Article  CAS  Google Scholar 

  • Munne-Bosch S, Peñuelas J (2003) Photo and antioxidative protection during summer leaf senescence in Pistascea lentiscus L. grown under mediterranean field conditions. Annu Bot 92:385–391

    Article  CAS  Google Scholar 

  • Mwale SS, Hamusimbi C, Mwansa V (2003) Germination, emergence and growth of sunflower (Helianthus annuus) in response to osmotic seed priming. Seed Sci Technol 31:199–206

    Google Scholar 

  • Nemeth M, Janda T, Horvath E, Paldi E, Szalai G (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci 162:569–574

    Article  CAS  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña Cortés H, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41:149–158

    Article  CAS  Google Scholar 

  • Pérez-Alfocea F, Edmond Ghanem M, Gómez-Cadenas A, Dodd I (2011) Omics of root-to-shoot signaling under salt stress and water deficit. OMICS A J Integrat Biol 15:893–901

    Article  Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassan FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. App Microbiol Biotechnol 75:1143–1150

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  PubMed  CAS  Google Scholar 

  • Probanza A, Lucas JA, Acero N, Gutierrez-Mañero FS (1996) The influence of native Rhizobacteria on European alder [Almus glutinosa (L). (Gaerth)] growth. I. Characterization of growth promoting and nitrogen accumulation of inoculated alfalfa. Plant Soil 164:213–219

    Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms. The role of salicylic acid. Plant J 16:603–614

    Article  Google Scholar 

  • Ribnicky DM, Shulaev V, Raskin I (1998) Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol 118:565–572

    Article  PubMed  CAS  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Experim Bot 26:3321–3338

    Article  Google Scholar 

  • Shi Q, Zhu Z (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot 63:317–326

    Article  CAS  Google Scholar 

  • Shibasaki K, Uemura M, Tsurumi S, Rahman A (2009) Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21:3823–3838

    Article  PubMed  CAS  Google Scholar 

  • Shilev S, Sancho ED, Benlloch-González M (2012) Rhizospheric bacteria alleviate salt-produced stress in sunflower. J Environ Manag 95:37–41

    Article  Google Scholar 

  • Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23

    Article  CAS  Google Scholar 

  • Tahir MHN, Imran M, Hussain MK (2002) Evaluation of sunflower (Helianthus annuus L.) inbred lines for drought tolerance. Int J Agr Biol 4:398–400

    Google Scholar 

  • Teulat B, Zoumarou-Wallis N, Rotter B, Ben Salim M, Bahri H, This D (2003) QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor and Appl Genet 108:181–188

    Article  CAS  Google Scholar 

  • Turhan H, Baser I (2004) Callus induction from mature embryo of winter wheat (Triticum aestivum L.). Asian J Plant Sci 3:17–19

    Article  Google Scholar 

  • Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interac 20:955–965

    Article  CAS  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol 72:165–221

    Article  PubMed  CAS  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing benefical microoganisms into the rizosphere. In: O′Gara F, Dowling D, Boesten N (eds) Molecular Ecology of Rhizosphere Microorganisms. Biotech and Release of GMOs. New York, pp 1-18

  • Zhang L, Gao M, Hu J, Zhang X, Wang K, Ashraf M (2012) Modulation role of abscisic acid (ABA) on growth, water relations and Glycinebetaine metabolism in two maize (Zea mays L.) cultivars under drought stress. Int J Mol Sci 13:3189–3202

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the technical support of Msc. O. Masciarelli for phytohormone measurements by LC–MS-MS. This study was supported by grants from SECYT-UNRC and ANPCYT to G.A. and S.A., and fellowships from CONICET to P·C. and from ANPCYT to M.E. The authors thank Dr. S. Anderson for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Castillo.

Additional information

Communicated by J. Zwiazek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo, P., Escalante, M., Gallardo, M. et al. Effects of bacterial single inoculation and co-inoculation on growth and phytohormone production of sunflower seedlings under water stress. Acta Physiol Plant 35, 2299–2309 (2013). https://doi.org/10.1007/s11738-013-1267-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1267-0

Keywords

Navigation