Skip to main content

Molecular Approaches for Combating Multiple Abiotic Stresses in Crops of Arid and Semi-arid Region

  • Chapter
  • First Online:
Molecular Approaches in Plant Biology and Environmental Challenges

Abstract

Under constantly changing environmental conditions; crop plants are exposed to abiotic stresses, which lead to affect growth and development including the productivity of agricultural crops. Understanding the mechanism of stress at molecular level and improving crop varieties for tolerance to abiotic stress is a challenging task. In Arid and semi-arid regions, the agricultural crops are challenged to multiple abiotic stresses (draught, salinity and heat), simultaneously. The conditions like low annual rainfall, soil salinity, and variable high temperature conditions lead to low agricultural productivity. Exposure to the abiotic stresses induces a complex signaling pathway in different plant species and resulting into variable molecular, biochemical and physiological changes to acclimatize under stress conditions including multiple abiotic stresses simultaneously. In different sections of this chapter, the metabolic changes in plants in response to draught, salinity, and temperature stress is described followed by an insight into plant signaling pathways and possible biochemical, physiological and molecular approaches for alleviating the negative effects of these stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi A, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813

    PubMed  PubMed Central  Google Scholar 

  • Ahmed IM, Cao F, Zhang M, Chen X, Zhang G, Wu F (2013) Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PLoS ONE 8:e77869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  CAS  PubMed  Google Scholar 

  • Akpınar BA, Lucas SJ, Budak H (2013) Genomics approaches for crop improvement against abiotic stress. Sci World J

    Google Scholar 

  • Allardyce JA, Rookes JE, Hussain HI, Cahill DM (2013) Transcriptional profiling of Zea mays roots reveals roles for jasmonic acid and terpenoids in resistance against Phytophthora cinnamomi. Funct Integr Genomics 13:217–228

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Baisakh N, Subudhi PK, Varadwaj P (2008) Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct Integr Genomics 8:287–300

    Article  CAS  PubMed  Google Scholar 

  • Bajaj D, Srivastava R, Nath M, Tripathi S, Bharadwaj C, Upadhyaya HD, Tyagi AK, Parida SK (2016) EcoTILLING-based association mapping efficiently delineates functionally relevant natural allelic variants of candidate genes governing agronomic traits in chickpea. Front Plant Sci 7:450

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya A (2018) Abiotic stress and plant physiology: Vol. 01: metabolic activities. New India Publishing Agency, India

    Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang H-S, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Yao X, Cai K, Chen J (2011) Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res 142:67–76

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Hao L, Parry MA, Phillips AL, Hu YG (2014) Progress in TILLING as a tool for functional genomics and improvement of crops. J Integr Plant Biol 56:425–443

    Article  PubMed  Google Scholar 

  • Chen G, Liu C, Gao Z, Zhang Y, Jiang H, Zhu L, Ren D, Yu L, Xu G, Qian Q (2017) OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice. Front Plant Sci 8:1885

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng CK, Au CH, Wilke SK, Stajich JE, Zolan ME, Pukkila PJ, Kwan HS (2013) 5′-Serial analysis of gene expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea. BMC Genom 14:195

    Article  CAS  Google Scholar 

  • Choudhary SP, Yu J-Q, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594–605

    Article  CAS  PubMed  Google Scholar 

  • Creswell R, Martin FW (1998) Dry land farming: crops & techniques for arid regions. ECHO technical note, Fort Myers, Fl, USA

    Google Scholar 

  • Cseri A, Cserháti M, Von Korff M, Nagy B, Horváth GV, Palágyi A, Pauk J, Dudits D, Törjék O (2011) Allele mining and haplotype discovery in barley candidate genes for drought tolerance. Euphytica 181:341

    Article  Google Scholar 

  • De Lorenzo L, Merchan F, Laporte P, Thompson R, Clarke J, Sousa C, Crespi M (2009) A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress. Plant Cell 21:668–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • dos Reis SP, Lima AM, de Souza CRB (2012) Recent molecular advances on downstream plant responses to abiotic stress. Int J Mol Sci 13:8628–8647

    Article  PubMed  PubMed Central  Google Scholar 

  • Ergen NZ, Budak H (2009) Sequencing over 13000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant, Cell Environ 32:220–236

    Article  CAS  Google Scholar 

  • FAO (2009) Declaration of the world summit on food security, 16–18 Nov 2009, Rome

    Google Scholar 

  • Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58:9–17

    Article  CAS  Google Scholar 

  • Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K, Pardo JM, Brini F (2014) A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Rep 33:277–288

    Article  CAS  PubMed  Google Scholar 

  • Flowers T, Yeo A (1995) Breeding for salinity resistance in crop plants: where next? Funct Plant Biol 22:875–884

    Article  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF III (2012) Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 9:805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Zhao Y (2013) Epigenetic suppression of T-DNA insertion mutants in Arabidopsis. Mol Plant 6:539–545

    Article  CAS  PubMed  Google Scholar 

  • Gul A, Ahad A, Akhtar S, Ahmad Z, Rashid B, Husnain T (2016) Microarray: gateway to unravel the mystery of abiotic stresses in plants. Biotechnol Lett 38:527–543

    Article  CAS  PubMed  Google Scholar 

  • Hamilton JP, Robin Buell C (2012) Advances in plant genome sequencing. Plant J 70:177–190

    Article  CAS  PubMed  Google Scholar 

  • Harris D, Tripathi R and Joshi A (2002) On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. Direct seeding: research strategies and opportunities. International Research Institute, Manila, Philippines, pp 231–240

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signaling Behav 7:1456–1466

    Article  CAS  Google Scholar 

  • Hussain M, Malik M, Farooq M, Ashraf M, Cheema M (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194:193–199

    Article  CAS  Google Scholar 

  • (IPCC) IPoCC (2007) Climate change 2007–The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • James RA, Blake C, Zwart AB, Hare RA, Rathjen AJ, Munns R (2012) Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Funct Plant Biol 39:609–618

    Article  CAS  PubMed  Google Scholar 

  • Janská A, Maršík P, Zelenková S, Ovesná J (2010) Cold stress and acclimation–what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  PubMed  CAS  Google Scholar 

  • Joshi R, Karan R, Singla-Pareek SL, Pareek A (2012) Microarray technology. In: Gupta AK, Guptha SM, Pareek A (eds) Biotechnology in medicine and agriculture: principles and practices. IK International Publishing House Pvt. Ltd., India, pp 273–296

    Google Scholar 

  • Jung K-H, An G (2013) Functional characterization of rice genes using a gene-indexed T-DNA insertional mutant population. Rice Protocols. Springer, Heidelberg, pp 57–67

    Google Scholar 

  • Kaya MD, Okçu G, Atak M, Cıkılı Y, Kolsarıcı Ö (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295

    Article  CAS  Google Scholar 

  • Khan T, Mazid M, Mohammad F (2011) A review of ascorbic acid potentialities against oxidative stress induced in plants. J Agrobiology 28:97–111

    Article  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Khatodia S, Bhatotia K, Passricha N, Khurana S, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:506

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  PubMed  Google Scholar 

  • Koyro H-W, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, Heidelberg, pp 1–28

    Google Scholar 

  • Krell A, Funck D, Plettner I, John U, Dieckmann G (2007) Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae) 1. J Phycol 43:753–762

    Article  CAS  Google Scholar 

  • Kudapa H, Ramalingam A, Nayakoti S, Chen X, Zhuang W-J, Liang X, Kahl G, Edwards D, Varshney RK (2013) Functional genomics to study stress responses in crop legumes: progress and prospects. Funct Plant Biol 40:1221–1233

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Jain M (2014) The CRISPR–Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57

    Article  PubMed  CAS  Google Scholar 

  • Kumar G, Purty RS, Sharma MP, Singla-Pareek SL, Pareek A (2009) Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. J Plant Physiol 166:507–520

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha HR, Kumar G, Verma PK, Singla-Pareek SL, Pareek A (2011) Analysis of a salinity induced BjSOS3 protein from Brassica indicate it to be structurally and functionally related to its ortholog from Arabidopsis. Plant Physiol Biochem 49:996–1004

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Yadav A, Prasad M (2011) Role of plant transcription factors in abiotic stress tolerance. Abiotic stress response in plants-physiological, biochemical and genetic perspectives, IntechOpen

    Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS ONE 7:e49522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee LS, Till BJ, Hill H, Huynh OA, Jankowicz-Cieslak J (2014) Mutation and mutation screening. Cereal genomics. Springer, Heidelberg, pp 77–95

    Book  Google Scholar 

  • Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C (2014a) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567

    Article  CAS  PubMed  Google Scholar 

  • Li J, Sun X, Yu G, Jia C, Liu J, Pan H (2014b) Generation and analysis of expressed sequence tags (ESTs) from halophyte Atriplex canescens to explore salt-responsive related genes. Int J Mol Sci 15:11172–11189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang Y, Sun W, Zhu Y-G, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428

    Article  CAS  PubMed  Google Scholar 

  • Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N, Guevara-Garcia A, Day P, Raina R, Fedoroff NV (2003) Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol 4:R20

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Andújar C, Pluskota WE, Bassel GW, Asahina M, Pupel P, Nguyen TT, Takeda-Kamiya N, Toubiana D, Bai B, Górecki RJ (2012) Mechanisms of hormonal regulation of endosperm cap-specific gene expression in tomato seeds. Plant J 71:575–586

    Article  PubMed  CAS  Google Scholar 

  • McClung CR, Davis SJ (2010) Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing. Curr Biol 20:R1086–R1092

    Article  CAS  PubMed  Google Scholar 

  • Mehboob-ur-Rahman Rahmat Z, Gul M, Zafar Y (2016) Plant functional genomics: approaches and applications. In: Khan MS, Khan IA, Barh D (eds) Applied molecular biotechnology: the next generation of genetic engineering, 1st edn. CRC Press, Boca Raton, pp 157–186

    Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Howell T, Vasquez-Gross H, de Haro LA, Dubcovsky J, Pearce S (2018) Mapping causal mutations by exome sequencing in a wheat TILLING population: a tall mutant case study. Mol Genet Genomics 293:463–477

    Article  CAS  PubMed  Google Scholar 

  • Moreno AA, Orellana A (2011) The physiological role of the unfolded protein response in plants. Biol Res 44:75–80

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Murphy LR, Kinsey ST, Durako MJ (2003) Physiological effects of short-term salinity changes on Ruppia maritima. Aquat Bot 75:293–309

    Article  Google Scholar 

  • Nakano M, Nobuta K, Vemaraju K, Tej SS, Skogen JW, Meyers BC (2006) Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res 34:D731–D735

    Article  CAS  PubMed  Google Scholar 

  • Negrao S, Almadanim C, Pires I, McNally K, Oliveira M (2011) Use of EcoTILLING to identify natural allelic variants of rice candidate genes involved in salinity tolerance. Plant Genet Resour 9:300–304

    Article  CAS  Google Scholar 

  • Onaga G, Wydra K (2016) Advances in plant tolerance to abiotic stresses. Plant Genomics, IntechOpen

    Google Scholar 

  • Pandey R, Joshi G, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S (2014) A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum. PLoS ONE 9:e95800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723

    Article  PubMed  PubMed Central  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  • Phukan UJ, Mishra S, Timbre K, Luqman S, Shukla RK (2014) Mentha arvensis exhibit better adaptive characters in contrast to Mentha piperita when subjugated to sustained waterlogging stress. Protoplasma 251:603–614

    Article  PubMed  Google Scholar 

  • Quijano CD, Brunner S, Keller B, Gruissem W, Sautter C (2015) The environment exerts a greater influence than the transgene on the transcriptome of field-grown wheat expressing the Pm3b allele. Transgenic Res 24:87–97

    Article  CAS  PubMed  Google Scholar 

  • Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact 13:73–82

    Article  CAS  Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Rani S, Sharma MK, Kumar N (2019) Impact of salinity and zinc application on growth, physiological and yield traits in wheat. Curr Sci 00113891:116

    Google Scholar 

  • Richards CL, Rosas U, Banta J, Bhambhra N, Purugganan MD (2012) Genome-wide patterns of Arabidopsis gene expression in nature. PLoS Genet 8:e1002662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V (2014) The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant, Cell Environ 37:1059–1073

    Article  CAS  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnología Aplicada 22:1–10

    Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-León N, Arteaga-Vázquez M, Alvarez-Mejía C, Mendiola-Soto J, Durán-Figueroa N, Rodríguez-Leal D, Rodríguez-Arévalo I, García-Campayo V, García-Aguilar M, Olmedo-Monfil V (2012) Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing. J Exp Bot 63:3829–3842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saxena RK, Cui X, Thakur V, Walter B, Close TJ, Varshney RK (2011) Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea (Cajanus spp.). Funct Integr Genomics 11:651–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano R, Gaxiola R, Ríos G, Forment J, Vicente O, Ros R (2003) Salt stress proteins identified by a functional approach in yeast. Monatshefte für Chemie/Chemical Monthly 134:1445–1464

    Article  CAS  Google Scholar 

  • Sharma R, Mishra M, Gupta B, Parsania C, Singla-Pareek SL, Pareek A (2015) De novo assembly and characterization of stress transcriptome in a salinity-tolerant variety CS52 of Brassica juncea. PLoS ONE 10:e0126783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soussi M, Ocana A, Lluch C (1998) Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). J Exp Bot 49:1329–1337

    Article  CAS  Google Scholar 

  • Strange TL, Petolino JF (2012) Targeting DNA to a previously integrated transgenic locus using zinc finger nucleases. Transgenic plants. Springer, Heidelberg, pp 391–397

    Google Scholar 

  • Su J, Shen Q, Ho T-HD, Wu R (1998) Dehydration-stress-regulated transgene expression in stably transformed rice plants. Plant Physiol 117:913–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turan S, Tripathy BC (2013) Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma 250:209–222

    Article  CAS  PubMed  Google Scholar 

  • Turan S, Cornish K, Kumar S (2012) Salinity tolerance in plants: breeding and genetic engineering. Aust J Crop Sci 6:1337

    Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. The Arabidopsis Book/American Society of Plant Biologists 8

    Google Scholar 

  • Wang Z-l, Li P-h, Fredricksen M, Gong Z-z, Kim C, Zhang C, Bohnert HJ, Zhu J-K, Bressan RA, Hasegawa PM (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci 166:609–616

    Article  CAS  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waraich EA, Ahmad R, Ashraf M (2011) Role of mineral nutrition in alleviation of drought stress in plants. Aust J Crop Sci 5:764

    CAS  Google Scholar 

  • Wei C-L, Ng P, Chiu KP, Wong CH, Ang CC, Lipovich L, Liu ET, Ruan Y (2004) 5′ Long serial analysis of gene expression (LongSAGE) and 3′ LongSAGE for transcriptome characterization and genome annotation. Proc Natl Acad Sci 101:11701–11706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winicov I (1998) New molecular approaches to improving salt tolerance in crop plants. Ann Bot 82:703–710

    Article  CAS  Google Scholar 

  • Wu M, Chen A, Wang Z, Zhang Z, Wang C, Li F, Wei P, Wang R, Luo Z, Wei C (2015) Plant microarray for gene expression profiling and their application. J Agric Technol 11:93

    CAS  Google Scholar 

  • Xiong L, Zhu JK (2001) Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol Plant 112:152–166

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell Environ 25:131–139

    Article  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu J-K (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Chen Z-Z, Zhou X-F, Yin H-B, Li X, Xin X-F, Hong X-H, Zhu J-K, Gong Z (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    Article  CAS  PubMed  Google Scholar 

  • Zargar SM, Mahajan R, Bhat JA, Nazir M, Deshmukh R (2019) Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech 9:73

    Google Scholar 

  • Zhang B, Yang X, Yang C, Li M, Guo Y (2016) Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in petunia. Sci Rep 6:20315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V. et al. (2019). Molecular Approaches for Combating Multiple Abiotic Stresses in Crops of Arid and Semi-arid Region. In: Singh, S., Upadhyay, S., Pandey, A., Kumar, S. (eds) Molecular Approaches in Plant Biology and Environmental Challenges. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0690-1_8

Download citation

Publish with us

Policies and ethics