Skip to main content

Microbial Lipid Production from Lignocellulosic Biomass Pretreated by Effective Pretreatment

  • Chapter
  • First Online:
Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities

Abstract

To date, much attention has been paid on developing new strategies for the valorization of abundant, inexpensive, and renewable lignocellulosic biomass into liquid biofuels and chemicals. Lipids are one kind of value-added energy-rich compounds, which can produce by oleaginous microorganisms using biomass and/or biomass-hydrolysates. Recently, the conversion of lignocellulosic biomass into microbial lipid has received significant attention replacing fossil fuels. However, biomass is highly recalcitrant due to its complex structure with cellulose, hemicellulose, and lignin. Pretreatment of biomass is a critical process in the conversion due to the nature and structure of the biomass cell wall that is complex. Although green technologies for microbial production are advancing, the productivity and yield from these techniques are low. Over the past years, various biomass pretreatment techniques have been developed to disrupt the plant cell-wall structure of lignocellulosic biomass, facilitate subsequent enzymatic hydrolysis and microbial lipid fermentation, and successfully employed to improve biomass-to-lipid technology. In this chapter, the progress of pretreatment for enhancing the enzymatic digestion of lignocellulosic material is introduced. In addition, microbial lipid production from lignocellulosic biomass pretreated by effective pretreatment is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin, M. J., Sousa, L. D., Schwartz, C., He, Y. X., Sarks, C., Gunawan, C., Balan, V., & Dale, B. E. (2016). Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies. Green Chemistry, 18, 957–966.

    Article  Google Scholar 

  2. Yang, B., & Wyman, C. E. (2004). Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering, 86, 88–98.

    Article  Google Scholar 

  3. Gu, X. H., Dong, W., & He, Y. C. (2011). Detoxification of rapeseed meals by steam explosion. Journal of the American Oil Chemists, 88, 1831–1838.

    Article  Google Scholar 

  4. Qin, L., Qian, H., & He, Y. (2017). Microbial lipid production from enzymatic hydrolysate of Pecan nutshell pretreated by combined pretreatment. Applied Biochemistry and Biotechnology, 183, 1336–1350.

    Article  Google Scholar 

  5. Zhang, P., Liao, X., Ma, C., Li, Q., Li, A., & He, Y. (2019). Chemoenzymatic conversion of corncob to furfurylamine via tandem catalysis with tin-based solid acid and transaminase biocatalyst. ACS Sustainable Chemistry &. Engineering, 7, 17636–17642.

    Article  Google Scholar 

  6. Zheng, Y., Shi, J., Tu, M., & Cheng, Y. S. (2017). Principles and development of Lignocellulosic biomass pretreatment for biofuels. Advance in Biotechnology, 2, 1–68.

    Google Scholar 

  7. Balat, M., Balat, H., & Öz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34, 551–573.

    Article  Google Scholar 

  8. Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—The US department of energy’s “top 10” revisited. Green Chemistry, 12, 539–554.

    Article  Google Scholar 

  9. Di, J., Ma, C., Qian, J., Liao, X., Peng, B., & He, Y. (2018). Chemo-enzymatic synthesis of furfuralcohol from chestnut shell hydrolysate by a sequential acid-catalyzed dehydration under microwave and Escherichia coli CCZU-Y10 whole-cells conversion. Bioresource Technology, 262, 52–58.

    Article  Google Scholar 

  10. Gu, T., Wang, B., Zhang, Z., Wang, Z., Chong, G., Ma, C., Tang, Y. J., & He, Y. (2019). Sequential pretreatment of bamboo shoot shell and biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate in aqueous-butyl acetate media. Process Biochemistry, 80, 112–118.

    Article  Google Scholar 

  11. Hallac, B. B., & Ragauskas, A. J. (2011). Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 5, 215–225.

    Article  Google Scholar 

  12. Hamelinck, C. N., Hooijdonk, G. V., & Faaij, A. P. C. (2005). Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy, 28, 384–410.

    Article  Google Scholar 

  13. He, Y., Jiang, C., Chong, G., Di, J., Wu, Y., Wang, B., Xue, X., & Ma, C. (2017). Chemical-enzymatic conversion of corncob-derived xylose to furfuralcohol by the tandem catalysis with SO42−/SnO2-Kaoline and E. coli CCZU-T15 cells in toluene–water media. Bioresource Technology, 245, 841–849.

    Article  Google Scholar 

  14. Huang, Y., Liao, X., Deng, Y., & He, Y. (2019). Co-catalysis of corncob with dilute formic acid plus solid acid SO42−/SnO2-montmorillonite under the microwave for enhancing the biosynthesis of furfuralcohol. Catalysis Communication, 120, 38–41.

    Article  Google Scholar 

  15. Jiang, C. X., Di, J. H., Su, C., Yang, S. Y., & He, Y. C. (2018). One-pot co-catalysis of corncob with dilute hydrochloric acid and tin-based solid acid for the enhancement of furfural production. Bioresource Technology, 268, 315–322.

    Article  Google Scholar 

  16. Kurosawa, K., Wewetzer, S. J., & Sinskey, A. J. (2013). Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnology for Biofuels, 6(1), 1.

    Article  Google Scholar 

  17. Ma, Z., Liao, Z., Ma, C., He, Y. C., Gong, C., & Yu, X. (2020). Chemoenzymatic conversion of Sorghum durra stalk into furoic acid by a sequential microwave-assisted solid acid conversion and immobilized whole-cells biocatalysis. Bioresource Technology. https://doi.org/10.1016/j.biortech.2020.123474.

  18. Xue, X. X., Di, J. H., He, Y. C., Wang, B. Q., & Ma, C. L. (2018). Effective utilization of carbohydrate in corncob to synthesize furfuralcohol by chemical–enzymatic catalysis in toluene–water media. Applied Biochemistry and Biotechnology, 185, 42–54.

    Article  Google Scholar 

  19. Zhang, R. Q., Ma, C. L., Shen, Y. F., Sun, J. F., Jiang, K., Jiang, Z. B., Dai, Y. J., & He, Y. C. (2020). Enhanced biosynthesis of furoic acid via the effective pretreatment of corncob into furfural in the biphasic media. Catalysis Letters. https://doi.org/10.1007/s10562-020-03152-9.

  20. Zhu, H., Kong, Q., Cao, X., He, H., Wang, J., & He, Y. (2016). Adsorption of Cr(VI) from aqueous solution by chemically modified natural cellulose. Desalination and Water Treatment, 57, 20368–20376.

    Article  Google Scholar 

  21. Zhu, H. X., Cao, X. J., He, Y. C., Kong, Q. P., He, H., & Wang, J. (2015). Removal of Cu2+ from aqueous solutions by the novel modified bagasse pulp cellulose: Kinetics, isotherm and mechanism. Carbohydrate Polymers, 129, 115–126.

    Article  Google Scholar 

  22. Baral, N. R., & Shah, A. (2017). Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn Stover. Bioresource Technology, 232, 331–343.

    Article  Google Scholar 

  23. Bryant, D. N., Firth, E., Kaderbhai, N., Taylor, S., Morris, S. M., Logan, D., Garcia, N., Ellis, A., Martin, S. M., & Gallagher, J. A. (2013). Monitoring real-time enzymatic hydrolysis of Distillers Dried Grains with Solubles (DDGS) by dielectric spectroscopy following hydrothermal pre-treatment by steam explosion. Bioresource Technology, 12, 765–768.

    Article  Google Scholar 

  24. Hallac, B. B., Sannigrahi, P., Pu, Y., Ray, M., Murphy, R. J., & Ragauskas, A. J. (2010). Effect of ethanol Organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Industrial & Engineering Chemistry Research, 49, 1467–1472.

    Article  Google Scholar 

  25. He, Y., Jiang, C., Chong, G., Di, J., & Ma, C. (2018). Biological synthesis of 2,5-bis(hydroxymethyl)furan from biomass-derived 5-hydroxymethylfurfural by E. coli CCZU-K14 whole cells. Bioresource Technology, 247, 1215–1220.

    Article  Google Scholar 

  26. He, Y., Li, X., Xue, X., Swita, M. S., Schmidt, A. J., & Yang, B. (2017). Biological conversion of the aqueous wastes from hydrothermal liquefaction of algae and pine wood by Rhodococci. Bioresource Technology, 224, 457–464.

    Article  Google Scholar 

  27. Peng, B., Ma, C. L., Zhang, P. Q., Wu, C. Q., Wang, Z. W., Li, A. T., He, Y. C., & Yang, B. (2019). An effective hybrid strategy for converting rice straw to furoic acid by tandem catalysis via Sn-sepiolite combined with recombinant E. coli whole cells harboring horse liver alcohol dehydrogenase. Green Chemistry, 21, 5914–5923.

    Article  Google Scholar 

  28. Wang, Z. W., Gong, C. J., & He, C. J. (2020). Improved biosynthesis of 5-hydroxymethyl-2-furancarboxylic acid and furoic acid from biomass-derived furans with high substrate tolerance of recombinant Escherichia coli HMFOMUT whole-cells. Bioresource Technology, 303, 122930.

    Google Scholar 

  29. Xue, X. X., Ma, C. L., Di, J. H., Huo, X. Y., & He, Y. C. (2018). One-pot chemo-enzymatic conversion of D-xylose to furfuralcohol by sequential dehydration with oxalic acid plus tin-based solid acid and bioreduction with whole-cells. Bioresource Technology, 268, 292–299.

    Article  Google Scholar 

  30. Zhang, J., Zhuang, J., Lin, L., Liu, S., & Zhang, Z. (2012). Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase. Biomass and Bioenergy, 39, 73–77.

    Article  Google Scholar 

  31. Zhou, Z., Ju, X., Zhou, M., Xu, X., & Li, L. (2019). An enhanced ionic liquid-tolerant immobilized cellulase system via hydrogel microsphere for improving in situ saccharification of biomass. Bioresource Technology, 294, 122146.

    Article  Google Scholar 

  32. Kosa, M., & Ragauskas, A. J. (2012). Bioconversion of lignin model compounds with oleaginous Rhodococci. Applied Microbiology and Biotechnology, 93(2), 891–900.

    Article  Google Scholar 

  33. Wang, B., Rezenom, Y. H., Cho, K. C., Tran, J. L., Lee, D. G., Russell, D. H., Gill, J. J., Young, R., & Chu, K. H. (2014). Cultivation of lipid-producing bacteria with lignocellulosic biomass: Effects of inhibitory compounds of lignocellulosic hydrolysates. Bioresource Technology, 161, 162–170.

    Article  Google Scholar 

  34. Ye, S., & Cheng, J. (2002). Hydrolysis of Lignocellulosic materials for ethanol production: A review. ChemInform, 83, 1–11.

    Google Scholar 

  35. Zhao, C., Xie, S., Pu, Y., Zhang, R., Huang, F., Ragauskas, A. J., & Yuan, J. S. (2016). Synergistic enzymatic and microbial lignin conversion. Green Chemistry, 18(5), 1306–1312.

    Article  Google Scholar 

  36. Huang, C., Chen, X.F., Lian, X., Chen, X.D., & Ma, L.L. (2012). Oil production by the yeast Trichosporon dermatis cultured in enzymatic hydrolysates of corncobs. Bioresource Technology, 110, 711–714.

    Google Scholar 

  37. Karmakar, A., Karmakar, S., & Mukherjee, S. (2010). Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology, 101, 7201–7210.

    Article  Google Scholar 

  38. Li, X., He, Y., Zhang, L., Xu, Z., Ben, H., Gaffrey, M. J., Yang, Y., Yang, S., Yuan, J. S., Qian, W. J., & Yang. (2019). Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. Biotechnology for Biofuels, 12, 1856.

    Article  Google Scholar 

  39. Chong, G. G., Huang, X. J., Di, J. H., Xu, D. Z., He, Y. C., Pei, Y. N., Tang, Y. J., & Ma, C. L. (2018). Biodegradation of alkali lignin by a newly isolated Rhodococcus pyridinivorans CCZU-B16. Bioprocess and Biosystems Engineering, 41, 501–510.

    Article  Google Scholar 

  40. Huang, X., Ding, Y., Liao, X., Peng, B., He, Y., & Ma, C. (2018). Microbial lipid production from enzymatic hydrolysate of corn stover pretreated by combining with biological pretreatment and alkalic salt soaking. Industrial Crops and Products, 2018(124), 487–494.

    Article  Google Scholar 

  41. He, Y. C., Ding, Y., Ma, C. L., Di, J. H., Jiang, C. L., & Li, A. T. (2017). One-pot conversion of biomass-derived xylose to furfuralcohol by a chemo-enzymatic sequential acid-catalyzed dehydration and bioreduction. Green Chemistry, 19, 3844–3850.

    Article  Google Scholar 

  42. He, Y., Li, X., Ben, H., Xue, X., & Yang, B. (2017). Lipid production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustainable Chemistry & Engineering, 5, 2302–2311.

    Article  Google Scholar 

  43. Yu, Y., Xu, Z., Chen, S., & Jin, M. (2020). Microbial lipid production from dilute acid and dilute alkali pretreated corn stover via Trichosporon dermatis. Bioresource Technology, 295, 122253.

    Article  Google Scholar 

  44. Achinas, S., & Euverink, G. J. W. (2016). Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electronic Journal of Biotechnology, 23, 44–53.

    Article  Google Scholar 

  45. Chong, G., Di, J., Ma, C., Wang, D., Zhang, P., Zhu, J., & He, Y. (2018). Enhanced bioreduction synthesis of ethyl (R)-4-chloro-3-hydroybutanoate by alkalic salt pretreatment. Bioresource Technology, 261, 196–205.

    Article  Google Scholar 

  46. Yu, I. K. M., & Tsang, D. C. W. (2017). Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technology, 238, 716–732.

    Article  Google Scholar 

  47. Dias, M. O. S., Ensinas, A. V., Nebra, S. A., Maciel Filho, R., Rossell, C. E. V., & Maciel, M. R. W. (2009). Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process. Chemical Engineering Research and Design, 87, 1206–1216.

    Article  Google Scholar 

  48. Fatih Demirbas, M. (2009). Biorefineries for biofuel upgrading: A critical review. Applied Energy, 86, S151–S161.

    Article  Google Scholar 

  49. Foston, M., Katahira, R., Gjersing, E., Davis, M. F., & Ragauskas, A. J. (2012). Solid-state selective 13C excitation and spin diffusion NMR to resolve spatial dimensions in plant cell walls. Journal of Agricultural and Food Chemistry, 60, 1419–1427.

    Article  Google Scholar 

  50. Kim, J. Y., Lee, H. W., Lee, S. M., Jae, J., & Park, Y. K. (2019). Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresource Technology, 279, 373–384.

    Article  Google Scholar 

  51. Le, R. K., Das, P., Mahan, K. M., Anderson, S. A., Wells, T., Yuan, J. S., & Ragauskas, A. J. (2017). Utilization of simultaneous saccharification and fermentation residues as feedstock for lipid accumulation in Rhodococcus opacus. AMB Express, 7, 185.

    Article  Google Scholar 

  52. Taherzadeh, M. J., & Keikhosro, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9, 1621.

    Article  Google Scholar 

  53. Yan, L., Zhang, L., & Yang, B. (2014). Enhancement of total sugar and lignin yields through dissolution of poplar wood by hot water and dilute acid flowthrough pretreatment. Biotechnology for Biofuels, 7(1), 76.

    Article  Google Scholar 

  54. Abdullah, R., Ueda, K., & Saka, S. (2014). Hydrothermal decomposition of various crystalline celluloses as treated by semi-flow hot-compressed water. Journal of Wood Science, 60, 278–286.

    Article  Google Scholar 

  55. He, Y. C., Zhang, D. P., Di, J. H., Wu, Y. Q., Tao, Z. C., Liu, F., Zhang, Z. J., Chong, G. G., Ding, Y., & Ma, C. L. (2016). Effective pretreatment of sugarcane bagasse with combination pretreatment and its hydrolyzates as reaction media for the biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by whole cells of E. coli CCZU-K14. Bioresource Technology, 211, 720–726.

    Article  Google Scholar 

  56. He, Y. C., Ding, Y., Xue, Y. F., Yang, B., Liu, F., Wang, C., Zhu, Z. Z., Qing, Q., Wu, H., Zhu, C., Tao, Z. C., & Zhang, D. P. (2015). Enhancement of enzymatic saccharification of corn stover with sequential Fenton pretreatment and dilute NaOH extraction. Bioresource Technology, 193, 324–330.

    Article  Google Scholar 

  57. Ramesh, D., Muniraj, I. K., Thangavelu, K., & Karthikeyan, S. (2018). Chapter 2 Pretreatment of lignocellulosic Biomass feedstocks for biofuel production. IGI Global.

    Google Scholar 

  58. Rosgaard, L., Pedersen, S., & Meyer, A. S. (2007). Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw. Applied Biochemistry and Biotechnology, 143, 284–296.

    Article  Google Scholar 

  59. Bhatt, S. M., & Shilpa. (2014). Lignocellulosic feedstock conversion, inhibitor detoxification and cellulosic hydrolysis – A review. Biofuels, 5, 633–649.

    Article  Google Scholar 

  60. He, Y., Jiang, C., Jiang, J., Di, J., Liu, F., Ding, Y., Qing, Q., & Ma, C. (2017). One-pot chemo-enzymatic synthesis of furfuralcohol from xylose. Bioresource Technology, 238, 698–705.

    Article  Google Scholar 

  61. Bhatia, L., Johri, S., & Ahmad R. (2012). An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2, 65.

    Google Scholar 

  62. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    Article  Google Scholar 

  63. Anwar, Z., Gulfraz, M., & Irshad, M. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Science, 7(2), 163–173.

    Article  Google Scholar 

  64. Pu, Y., Kosa, M., Kalluri, U. C., Tuskan, G. A., & Ragauskas, A. J. (2011). Challenges of the utilization of wood polymers: How can they be overcome? Applied Microbiology and Biotechnology, 91, 1525–1536.

    Article  Google Scholar 

  65. Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P. F., Marita, J. M., Hatfield, R. D., Ralph, S. A., Christensen, J. H., & Boerjan, W. (2004). Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochemistry Reviews, 3, 29–60.

    Article  Google Scholar 

  66. Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 16, 1462–1476.

    Article  Google Scholar 

  67. Dai, Y., Zhang, H. S., Huan, B., & He, Y. C. (2017). Enhancing the enzymatic saccharification of bamboo shoot shell by sequential biological pretreatment with Galactomyces sp. CCZU11-1 and deep eutectic solvent extraction. Bioprocess and Biosystems Engineering, 40, 1427–1436.

    Article  Google Scholar 

  68. Jørgensen, H., Kristensen, J. B., & Felby, C. (2007). Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels, Bioproducts and Biorefining, 1, 119–134.

    Article  Google Scholar 

  69. Kaparaju, P., Serrano, M., Thomsen, A. B., Kongjan, P., & Angelidaki, I. (2009). Bioethanol, biohydrogen and biogas production from wheat straw in a bio refifinery concept. Journal of Bioresource Technology, 100, 2562–2568.

    Article  Google Scholar 

  70. Mahvi, A. H., Maleki, A., & Eslami, A. (2004). Potential of rice husk and rice husk ash for phenol removal in aqueous systems. American Journal of Applied Sciences, 1(4), 321–326.

    Article  Google Scholar 

  71. Nigam, P. S., Gupta, N., & Anthwal, A. (2009). Pre-treatment of agro-industrial residues. In P. S. Nigam & A. Pandey (Eds.), Biotechnology for agro-industrial residues utilization (1st ed., pp. 13–33). Dordrecht: Springer.

    Chapter  Google Scholar 

  72. Saha, B. C., & Cotta, M. A. (2006). Ethanol production from alkaline peroxide pretreated enzymatically saccharifified wheat straw. Biotechnology Progress, 22, 449–453.

    Article  Google Scholar 

  73. Saini, J. K., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech, 5, 337–353.

    Article  Google Scholar 

  74. Tye, Y. Y., Lee, K. T., Abdullah, W. N. W., & Leh, C. P. (2016). The world availability of nonwood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renewable Sustainable Energy Reviews, 60, 155–172.

    Article  Google Scholar 

  75. Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29, 675–685.

    Article  Google Scholar 

  76. Alvira, P., Tomáspejó, E., Ballesteros, M., Negro, M. J., & Pandey, A. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource technology, 101, 4851–4861.

    Article  Google Scholar 

  77. Lawoko, M., Henriksson, G., & Gellerstedt, G. (2005). Structural differences between the lignin−carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules, 6, 3467–3473.

    Article  Google Scholar 

  78. Ayyachamy, M., Cliffe, F. E., Coyne, J. M., Collier, J., & Tuohy, M. G. (2013). Lignin: Untapped biopolymers in biomass conversion technologies. Biomass Conversion and Biorefinery, 3(3), 255–269.

    Article  Google Scholar 

  79. Yang, B., Tao, L., & Wyman, C. E. (2018). Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofuels, Bioproducts and Biorefining, 12(1), 125–138.

    Article  Google Scholar 

  80. Kosa, M., & Ragauskas, A. J. (2013). Lignin to lipid bioconversion by oleaginous Rhodococci. Green Chemistry, 15(8), 2070–2074.

    Article  Google Scholar 

  81. Laskar, D. D., Yang, B., Wang, H., & Lee, J. (2013). Pathways for biomass-derived lignin to hydrocarbon fuels. Biofuels, Bioproducts and Biorefining, 7(5), 602–626.

    Article  Google Scholar 

  82. Bitra, V. S. P., Womac, A. R., Igathinathane, C., Miu, P. I., Yang, Y. T., Smith, D. R., Chevanan, N., & Sokhansanj, S. (2009). Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover. Bioresource Technology, 100, 6578–6585.

    Article  Google Scholar 

  83. Case, P. A., Truong, C., Wheeler, M. C., & DeSisto, W. J. (2015). Calcium-catalyzed pyrolysis of lignocellulosic biomass components. Bioresource Technology, 192, 247–252.

    Article  Google Scholar 

  84. Chang, V. S., Burr, B., & Holtzapple, M. T. (1997). Lime pretreatment of Switchgrass. Clifton: Humana Press.

    Google Scholar 

  85. Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 162, 1872–1880.

    Article  Google Scholar 

  86. Millett, M. A., Baker, A. J., & Satter, L. D. (1976). Physical and chemical pretreatments for enhancing cellulose saccharification. Biotechnology & Bioengineering Symposium, 6, 125.

    Google Scholar 

  87. Paudel, S. R., Banjara, S. P., Choi, O. K., Park, K. Y., Kim, Y. M., & Lee, J. W. (2017). Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresource Technology, 245, 1194–1205.

    Article  Google Scholar 

  88. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83, 1–11.

    Article  Google Scholar 

  89. Yang, C. P., Shen, Z. Q., Yu, G. C., et al. (2008). Effect and aftereffect of gamma radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresourc Technology, 99, 6240–6245.

    Article  Google Scholar 

  90. Zakaria, M. R., Fujimoto, S., Hirata, S., & Hassan, M. A. (2014). Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 173, 1778–1789.

    Article  Google Scholar 

  91. Bali, G., Meng, X., Deneff, J. I., Sun, Q., & Ragauskas, A. J. (2015). The effect of alkaline pretreatment methods on cellulose structure and accessibility. ChemSusChem, 8, 275–279.

    Article  Google Scholar 

  92. Elgharbawy, A. A., Alam, M. Z., Moniruzzaman, M., & Goto, M. (2016). Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochemical Engineering Journal, 109, 252–267.

    Article  Google Scholar 

  93. Kuo, C. H., & Lee, C. K. (2009). Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresource Technology, 100, 866–871.

    Article  Google Scholar 

  94. Quesada, J., Rubio, M., & Gómez, D. (1999). Ozonation of lignin rich solid fractions from corn stalks. Journal of Wood Chemistry & Technology, 19, 115–137.

    Article  Google Scholar 

  95. Rabemanolontsoa, H., & Saka, S. (2016). Various pretreatments of lignocellulosics. Bioresource Technology, 199, 83–91.

    Article  Google Scholar 

  96. Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyette, M. D., & Osborne, J. (2007). A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 98, 3000–3011.

    Article  Google Scholar 

  97. Veluchamy, C., & Kalamdhad, A. S. (2017). Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: A review. Bioresource Technology, 245, 1206–1219.

    Article  Google Scholar 

  98. Grous, W. R., Converse, A. O., & Grethlein, H. E. (1986). Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme & Microbial Technology, 8, 274–280.

    Article  Google Scholar 

  99. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.

    Article  Google Scholar 

  100. Idrees, M., Adnan, A., & Qureshi, F. A. (2013). Optimization of sulfide/sulfite pretreatment of lignocellulosic biomass for lactic acid production. BioMed Research International, 2013, 934171.

    Article  Google Scholar 

  101. Jacquet, N., Vanderghem, C., Danthine, S., Quiévy, N., Blecker, C., Devaux, J., & Paquot, M. (2012). Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fibers. Bioresource Technology, 121, 221–227.

    Article  Google Scholar 

  102. Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresources and Bioprocessing, 4, 7.

    Article  Google Scholar 

  103. Stanmore, B. R. (2010). Generation of energy from sugarcane bagasse by thermal treatment. J Waste Biomass Valoriz, 1, 77–89.

    Article  Google Scholar 

  104. Aguiar, A., & Ferraz, A. (2008). Relevance of extractives and wood transformation products on the biodegradation of Pinus taeda by Ceriporiopsis subvermispora. International Biodeterioration & Biodegradation, 61, 182–188.

    Article  Google Scholar 

  105. Ge, X., Matsumoto, T., Keith, L., & Li, Y. (2015). Fungal pretreatment of Albizia chips for enhanced Biogas production by solid-state anaerobic digestion. Energy & Fuels, 29, 200–204.

    Article  Google Scholar 

  106. Kandhola, G., Djioleu, A., Carrier, D. J., & Kim, J. W. (2017). Pretreatments for enhanced enzymatic hydrolysis of Pinewood: A review. BioEnergy Research, 10, 1138–1154.

    Article  Google Scholar 

  107. Kandhola, G., Djioleu, A., Carrier, D. J., & Kim, J.-W. (2017). Pretreatments for enhanced enzymatic hydrolysis of pinewood: A review. BioEnergy Research, 5, 1–17.

    Google Scholar 

  108. Mäkelä, M. R., Donofrio, N., & de Vries, R. P. (2014). Plant biomass degradation by fungi. Fungal Genetics and Biology, 72, 2–9.

    Article  Google Scholar 

  109. Ryu, S.-H., Cho, M.-K., Kim, M., Jung, S.-M., & Seo, J.-H. (2013). Enhanced lignin biodegradation by a laccase-overexpressed white-rot fungus Polyporus brumalis in the pretreatment of Wood chips. Applied Biochemistry and Biotechnology, 171, 1525–1534.

    Article  Google Scholar 

  110. Sindu, R., Binod, P., & Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass – An overview. Bioresource Technology, 199, 76–82.

    Article  Google Scholar 

  111. Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Research, 2011, 787–532.

    Article  Google Scholar 

  112. He, Y. C., Tao, Z. C., Di, J. H., Chen, L., Zhang, L. B., Zhang, D. P., Chong, G. G., Liu, F., Ding, Y., Jiang, C. X., & Ma, C. L. (2016). Effective asymmetric bioreduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate by recombinant E. coli CCZU-A13 in [Bmim]PF6–hydrolyzate media. Bioresource Technology, 214, 414–418.

    Article  Google Scholar 

  113. Sun, F., Wang, L., Hong, J., Ren, J., Du, F., Hu, J., Zhang, Z., & Zhou, B. (2015). The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresource Technology, 187, 354–361.

    Article  Google Scholar 

  114. Cadoche, L., & López, G. D. (1989). Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biological Wastes, 30, 153–157.

    Article  Google Scholar 

  115. Kim, H. J., Chang, J. H., Jeong, B. Y., & Jin, H. L. (2013). Comparison of milling modes as a pretreatment method for cellulosic biofuel production. Journal of Clean Energy Technologies, 1, 45–48.

    Article  Google Scholar 

  116. Himmel, M., Tucker, M., Baker, J., Rivard, C., Oh, K., & Grohmann, K. (1985). Comminution of biomass: Hammer and knife mills. In Biotechnology and bioengineering (symposium no 15) (pp. 39–57). New York: Wiley.

    Google Scholar 

  117. Kim, H., & Ralph, J. (2010). Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Organic and Biomolecular Chemistry, 8, 576–591.

    Article  Google Scholar 

  118. Maier, G., Zipper, P., Stubicar, M., & Schurz, J. (2005). Amorphization of different cellulose samples by ball milling. Cellulose Chemistry and Technology, 39, 167–177.

    Google Scholar 

  119. Millett, M. A., Baker, A. J., Feist, W. C., Mellenberger, R. W., & Satter, L. D. (1970). Modifying wood to increase its in vitro digestibility. Journal of Animal Science, 31, 781–788.

    Article  Google Scholar 

  120. Tassinari, T., Macy, C., Spano, L., & Ryu, D. D. Y. (1980). Energy requirements and process design considerations in compression-milling pretreatment of cellulosic wastes for enzymic hydrolysis. Biotechnology and Bioengineering, 22, 1689–1705.

    Article  Google Scholar 

  121. Wu, Z. H., Sumimoto, M., & Tanaka, H. (1995). Mechanochemistry of lignin. XIII. Generation of oxygen-containing radicals in the aqueous media of mechanical pulping. Journal of Wood Chemistry and Technology, 15, 27–42.

    Article  Google Scholar 

  122. Yu, M., Womac, A. R., Igathinathane, C., Ayers, P. D., & Buschermohle, M. (2006). Switchgrass ultimate stresses at typical biomass conditions available for processing. Biomass & Bioenergy, 30, 214–219.

    Article  Google Scholar 

  123. Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., & Sawayama, S. (2009). Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 100, 2706–2711.

    Article  Google Scholar 

  124. Silva, A. S. D., Inoue, H., Endo, T., Yano, S., & Bon, E. P. S. (2010). Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology, 101, 7402–7409.

    Article  Google Scholar 

  125. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804–807.

    Article  Google Scholar 

  126. Mani, S., Tabil, L. G., & Sokhansanj, S. (2004). Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass & Bioenergy, 27, 339–352.

    Article  Google Scholar 

  127. Lee, J. E., Vadlani, P. V., & Min, D. (2017). Sustainable production of microbial lipids from lignocellulosicbiomass using Oleaginous yeast cultures. Journal of Sustainable Bioenergy Systems, 7, 74871.

    Article  Google Scholar 

  128. Bak, J. S., Ko, J. K., Han, Y. H., Lee, B. C., Choi, I. G., & Kim, K. H. (2009). Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology, 100, 1285–1290.

    Article  Google Scholar 

  129. Dunlap, C. E., & Chiang, L. C. (1980). Cellulose degradation-a common link. In M. L. Shuler (Ed.), Utilization and recycle of agricultural wastes and residues (pp. 19–65). Boca Raton: CRC Press.

    Google Scholar 

  130. Kapoor, K., Garg, N., Garg, R. K., Varshney, L., & Tyagi, A. K. (2017). Study the effect of gamma radiation pretreatment of sugarcane bagasse on its physcio-chemical morphological and structural properties. Radiation Physics and Chemistry, 141, 190–195.

    Article  Google Scholar 

  131. Ma, H., Liu, W. W., Chen, X., Wu, Y., & Yu, Z. (2009). Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technology, 100, 1279–1284.

    Article  Google Scholar 

  132. Velmurugan, R., & Muthukumar, K. (2011). Utilization of sugarcane bagasse for bioethanol production: Sono-assisted acid hydrolysis approach. Bioresource Technology, 102, 7119–7123.

    Article  Google Scholar 

  133. Takács, E., Wojnárovits, L., Földváry, C., Hargittai, P., Borsa, J., & Sajó, I. (2000). Effect of combined gamma-irradiation and alkali treatment on cotton–cellulose. Radiation Physics & Chemistry, 57, 399–403.

    Article  Google Scholar 

  134. Galbe, M., & Zacchi, G. (2007). Pretreatment of Lignocellulosic materials for efficient bioethanol production. Berlin/Heidelberg: Springer.

    Book  Google Scholar 

  135. Singh, R., Krishna, B. B., Kumar, J., & Bhaskar, T. (2016). Opportunities for utilization of non-conventional energy sources for biomass pretreatment. Bioresource Technology, 199, 398–407.

    Article  Google Scholar 

  136. Chen, X., Yu, J., Zhang, Z., & Lu, C. (2011). Study on structure and thermal stability properties of cellulose fibres from rice straw. Journal of Carbohydrate Polymers, 85, 245–250.

    Article  Google Scholar 

  137. Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., & Hai, Y. (2011). Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83, 1804–1811.

    Article  Google Scholar 

  138. Lu, X., Bo, X., Zhang, Y., & Angelidaki, I. (2011). Microwave pretreatment of rape straw for bioethanol production: Focus on energy efficiency. Bioresource Technology, 102, 7937.

    Article  Google Scholar 

  139. Wahidin, A. I., & Shaleh, S. R. M. (2014). Rapid biodiesel production using wet microalgae via microwave irradiation. Energy Conversion and Management, 84, 227–233.

    Article  Google Scholar 

  140. Hu, Z., & Wen, Z. (2008). Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal, 38, 369–378.

    Article  Google Scholar 

  141. Keshwani, D. R., & Cheng, J. J. (2010). Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnology Progress, 26, 644–652.

    Article  Google Scholar 

  142. Gogate, P. R., Sutkar, V. S., & Pandit, A. B. (2011). Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems. Chemical Engineering Journal, 166, 1066–1082.

    Article  Google Scholar 

  143. Montalbo-Lomboy, M., Johnson, L., Khanal, S. K., Leeuwen, J. V., & Grewell, D. (2010). Sonication of sugary-2 corn: A potential pretreatment to enhance sugar release. Bioresource Technology, 101, 351–358.

    Article  Google Scholar 

  144. Rehman, M. S. U., Kim, I., Chisti, Y., & Han, J. I. (2013). Use of ultrasound in the production of bioethanol from lignocellulosic biomass. Energy Education Science & Technology, 30, 1391–1410.

    Google Scholar 

  145. Tang, A., Zhang, H., Gang, C., Xie, G., & Liang, W. (2005). Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose. Ultrasonics Sonochemistry, 12, 467.

    Article  Google Scholar 

  146. Yachmenev, V., Condon, B., Klasson, T., & Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. Journal of Biobased Materials & Bioenergy, 3, 25–31.

    Article  Google Scholar 

  147. Balasubramanian, J. D. A., Kanitkar, A., & Boldor, D. (2011). Oil extraction from Scenedesmus obliquus using a continuous microwave system – Design, optimization, and quality characterization. Bioresource Technology, 102, 3396–3403.

    Article  Google Scholar 

  148. Keris-Sen, U. D., Sen, U., Soydemir, G., & Gurol, M. D. (2014). An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency. Bioresource Technology, 152, 407–413.

    Article  Google Scholar 

  149. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48, 3713–3729.

    Article  Google Scholar 

  150. Roy, P., & Dias, G. (2017). Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Reviews, 77, 59–69.

    Article  Google Scholar 

  151. Fan, L. T., Gharpuray, M. M., & Lee, Y. H. (1987). Cellulose hydrolysis (Biotechnology monographs. Volume 3). New York: Springer.

    Book  Google Scholar 

  152. Lian, J., Garcia-Perez, M., Coates, R., Wu, H., & Chen, S. (2012). Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresource Technology, 118, 177–186.

    Article  Google Scholar 

  153. Janu, K. U., Sindhu, R., Binod, P., Kuttiraja, M., Sukumaran, R. K., & Pandey, A. (2011). Studies on physicochemical changes during alkali pretreatment and optimization of hydrolysis conditions to improve sugar yield from bagasse. Journal Ofentific & Industrial Research, 70, 952–958.

    Google Scholar 

  154. McMillan, J. D. (1994). Pretreatment of lignocellulosic biomass. In Enzymatic conversion of biomass for fuels production (Vol. 566, pp. 292–324). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  155. Teramoto, Y., Lee, S. H., & Endo, T. (2008). Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresource Technology, 99, 8856–8863.

    Article  Google Scholar 

  156. Gong, Z., Wang, X., Yuan, W., Wang, Y., Zhou, W., Wang, G., & Liu, Y. (2020). Fed-batch enzymatic hydrolysis of alkaline organosolv-pretreated corn stover facilitating high concentrations and yields of fermentable sugars for microbial lipid production. Biotechnology for Biofuels, 13, 613.

    Article  Google Scholar 

  157. Aita, G. A., Salvi, D. A., & Walker, M. S. (2011). Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresource Technology, 102, 4444–4448.

    Article  Google Scholar 

  158. Chong, G. G., He, Y. C., Liu, Q. X., Kou, X. Q., & Qing, Q. (2017). Sequential aqueous ammonia extraction and LiCl/N,N-Dimethyl formamide pretreatment for enhancing enzymatic saccharification of winterbamboo shoot shell. Applied Biochemistry and Biotechnology182, 1341–1357.

    Google Scholar 

  159. Chong, G. G., He, Y. C., Liu, Q. X., Kou, X. Q., Huang, X. J., Di, J. H., & Ma, C. L. (2017). Effective enzymatic in situ saccharification of bamboo shoot shell pretreated by dilute alkalic salts sodium hypochlorite/sodium sulfide pretreatment under the autoclave system. Bioresource Technology, 241, 726–734.

    Article  Google Scholar 

  160. Gupta, R., & Lee, Y. Y. (2010). Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresource Technology, 101, 8185.

    Article  Google Scholar 

  161. Yoo, C. G., Nghiem, N. P., Hicks, K. B., & Kim, T. H. (2011). Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process. Bioresource Technology, 102, 10028–10034.

    Article  Google Scholar 

  162. Liu, Z., Padmanabhan, S., Cheng, K., Schwyter, P., Pauly, M., Bell, A. T., & Prausnitz, J. M. (2013). Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresource Technology, 135, 23–29.

    Article  Google Scholar 

  163. Pryor, S. W., Karki, B., & Nahar, N. (2012). Effect of hemicellulase addition during enzymatic hydrolysis of switchgrass pretreated by soaking in aqueous ammonia. Bioresource Technology, 123, 620–626.

    Article  Google Scholar 

  164. Kumar, L., Chandra, R., & Saddler, J. (2011). Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Biotechnology and Bioengineering, 108, 2300–2311.

    Article  Google Scholar 

  165. Liu, H., Pang, B., Zhou, J., Han, Y., Lu, J., Li, H., & Wang, H. (2016). Comparative study of pretreated corn stover for sugar production using cotton pulping black liquor (CPBL) instead of sodium hydroxide. Industrial Crops and Products, 84, 97–103.

    Article  Google Scholar 

  166. Mendes, F. M., Siqueira, G., Carvalho, W., Ferraz, A., & Milagres, A. M. (2011). Enzymatic hydrolysis of Chemithermomechanically pretreated sugarcane bagasse and samples with reduced initial lignin content. Biotechnology Progress, 27, 395–401.

    Article  Google Scholar 

  167. Mendes, F. M., Heikkilä, E., Fonseca, M. B., Milagres, A. M. F., Ferraz, A., & Fardim, P. (2015). Topochemical characterization of sugar cane pretreated with alkaline sulfite. Industrial Crops and Products, 69, 60–67.

    Article  Google Scholar 

  168. Xu, H., Li, B., & Mu, X. (2016). Review of alkali-based pretreatment to enhance enzymatic Saccharification for Lignocellulosic biomass conversion. Industrial & Engineering Chemistry Research, 55, 8691–8705.

    Article  Google Scholar 

  169. Zhang, D. S., Yang, Q., Zhu, J. Y., & Pan, X. J. (2013). Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification. Bioresource Technology, 129, 127–134.

    Article  Google Scholar 

  170. Yang, L., Cao, J., Mao, J., & Jin, Y. (2013). Sodium carbonate–sodium sulfite pretreatment for improving the enzymatic hydrolysis of rice straw. Industrial Crops and Products, 43, 711–717.

    Article  Google Scholar 

  171. Gong, W., Liu, C., Mu, X., Du, H., Lv, D., Li, B., & Han, S. (2015). Hydrogen peroxide-assisted sodium carbonate pretreatment for the enhancement of enzymatic saccharification of corn stover. ACS Sustainable Chemistry & Engineering, 3, 3477–3485.

    Article  Google Scholar 

  172. Qing, Q., Zhou, L. L., Guo, Q., Huang, M. Z., He, Y. C., Wang, L. Q., & Zhang, Y. (2016). A combined sodium phosphate and sodium sulfide pretreatment for enhanced enzymatic digestibility and delignification of corn stover. Bioresource Technology, 218, 209–216.

    Article  Google Scholar 

  173. Jiang, C. X., He, Y. C., Chong, G. G., Di, J. H., Tang, Y. J., & Ma, C. L. (2017). Enzymatic in situ saccharification of sugarcane bagasse pretreated with low loading of alkalic salts Na2SO3/Na3PO4 by autoclaving. Journal of Biotechnology, 259, 73–82.

    Article  Google Scholar 

  174. Liang, Y., Jarosz, K., Wardlow, A. T., Zhang, J., & Cui, Y. (2014). Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment. Applied Biochemistry and Biotechnology, 173, 2086–2098.

    Article  Google Scholar 

  175. Cai, D., Dong, Z., Wang, Y., Chen, C., Li, P., Qin, P., Wang, Z., & Tan, T. W. (2016). Biorefinery of corn cob for microbial lipid and bio-ethanol production: An environmental friendly process. Bioresource Technology, 211, 677–684.

    Article  Google Scholar 

  176. Andanson, J. M., & Costa Gomes, M. F. (2015). Thermodynamics of cellulose dissolution in an imidazolium acetate ionic liquid. Chemical Communications, 51, 4485–4487.

    Article  Google Scholar 

  177. Li, Q., He, Y. C. X., Jun, G., Xu, X., Yang, J. M., & Li, L. Z. (2009). Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresource Technology, 100, 3570–3575.

    Article  Google Scholar 

  178. Brandt, A., Ray, M. J., To, T. Q., Leak, D. J., Murphy, R. J., & Welton, T. (2011). Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chemistry, 13, 2489–2499.

    Article  Google Scholar 

  179. He, Y. C., Liu, F., Gong, L., Di, J. H., Ding, Y., Ma, C. L., Zhang, D. P., Tao, Z. C., Wang, C., & Yang, B. (2016). Enzymatic in situ saccharification of chestnut shell with high ionic liquid-tolerant cellulases from Galactomyces sp. CCZU11-1 in a biocompatible ionic liquid-cellulase media. Bioresource Technology, 201, 133–139.

    Article  Google Scholar 

  180. Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M., et al. (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology, 101, 4900–4906.

    Article  Google Scholar 

  181. Li, X., Kim, T. H., & Nghiem, N. P. (2010). Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharifification and fermentation (TPSSF). Bioresource Technology, 101, 5910–5916.

    Article  Google Scholar 

  182. Pinkert, A., Marsh, K. N., Pang, S. S., & Staiger, M. P. (2009). Ionic liquids and their interaction with cellulose. Chemical Reviews, 109, 6712–6728.

    Article  Google Scholar 

  183. Shill, K., Padmanabhan, S., Xin, Q., Prausnitz, J. M., Clark, D. S., & Blanch, H. W. (2011). Ionic liquid pretreatment of cellulosic biomass: Enzymatic hydrolysis and ionic liquid recycle. Biotechnology and Bioengineering, 108, 511–520.

    Article  Google Scholar 

  184. Singh, S., Simmons, B. A., & Vogel, K. P. (2009). Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnology and Bioengineering, 104, 68–75.

    Article  Google Scholar 

  185. Silva, S. S., Mano, J. F., & Reis, R. L. (2017). Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chemistry, 19, 1208–1220.

    Article  Google Scholar 

  186. Xu, J. X., Xiong, P., & He, B. F. (2016). Advances in improving the performance of cellulase in ionic liquids for lignocellulose biorefinery. Bioresource Technology, 200, 961–970.

    Article  Google Scholar 

  187. Zhang, Q., Hu, J., & Lee, D. J. (2017). Pretreatment of biomass using ionic liquids: Research updates. Renewable Energy, 11, 77–84.

    Article  Google Scholar 

  188. Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 124, 4974–4975.

    Article  Google Scholar 

  189. Gurau, G., Wang, H., Qiao, Y., Lu, X., Zhang, S., & Rogers Robin, D. (2012). Chlorine-free alternatives to the synthesis of ionic liquids for biomass processing. Pure and Applied Chemistry, 84(3), 745.

    Article  Google Scholar 

  190. Kosan, B., Michels, C., & Meister, F. (2008). Dissolution and forming of cellulose with ionic liquids. Cellulose, 15(1), 59–66.

    Article  Google Scholar 

  191. Aid, T., Hyvarinen, S., Vaher, M., Koel, M., & Mikkola, J. P. (2016). Saccharification of lignocellulosic biomasses via ionic liquid pretreatment. Industrial Crops and Products, 92, 336–341.

    Article  Google Scholar 

  192. Chang, K. L., Chen, X. M., Wang, X. Q., Han, Y. J., Potprommanee, L., Liu, J. Y., Liao, Y. L., Ning, X. A., Sun, S. Y., & Huang, Q. (2017). Impact of surfactant type for ionic liquid pretreatment on enhancing delignification of rice straw. Bioresource Technology, 227, 388–392.

    Article  Google Scholar 

  193. Clough, M. T., Geyer, K., Hunt, P. A., Son, S., Vagt, U., & Welton, T. (2015). Ionic liquids: Not always innocent solvents for cellulose. Green Chemistry, 17, 231–243.

    Article  Google Scholar 

  194. Sun, N., Rahman, M., Qin, Y., Maxim, M. L., Rodriguez, H., & Rogers, R. D. (2009). Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry, 11, 646–655.

    Article  Google Scholar 

  195. Zhao, H., Jones, C. L., Baker, G. A., Xia, S., Olubajo, O., & Person, V. N. (2009). Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Journal of Biotechnology, 139, 47–54.

    Article  Google Scholar 

  196. Zhao, X., Cheng, K., & Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology & Biotechnology, 82, 815.

    Article  Google Scholar 

  197. He, Y. C., Liu, F., Gong, L., Zhu, Z. Z., Ding, Y., Wang, C., Xue, Y. F., Rui, H., Tao, Z. C., Zhang, D. P., & Ma, C. L. (2015). Significantly improving enzymatic saccharification of high crystallinity index’s corn stover by combining ionic liquid [Bmim]Cl–HCl–water media with dilute NaOH pretreatment. Bioresource Technology, 189, 421–425.

    Article  Google Scholar 

  198. Zhang, J., Feng, L., Wang, D., Zhang, R., Liu, G., & Cheng, G. (2014). Thermogravimetric analysis of lignocellulosic biomass with ionic liquid pretreatment. Bioresource Technology, 153, 379–382.

    Article  Google Scholar 

  199. de Oliveira, H. F., & Rinaldi, R. (2015). Understanding cellulose dissolution: Energetics of interactions of ionic liquids and cellobiose revealed by solution microcalorimetry. ChemSusChem, 8, 1577.

    Article  Google Scholar 

  200. Kanbayashi, T., & Miyafuji, H. (2015). Topochemical and morphological characterization of wood cell wall treated with the ionic liquid, 1-ethylpyridinium bromide. Planta, 242, 509–518.

    Article  Google Scholar 

  201. Gong, Z., Shen, H., Wang, Q., Yang, X., Xie, H., & Zhao, Z. K. (2013). Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnology for Biofuels, 6, 36.

    Article  Google Scholar 

  202. Xie, H., Shen, H., Gong, Z., Wang, Q., & Zhao, Z. K. (2012). Enzymatic hydrolysates of corn stover pretreated by a N-methylpyrrolidone–ionic liquid solution for microbial lipid production. Green Chemistry, 14, 1202–1210.

    Article  Google Scholar 

  203. Procentese, A., Johnson, E., Orr, V., Campanile, A. G., Wood, J. A., Marzocchella, A., & Rehmann, F. (2015). Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresource Technology, 92, 31–36.

    Article  Google Scholar 

  204. Xu, G. C., Ding, J. C., Han, R. Z., Dong, J. J., & Ni, Y. (2016). Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresource Technology, 203, 364–369.

    Article  Google Scholar 

  205. Zhang, W. C., Xia, S. Q., & Ma, P. S. (2016). Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource Technology, 219, 1–5.

    Article  Google Scholar 

  206. Sundstrom, E., Yaegashi, J., Yan, J., Masson, F., Papa, G., Rodriguez, A., Mirsiaghi, M., Liang, L., He, Q., Tanjore, D., Pray, T. R., Singh, S., Simmons, B., Sun, N., Magnuson, J., & Gladden, J. (2018). Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels. Green Chemistry, 20, 2870–2879.

    Article  Google Scholar 

  207. Koo, B. W., Min, B. C., Gwak, K. S., Lee, S. M., Choi, J. W., Yeo, H., & Choi, I. G. (2012). Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass & Bioenergy, 42, 24–32.

    Article  Google Scholar 

  208. Mesa, L., González, E., Cara, C., González, M., Castro, E., & Mussatto, S. I. (2011). The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Journal, 168, 1157–1162.

    Article  Google Scholar 

  209. Qing, Q., Zhou, L. L., Guo, Q., Gao, X. H., Zhang, Y., He, Y. C., & Zhang, Y. (2017). Mild alkaline presoaking and organosolv pretreatment of corn stover and their impacts on corn stover composition, structure, and digestibility. Bioresource Technology, 233, 284–290.

    Article  Google Scholar 

  210. Ostovareh, S., Karimi, K., & Zamani, A. (2015). Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment. Industrial Crops and Products, 66, 170–177.

    Article  Google Scholar 

  211. He, Y. C., Liu, F., Gong, L., Lu, T., Ding, Y., Zhang, D. P., Qing, Q., & Zhang, Y. (2015). Improving enzymatic hydrolysis of corn stover pretreated by ethylene glycol-perchloric acid-water mixture. Applied Biochemistry and Biotechnology, 175, 1306–1317.

    Article  Google Scholar 

  212. Liu, J., Takada, R., Karita, S., Watanabe, T., Honda, Y., & Watanabe, T. (2010). Microwave-assisted pretreatment of recalcitrant softwood in aqueous glycerol. Bioresource Technology, 101, 9355–9360.

    Article  Google Scholar 

  213. He, Y. C., Liu, F., Di, J. H., Ding, Y., Tao, Z. C., Zhu, Z. Z., Wu, Y. Q., Chen, L., Wang, C., Xue, Y. F., Chong, G. G., & Ma, C. L. (2016). Effective enzymatic saccharification of dilute NaOH extraction of chestnut shell pretreated by acidified aqueous ethylene glycol media. Industrial Crops and Products, 81, 129–138.

    Article  Google Scholar 

  214. Novo, L. P., Gurgel, L. V. A., Marabezi, K., & da Silva Curvelo, A. A. (2011). Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification. Bioresource Technology, 102, 10040–10046.

    Article  Google Scholar 

  215. Zhang, T., Zhou, Y. J., Liu, D. L., & Petrus, L. (2007). Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresource Technology, 98, 1454–1459.

    Article  Google Scholar 

  216. Biganska, O., & Navard, P. (2009). Morphology of cellulose objects regenerated from cellulose-N-methy morpholine N-oxide-water solutions. Cellulose, 16, 179–188.

    Article  Google Scholar 

  217. Li, Q., Ji, G. S., Tang, Y. B., Gu, X. D., Fei, J. J., & Jiang, H. Q. (2012). Ultrasound-assisted compatible in situ hydrolysis of sugarcane bagasse in cellulase-aqueous–N-methylmorpholine-N-oxide system for improved saccharification. Bioresource Technology, 107, 251–257.

    Article  Google Scholar 

  218. He, Y. C., Xia, D. Q., Ma, C. L., Gong, L., Gong, T., Wu, M. X., Zhang, Y., Tang, Y. J., Xu, J. H., & Liu, Y. Y. (2013). Enzymatic saccharification of sugarcane baggage by N-methylmorpholine-N-oxide-tolerant cellulase from a newly isolated Galactomyces sp. CCZU11-1. Bioresource Technology, 135, 18–22.

    Article  Google Scholar 

  219. Alizadeh, H., Teymouri, F., Gilbert, T. I., & Dale, B. E. (2005). Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Applied Biochemistry and Biotechnology, 121–124, 1133.

    Article  Google Scholar 

  220. Bals, B., Wedding, C., Balan, V., Sendich, E., & Dale, B. (2011). Evaluating the impact of ammonia fibre expansion (AFEX) pretreatment conditions on the cost of ethanol production. Bioresource Technology, 102, 1277–1283.

    Article  Google Scholar 

  221. Kim, T. H., & Lee, Y. Y. (2005). Pretreatment of corn stover by soaking in aqueous ammonia. Applied Biochemistry and Biotechnology, 124, 1119–1131.

    Article  Google Scholar 

  222. Xue, Y. P., Jin, M., Orjuela, A., Slininger, P. J., Dien, B. S., Dale, B. E., & Balan, V. (2015). Microbial lipid production from AFEX™ pretreated corn stover. RSC Advances, 5, 28725–28734.

    Article  Google Scholar 

  223. Kyoungheon, K., & Hong, J. (2001). Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technology, 77, 139–144.

    Article  Google Scholar 

  224. Gu, T., Held, M. A., & Faik, A. (2013). Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. Environ Technol (United Kingdom), 34, 1735–1749.

    Google Scholar 

  225. Duarte, S. H., dos Santos, P., Michelon, M., de Pinho Oliveira, S. M., Martínez, J., & Maugeri, F. (2017). Recovery of yeast lipids using different cell disruption techniques and supercritical CO2 extraction. Biochemical Engineering Journal, 125, 230–237.

    Article  Google Scholar 

  226. Zheng, Y., Lin, H. M., Wen, J., Cao, N., Yu, X., & Tsao, G. T. (1995). Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnology Letters, 17, 845–850.

    Article  Google Scholar 

  227. Srinivasan, N., & Ju, L. K. (2010). Pretreatment of guayule biomass using supercritical carbon dioxide-based method. Bioresource Technology, 101, 9785–9791.

    Article  Google Scholar 

  228. Howlader, M. S., French, W. T., Shields-Menard, S. A., Amirsadeghi, M., Green, M., & Rai, N. (2017). Microbial cell disruption for improving lipid recovery using pressurized CO2: Role of CO2 solubility in cell suspension, sugar broth, and spent media. Biotechnology Progress, 33, 737–748.

    Article  Google Scholar 

  229. Laser, M., Schulman, D., Allen, S. G., Lichwa, J., Antal, M. J., & Lynd, L. R. (2002). A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for conversion to ethanol. Bioresource Technology, 81, 33–44.

    Article  Google Scholar 

  230. Wei, Z., Zeng, G., Huang, F., Kosa, M., Sun, Q., Meng, X., Huang, D., & Ragauskas, A. J. (2015). Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates. Applied Microbiology and Biotechnology, 99, 7369–7377.

    Article  Google Scholar 

  231. Banerjee, S., Sen, R., Pandey, R. A., Chakrabarti, T., Satpute, D., Giri, B. S., & Mudliar, S. (2009). Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenerg, 33, 1680–1686.

    Article  Google Scholar 

  232. Bjerre, A. B., Olesen, A. B., Fernqvist, T., Plöger, A., & Schmidt, A. S. (1996). Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering, 49, 568–577.

    Article  Google Scholar 

  233. Hammel, K. E., Kapich, A. N., Jensen, K. A., Jr., & Ryan, Z. C. (2002). Reactive oxygen species as agents of wood decay by fungi. Enzyme and Microbial Technology, 30, 445–453.

    Article  Google Scholar 

  234. Lucas, M., Hanson, S. K., Wagner, G. L., Kimball, D. B., & Rector, K. D. (2012). Evidence for room temperature delignification of wood using hydrogen peroxide and manganese acetate as a catalyst. Bioresource Technology, 119, 174–180.

    Article  Google Scholar 

  235. Martín, C., Thomsen, M. H., Hauggaard-Nielsen, H., & Thomsen, A. B. (2008). Wet oxidation pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover–ryegrass mixtures. Bioresource Technology, 99, 8777–8782.

    Article  Google Scholar 

  236. Nakamura, Y., Daidai, M., & Kobayashi, F. (2004). Ozonolysis mechanism of lignin model compounds and microbial treatment of organic acids produced. Water Science & Technology A Journal of the International Association on Water Pollution Research, 50, 167.

    Article  Google Scholar 

  237. Saha, B. C., & Cotta, M. A. (2007). Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme & Microbial Technology, 41, 528–532.

    Article  Google Scholar 

  238. Yu, J., Zhang, J. B., He, J., Liu, Z. D., & Yu, Z. N. (2009). Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresource Technology, 100, 903–908.

    Article  Google Scholar 

  239. Cao, W. X., Sun, C., Liu, R. H., Yin, R. Z., & Wu, X. W. (2012). Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresource Technology, 111, 215–221.

    Article  Google Scholar 

  240. Azzam, A. M. (1989). Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes; (USA), 24, 421–433.

    Article  Google Scholar 

  241. Sheikh, M. M. I., Kim, C. H., Park, H. H., Nam, H. G., Lee, G. S., Jo, H. S., Lee, J. Y., & Kim, J. W. (2015). A synergistic effect of pretreatment on cell wall structural changes in barley straw (Hordeum vulgare L) for efficient bioethanol production. Journal of Science of Food and Agriculture, 95, 843–850.

    Article  Google Scholar 

  242. Shi, Y., Huang, C., Rocha, K. C., El-Din, M. G., & Liu, Y. (2015). Treatment of oil sands process-affected water using moving bed biofilm reactors: With and without ozone pretreatment. Bioresource Technology, 192, 219–227.

    Article  Google Scholar 

  243. Arvaniti, E., Bjerre, A. B. A., & Schmidt, J. E. (2012). Wet oxidation pretreatment of rape straw for ethanol production. Biomass and Bioeenergy, 39, 94–105.

    Article  Google Scholar 

  244. Chaturvedi, V., & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. Biotech, 3, 415–431.

    Google Scholar 

  245. Szijártó, N., Kádár, Z., Varga, E., Thomsen, A. B., Costaferreira, M., & Réczey, K. (2009). Pretreatment of reed by wet oxidation and subsequent utilization of the pretreated fibers for ethanol production. Applied Biochemistry and Biotechnology, 155, 83–93.

    Article  Google Scholar 

  246. Varga, E., Schmidt, A. S., Réczey, K., & Thomsen, A. B. (2003). Pretreatment of corn Stover using wet oxidation to enhance enzymatic digestibility. Applied Biochemistry & Biotechnology, 104, 37–50.

    Article  Google Scholar 

  247. Panagiotou, G., & Olsson, L. (2007). Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnology and Bioengineering, 96, 250–258.

    Article  Google Scholar 

  248. Klinke, H. B., Ahring, B. K., Schmidt, S. S., & Thomsen, A. B. (2002). Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology, 82, 15–26.

    Article  Google Scholar 

  249. Banerjee, S., Sen, R., Mudliar, S., Pandey, R. A., Chakrabarti, T., & Satpute, D. (2011). Alkaline peroxide assisted wet air oxidation pretreatment approach to enhance enzymatic convertibility of rice husk. Biotechnology Progress, 27, 691–697.

    Article  Google Scholar 

  250. Crowe, J. D., Li, M., Williams, D. L., Smith, A. D., Liu, T., & Hodge, D. B. (2019). Alkaline and alkaline-oxidative pretreatment and hydrolysis of herbaceous biomass for growth of Oleaginous microbes. Microbial Lipid Production, 1995, 173–182.

    Article  Google Scholar 

  251. Tengborg, C., Galbe, M., & Zacchi, G. (2001). Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme and Microbial Technology, 28, 835–844.

    Article  Google Scholar 

  252. Lorente, E., Farriol, X., & Salvadó, J. (2015). Steam explosion as a fractionation step in biofuel production from microalgae. Fuel Processing Technology, 131, 93–98.

    Article  Google Scholar 

  253. Aguiar, A., Gavioli, D., & Ferraz, A. (2013). Extracellular activities and wood component losses during Pinus taeda biodegradation by the brown-rot fungus Gloeophyllum trabeum. International Biodeterioration & Biodegradation, 82, 187–191.

    Article  Google Scholar 

  254. Cianchetta, S., Maggio, B. D., Burzi, P. L., & Galletti, S. (2014). Evaluation of selected white-rot fungal isolates for improving the sugar yield from wheat straw. Applied Biochemistry and Biotechnology, 173, 609–623.

    Google Scholar 

  255. Guerra, A., Mendonça, R., & Ferraz, A. (2003). Molecular weight distribution of wood components extracted from Pinus taeda biotreated by Ceriporiopsis subvermispora. Enzyme and Microbial Technology, 33, 12–18.

    Article  Google Scholar 

  256. Koray Gulsoy, S., & Eroglu, H. (2011). Biokraft pulping of European black pine with Ceriporiopsis subvermispora. International Biodeterioration & Biodegradation, 65, 644–648.

    Article  Google Scholar 

  257. Larran, A., Jozami, E., Vicario, L., Feldman, S. R., Podestá, F. E., & Permingeat, H. R. (2015). Evaluation of biological pretreatments to increase the efficiency of the saccharification process using Spartina argentinensis as a biomass resource. Bioresource Technology, 194, 320–325.

    Article  Google Scholar 

  258. Monrroy, M., Ortega, I., Ramírez, M., Baeza, J., & Freer, J. (2011). Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzyme and Microbial Technology, 49, 472–477.

    Article  Google Scholar 

  259. Ahmad, M., Taylor, C. R., Pink, D., Burton, K., Eastwood, D., Bending, G. D., & Bugg, T. D. (2010). Development of novel assays for lignin degradation: Comparative analysis of bacterial and fungal lignin degraders. Molecular BioSystems, 6(5), 815–821.

    Article  Google Scholar 

  260. Chen, Y., Ding, Y., Yang, L., Yu, J., Liu, G., Wang, X., Zhang, S., Yu, D., Song, L., & Zhang, H. (2013). Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Rresearch, 42(2), 1052–1064.

    Article  Google Scholar 

  261. Dai, Y. Z., Si, M. Y., Chen, Y. H., Zhang, N. L., Zhou, M., Liao, Q., Shi, D. Q., & Liu, Y. N. (2015). Combination of biological pretreatment with NaOH/Urea pretreatment at cold temperature to enhance enzymatic hydrolysis of rice straw. Bioresource Technology, 198, 725–731.

    Article  Google Scholar 

  262. Guillén, F., Martínez, M. J., Gutiérrez, A., & Del Rio, J. (2005). Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8, 195–204.

    Google Scholar 

  263. Sainsbury, P. D., Hardiman, E. M., Ahmad, M., Otani, H., Seghezzi, N., Eltis, L. D., & Bugg, T. D. H. (2013). Breaking down lignin to high-value chemicals: The conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chemical Biology, 8(10), 151–156.

    Article  Google Scholar 

  264. Salvachúa, D., Karp, E. M., Nimlos, C. T., Vardon, D. R., & Beckham, G. T. (2015). Towards lignin consolidated bioprocessing: Simultaneous lignin depolymerization and product generation by bacteria. Green Chemistry, 17, 4951–4967.

    Article  Google Scholar 

  265. Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtaś-Wasilewska, M., Cho, N. S., Hofrichter, M., & Rogalski, J. (1999). Biodegradation of lignin by white rot Fungi. Fungal Genetics and Biology, 27, 175–185.

    Article  Google Scholar 

  266. Pérez, J., Muñozdorado, J., de la Rubia, T., & Martínez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology the Official Journal of the Spanish Society for Microbiology, 5, 53–63.

    Google Scholar 

  267. Tien, M., & Kirk, T. (1983). Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science, 221, 661.

    Article  Google Scholar 

  268. Tišma, M., Planinić, M., Bucić-Kojić, A., Panjičko, M., Zupančič, G. D., & Zelić, B. (2018). Corn silage fungal-based solid-state pretreatment for enhanced biogas production in anaerobic co-digestion with cow manure. Bioresource Technology, 253, 220–226.

    Article  Google Scholar 

  269. Aguiar, A., Souza-Cruz, P. B. D., & Ferraz, A. (2006). Oxalic acid, Fe3+-reduction activity and oxidative enzymes detected in culture extracts recovered from Pinus taeda wood chips biotreated by Ceriporiopsis subvermispora. Enzyme and Microbial Technology, 38, 873–878.

    Article  Google Scholar 

  270. Sanchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27, 185–194.

    Article  Google Scholar 

  271. Saratale, G. D., Chien, L. J., & Chang, J. S. (2010). Enzymatic treatment of lignocellulosic wastes for anaerobic digestion and bioenergy production. In Environmental anaerobic technology applications and new developments (pp. 279–308). London: World Scientific Pub. Co. Inc.

    Chapter  Google Scholar 

  272. Schilling, J. S., Tewalt, J. P., & Duncan, S. M. (2009). Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Applied Microbiology and Biotechnology, 84, 465.

    Article  Google Scholar 

  273. de Gonzalo, G. D. I., Habib, M. H., & Fraaije, M. W. (2016). Bacterial enzymes involved in lignin degradation. Journal of Biotechnology, 236, 110–119.

    Article  Google Scholar 

  274. Ma, K., & Ruan, Z. (2015). Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi. Bioresource Technology, 175, 586–593.

    Article  Google Scholar 

  275. Godden, B., Ball, A. S., Helvenstein, P., Mccarthy, A. J., & Penninckx, M. J. (1992). Towards elucidation of the lignin degradation pathway in actinomycetes. Journal of General Microbiology, 138, 2441–2448.

    Article  Google Scholar 

  276. Wältermann, M., Luftmann, H., Baumeister, D., Kalscheuer, R., & Steinbüchel, A. (2000). Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids. Microbiology, 146(5), 1143–1149.

    Article  Google Scholar 

  277. Ma, F., Yang, N., Xu, C., Yu, H., Wu, J., & Zhang, X. (2010). Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresource Technology, 101, 9600–9604.

    Article  Google Scholar 

  278. Asadi, N., & Zilouei, H. (2017). Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresource Technology, 227, 335–344.

    Article  Google Scholar 

  279. Feng, R., Zaidi, A. A., Zhang, K., & Shi, Y. (2018). Optimization of microwave pretreatment for biogas enhancement through anaerobic digestion of microalgal biomass. Periodica Polytechnica, Chemical Engineering, 63, 65–72.

    Article  Google Scholar 

  280. Koupaie, E. H., Dahadha, S., BazyarLakeh, A. A., Azizi, A., & Elbeshbishy, E. (2019). Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production – A review. Journal of Environmental Management, 233, 774–784.

    Article  Google Scholar 

  281. Hashemi, S. S., Karimi, K., & Mirmohamadsadeghi, S. (2019). Hydrothermal pretreatment of safflower straw to enhance biogas production. Energy, 172, 545–554.

    Article  Google Scholar 

  282. Houtman, C. J., Maligaspe, E., Hunt, C. G., Fernández-Fueyo, E., Martínez, A. T., & Hammel, K. E. (2018). Fungal lignin peroxidase does not produce the veratryl alcohol cation radical as a diffusible ligninolytic oxidant. The Journal of Biological Chemistry, 293, 4702–4712.

    Article  Google Scholar 

  283. Parveen, K., Diane, M., Barrett, M., Delwiche, J., & Pieter, S. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48, 3713–3729.

    Article  Google Scholar 

  284. Taherdanak, M., Zilouei, H., & Karimi, K. (2016). The inflfluence of dilute sulfuric acid pretreatment on biogas production form wheat plant. International Journal of Green Energy, 13, 1129–1134.

    Article  Google Scholar 

  285. Wright, J. D. (1988). Ethanol from biomass by enzymatic hydrolysis. Chemical Engineering Progress, 84, 8.

    Google Scholar 

  286. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, 1959–1966.

    Article  Google Scholar 

  287. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresource Technology, 96, 2026–2032.

    Article  Google Scholar 

  288. Xu, Z. Y., & Huang, F. (2014). Pretreatment methods for bioethanol production. Applied Biochemistry and Biotecnology, 174, 43–62.

    Article  Google Scholar 

Download references

Acknowledgments

The funding supports of this research by the National Natural Science Foundation of China (No. 21978072), New Engineering Research and Practice project of China (No. E-SWYY20202513), and the Open Project of State Key Laboratory of Biocatalysis and Enzyme Engineering (China) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Cai He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, CL., He, YC. (2021). Microbial Lipid Production from Lignocellulosic Biomass Pretreated by Effective Pretreatment. In: Liu, ZH., Ragauskas, A. (eds) Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities. Springer, Cham. https://doi.org/10.1007/978-3-030-65584-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65584-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65583-9

  • Online ISBN: 978-3-030-65584-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics