Skip to main content
Log in

Enhanced Lignin Biodegradation by a Laccase-Overexpressed White-Rot Fungus Polyporus brumalis in the Pretreatment of Wood Chips

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The laccase gene of Polyporus brumalis was genetically transformed to overexpress its laccase. The transformants exhibited increased laccase activity and effective decolorization of the dye Remazol Brilliant Blue R than the wild type. When the transformants were pretreated with wood chips from a red pine (softwood) and a tulip tree (hardwood) for 15 and 45 days, they showed higher lignin-degradation activity as well as higher wood-chip weight loss than the wild type. When the wood chips treated with the transformant were enzymatically saccharified, the highest sugar yields were found to be 32.5 % for the red pine wood and 29.5 % for the tulip tree wood, on the basis of the dried wood weights, which were 1.6-folds higher than those for the wild type. These results suggested that overexpression of the laccase gene from P. brumalis significantly contributed to the pretreatment of lignocellulose for increasing sugar yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O'Hare, M., & Kammen, D. M. (2006). Science, 311, 506–508.

    Article  CAS  Google Scholar 

  2. Mosier, N. S., Wyman, C. E., Dale, B. E., Elander, R., Holtzapple, M., & Ladisch, M. R. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  3. Jung, Y. H., Kim, S., Yang, T. H., Lee, H. J., Seung, D., Park, Y. C., et al. (2012). Bioprocess and Biosystems Engineering, 35(9), 1497–1503.

    Article  CAS  Google Scholar 

  4. Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., & Tanaka, T. (2005). Journal of Bioscience and Bioengineering, 100, 637–643.

    Article  CAS  Google Scholar 

  5. Yu, J., Zhang, J., He, J., Liu, Z., & Yu, Z. (2009). Bioresource Technology, 100, 903–908.

    Article  CAS  Google Scholar 

  6. Keller, F., Hamilton, J., & Nguyen, Q. (2003). Applied Biochemistry and Biotechnology, 105, 27–41.

    Article  Google Scholar 

  7. Yu, H., Guo, G., Zhang, X., Yan, K., & Xu, C. (2009). Bioresource Technology, 100, 5170–5175.

    Article  CAS  Google Scholar 

  8. Wan, C., & Li, Y. (2010). Enzyme and Microbial Technology, 47, 31–36.

    Article  CAS  Google Scholar 

  9. Kirk, T. K., Connors, W. J., Bleam, R. D., Hackett, W. F., & Zeikus, J. G. (1975). Proceedings of the National Academy of Sciences of the United States of America, 72, 2515–2519.

    Article  CAS  Google Scholar 

  10. Kirk, T. K., & Farrell, R. L. (1987). Annual Review of Microbiology, 41, 465–505.

    Article  CAS  Google Scholar 

  11. Guerra, A., Mendonça, R., & Ferraz, A. (2002). Holzforschung, 56, 157–160.

    Article  CAS  Google Scholar 

  12. Wan, C., & Li, Y. (2011). Bioresource Technology, 102, 9788–9793.

    Article  CAS  Google Scholar 

  13. Lee, S. M., Park, K. R., Lee, S. S., Kim, M., & Choi, I. G. (2005). Mokchae Konghak, 33, 48–57.

    Google Scholar 

  14. Lee, S. M., Lee, J. W., Koo, B. W., Kim, M. K., Choi, D. H., & Choi, I. G. (2007). Biotechnology and Bioengineering, 97, 1516–1522.

    Article  CAS  Google Scholar 

  15. Leem, Y., Kim, S., Ross, I., & Choi, H. (1999). FEMS Microbiology Letters, 172, 35–40.

    Article  CAS  Google Scholar 

  16. Yeo, S., Park, N., Song, H. G., & Choi, H. T. (2007). Journal of Microbiology, 45, 213–218.

    CAS  Google Scholar 

  17. Ross, I. K. (1982). Journal of General Microbiology, 128, 2763–2770.

    CAS  Google Scholar 

  18. Bradford, M. K. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. TAPPI method T 222 om-83 (1999). Acid-insoluble lignin in wood and pulp. In Test Methods 1998–1999. Atlanta: TAPPI Press.

  20. Punt, P. J., Kramer, C., Kuyvenhoven, A., Pouwels, P. H., & van den Hondel, C. A. (1992). Gene, 120, 67–73.

    Article  CAS  Google Scholar 

  21. Ryu, S. H., Lee, A. Y., & Kim, M. (2008). Journal of Microbiology, 46, 62–69.

    Article  CAS  Google Scholar 

  22. Kum, H. W., Kim, M., & Choi, H. T. (2009). Journal of Microbiology, 49, 824–827.

    Article  Google Scholar 

  23. Pazarlioglu, N. K., Akkaya, A., Akdogan, H. A., & Gungor, B. (2010). Water Environmental Research, 82, 579–585.

    Article  CAS  Google Scholar 

  24. Sathishkumar, P., Murugesan, K., & Palvannan, T. (2010). Journal of Basic Microbiology, 50, 360–367.

    Article  CAS  Google Scholar 

  25. Saşmaz, S., Gedikli, S., Aytar, A. P., Güngörmedi, G., Çabuk, A., Hür, E., et al. (2011). Applied Biochemistry and Biotechnology, 163, 346–361.

    Article  Google Scholar 

  26. Kim, H. W., Lee, S. S., Ryu, S. H., & Choi, H. T. (2012). Applied Biochemistry and Biotechnology, 166, 159–164.

    Article  CAS  Google Scholar 

  27. Xu, F. (1996). Biochemistry, 35, 7607–7614.

    Google Scholar 

  28. Husain, Q. (2006). Critical Reviews in Biotechnology, 26, 201–221.

    Article  CAS  Google Scholar 

  29. Wunch, K. G., Feibelman, T., & Bennett, J. W. (1997). Applied Microbiology and Biotechnology, 47, 620–624.

    Article  CAS  Google Scholar 

  30. Yang, Y., Ma, F., Yu, H., Fan, F., Wan, X., & Zhang, X. (2011). Biochemical Engineering Journal, 57, 13–22.

    Article  Google Scholar 

  31. Grinhut, T., Salame, T. M., Chen, Y., & Hadar, Y. (2011). Applied Microbiology and Biotechnology, 91, 1131–1140.

    Article  CAS  Google Scholar 

  32. Glenn, J. K., & Gold, M. H. (1983). Applied and Environmental Microbiology, 46, 1741–1747.

    Google Scholar 

  33. Pasti, M. B., & Crawford, D. L. (1991). Canadian Journal of Microbiology, 37, 902–907.

    Article  CAS  Google Scholar 

  34. Mechichi, T., Mhiri, N., & Sayadi, S. (2006). Chemosphere, 64, 998–1005.

    Article  CAS  Google Scholar 

  35. Hwang, S. S., Lee, S. J., Kim, H. K., Ka, J. O., Kim, K. J., & Song, H. G. (2008). Journal of Microbiology and Biotechnology, 18, 1819–1825.

    CAS  Google Scholar 

  36. Lee, J. W., Gwak, K. S., Park, J. Y., Park, M. J., Choi, D. H., Kwon, M., et al. (2007). Journal of Microbiology, 45, 485–491.

    CAS  Google Scholar 

  37. Liew, C. Y., Husaini, A., Hussain, H., Muid, S., Liew, K. C., & Roslan, H. A. (2011). World Journal of Microbiology and Biotechnology, 27, 1457–1458.

    Article  CAS  Google Scholar 

  38. Fengel, D., Wegner, G. (1984). Wood. Walter de Gruyter (pp 6-15).

  39. Higuchi, T. (1985). Biosynthesis and Biodegradation of Wood Components. Academic Press, INC. (pp 51-60).

  40. Kum, H. W., Lee, S. S., Ryu, S. H., & Choi, H. T. (2011). Journal of Microbiology, 49, 824–827.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out with the grant funded by Korea Forest Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myungkil Kim or Jin-Ho Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, SH., Cho, MK., Kim, M. et al. Enhanced Lignin Biodegradation by a Laccase-Overexpressed White-Rot Fungus Polyporus brumalis in the Pretreatment of Wood Chips. Appl Biochem Biotechnol 171, 1525–1534 (2013). https://doi.org/10.1007/s12010-013-0412-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0412-y

Keywords

Navigation