Skip to main content
Log in

Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plant growth promoting endophytic bacteria Burkholderia phytofirmans PsJN was used to investigate the potential to ameliorate the effects of drought stress on growth, physiology and yield of wheat (Triticum aestivum L.) under natural field conditions. Inoculated and uninoculated (control) seeds of wheat cultivar Sahar 2006 was sown in the field. The plants were exposed to drought stress at different stages of growth (tillering stage and flowering stage) by skipping the respective irrigation. The results showed that drought stress adversely affected the physiological, biochemical and growth parameters of wheat seedlings. It decreased the CO2 assimilation, stomatal conductance, relative water content, transpiration rate and chlorophyll contents in wheat. Inoculation of wheat with PsJN significantly diluted the adverse effects of drought on relative water contents and CO2 assimilation rate thus improving the photosynthetic rate, water use efficiency and chlorophyll content over the uninoculated control. Grain yield was also decreased when plants were exposed to drought stress at the tillering and flowering stage, but inoculation resulted in better grain yield (up to 21 and 18 % higher, respectively) than the respective uninoculated control. Similarly, inoculation improved the ionic balance, antioxidant levels, and also increased the nitrogen, phosphorus, potassium and protein concentration in the grains of wheat. The results suggested that B. phytofirmans strain PsJN could be effectively used to improve the growth, physiology and quality of wheat under drought conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashraf MY, Khan AH, Azmi AR (1992) Cell membrane stability and its relation with some physiological process in wheat. Acta Agron Hung 41:183–191

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline in water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL (2013) Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol 29:789–803

    Article  CAS  PubMed  Google Scholar 

  • Chanway CP, Holl FB (1994) Growth of out planted lodepole pine seedlings one year after inoculation with plant growth promoting rhizobacteria. For Sci 40:238–246

    Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, AitBarka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Compant S, Nowak J, Coenye T, Clément C, Ait Barka E (2008) Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 32:607–626

    Article  CAS  PubMed  Google Scholar 

  • Costa JM, Loper JE (1994) Characterization of siderophore production by the biological control agent Enterobacter cloacae. Mol Plant Microbe Interact 7:440–448

    Article  CAS  Google Scholar 

  • Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2004) Will modifying plant ethylene status improve plant productivity in water limited environments? In New directions for a diverse planet, proceedings of the 4th international crop science congress, Brisbane, Australia. 26 Sept.–1 Oct. 2004. Available at www.cropscience.org.au/icsc2004/poster/1/3/4/510_doddicref.htm (verified 10 Jan. 2010). Regional Inst., Gosford, NSW, Australia

  • Fernandez O, Theocharis A, Bordiec S, Feil R, Jasquens L, Clement C, Fontaine F, Ait Barka E (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant Microbe Interact 25:496–504

    Article  CAS  PubMed  Google Scholar 

  • Fisher DB (2000) Long distance transport. In: Buchanan BB, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Biology, Rockville, pp 730–784

    Google Scholar 

  • Frommel MI, Nowak J, Lazarovits G (1991) Growth enhancement and development modifications of in vitro grown potato (Solanum tuberosum ssp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Jiping L (1998) A model for the lowering of plant ethylene concentrations by plant growth—promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Gupta NK, Gupta S, Kumar S (2001) Effect of water stress on physiological attributes and their relationship with growth and yield of wheat cultivars at different stages. J Agron Crop Sci 186:55–62

    Article  Google Scholar 

  • Jackson ML (1962) Soil chemical analysis. Prentice Hall, Inc. Englewood Cliffs, NY

  • Jambunathan N (2010) Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. In: Sunkar R (ed) Plant stress tolerance, methods in molecular biology 639. Humana press, New York, pp 291–297

    Chapter  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32:122–130

    Article  CAS  Google Scholar 

  • Kettlewell PS, Heath WL, Haigh IM (2010) Yield enhancement of droughted wheat by film antitranspirant application: rationale and evidence. Agric Sci 1:143–147

    Google Scholar 

  • Marulanda A, Barea J-M, Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mogensen VO, Jensen HE, Abdur Rab M (1985) Grain yield, yield components, drought sensitivity and water use efficiency of spring wheat subjected to water stress at various growth stages. Irrigation Sci 6:131–140

    Article  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M, Shahzad SM (2006) Variation in growth and ion uptake of maize due to inoculation with plant growth promoting rhizobacteria under salt stress. Soil Environ 25:78–84

    Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Overpeck JT, Cole JE (2006) Abrupt change in Earth’s climate system. Annu Rev Environ Resour 31:1–31

    Article  Google Scholar 

  • Patten CL, Glick BR (2002) The role of bacterial indoleacetic acid in the development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pereyra MA, Zalazar CA, Barassi CA (2006) Root phospholipids in Azospirillum inoculated wheat seedlings exposed to water stress. Plant Physiol Biochem 44:873–879

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Ryan J, Estefan G, Rashid A (2001) Soil and plant analysis laboratory manual, 2nd edn. International Center for Agriculture in Dry Areas (ICARDA), Syria

  • Sadasivam S, Manickam A (1992) Biochemical methods for agricultural sciences. Willey Eastern Limited, New Delhi

    Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30

    Article  CAS  Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209

    Article  CAS  Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV, Vandamme P, Ait Barka E, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant beneficial properties. Int J Syst Evol Microbiol 55:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  CAS  PubMed  Google Scholar 

  • Teulat B, Zoumarou-Wallis N, Rotter B, Ben Salem M, Bahri H, This D (2003) QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet 108:181–188

    Article  CAS  PubMed  Google Scholar 

  • Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clément C, Ait Barka E (2012) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol Plant Microbe Interact 25:241–249

    Article  CAS  PubMed  Google Scholar 

  • Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14

    Article  CAS  Google Scholar 

  • Venkateswarulu B, Shanker AK (2009) Climate change and agriculture: adaptation and mitigation strategies. Indian J Agron 54:226–230

    Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Vivas A, Marulanda A, Ruiz-Lozano JM, Barea JM, Azcon R (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant response to PEG-induced drought stress. Mycorriza 13:249–256

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Warren GF (1998) Spectacular increases in crop yields in the twentieth century. Weed Technol 12:752–760

    Google Scholar 

  • Watanabe I, Barraquio WL, Guzman MR (1979) Nitrogen-fixing (acetylene reduction) activity and population of aerobic heterotrophic nitrogen-fixing bacteria associated with wetland rice. Appl Environ Microbiol 37:813–815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf B (1982) The comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Commun Soil Sci Plant Anal 13:1035–1059

    Article  CAS  Google Scholar 

  • Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420

    Article  CAS  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Arshad M, Shaharoona B (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    CAS  PubMed  Google Scholar 

  • Zahir ZA, Zafar-ul-Hye M, Sajjad S, Naveed M (2011) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for coinoculation with Rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biol Fertil Soils 47:457–465

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Higher Education Commission (HEC) of Pakistan for financial support for this research. We are thankful to Dr. Maria L. W. Sels for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naveed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naveed, M., Hussain, M.B., Zahir, Z.A. et al. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73, 121–131 (2014). https://doi.org/10.1007/s10725-013-9874-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9874-8

Keywords

Navigation