Skip to main content
Log in

Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Brown rot wood-degrading fungi distinctly modify lignocellulose and completely hydrolyze polysaccharides (saccharification), typically without secreting an exo-acting glucanase and without removing lignin. Although each step of this two-step approach evolved within the same organism, it is unknown if the early lignocellulose modifications are made to specifically facilitate their own abbreviated enzyme system or if enhancements are more general. Because commercial pretreatments are typically approached as an isolated step, answering this question has immense implication on bioprocessing. We pretreated spruce and pine blocks with one of two brown rot fungi, Gloeophyllum trabeum or Fomitopsis pinicola. Wood harvested at weeks 1, 2, 4, and 8 showed a progression of weight loss from time zero due to selective carbohydrate removal. Hemicellulose losses progressed faster than cellulose loss. This “pretreated” material was then saccharified with commercially relevant Trichoderma reesei cellulases or with cellulases from the brown rot fungi responsible for degrading the wood to test for synergy. With increased decay, a significant increase in saccharification efficiency was apparent but not limited to same-species enzyme sources. We also calculated total sugar yields, and calculations that compensate for sugars consumed by fungi suggest a shorter residence time for fungal colonization than calculations based solely on saccharification yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adney B, Baker J (1996) Measurement of cellulase activities. LAP-006 NREL Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden. www.nrel.gov/biomass/pdfs/42628.pdf

  • Agosin E, Jarpa S, Rojas E, Espejo E (1989) Solid-state fermentation of pine sawdust by selected brown-rot fungi. Enzym Microb Tech 11:511–517

    Article  CAS  Google Scholar 

  • American Society for Testing and Materials (ASTM) (1994) Standard method of accelerated laboratory test of natural decay resistance of woods (D 1413-76). In: 1994 annual book of standards. Sect. 4 Vol. 04.10. American Society for Testing and Materials, Philadelphia, pp 218–224

  • Bhat M, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620

    Article  CAS  PubMed  Google Scholar 

  • Bradner JR, Sidhu RK, Gillings M, Nevalainen KMH (1999) Hemicellulase activity of Antarctic microfungi. J Appl Microbiol 87:366–370

    Article  CAS  PubMed  Google Scholar 

  • Brown L, Torget R (1995) Enzymatic saccharification of lignocellulosic biomass. LAP-009 NREL Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden. www.eere.energy.gov/biomass/analytical_procedures.html#LAP-009

  • Cohen R, Suzuki MR, Hammel KE (2005) Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71:2414–2417

    Article  CAS  Google Scholar 

  • Curling SF, Clausen CA, Winandy JE (2002) Relationships between mechanical properties, weight loss, and chemical composition of wood during incipient brown-rot decay. Forest Prod J 52:34–39

    CAS  Google Scholar 

  • Daniel G, Volc J, Filonova L, Plihad O, Kubatova E, Halada P (2007) Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl Environ Microbiol 73:6241–6253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson KE, Hamp SG (1978) Regulation of Endo-1, 4-β-glucanase production in Sporotrichum pulverulentum. Eur J Biochem 90:183–190

    Article  CAS  PubMed  Google Scholar 

  • Eriksson K, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, London

    Book  Google Scholar 

  • Filley TR, Cody GD, Goodell B, Jellison J, Noser C, Ostrofsky A (2002) Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem 33:111–124

    Article  CAS  Google Scholar 

  • Fluornoy DS, Kirk TK, Highley TL (1991) Wood decay by brown-rot fungi: changes in pore structure and cell wall volume. Holzforschung 45:383–388

    Article  Google Scholar 

  • Gilbertson RL, Ryvarden L (1986) North American polypores. Vol. 1. Fungiflora, Oslo

    Google Scholar 

  • Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53:133–162

    Article  CAS  Google Scholar 

  • Henrissat B, Driguez H, Viet C, Shulein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio/Technology 3:722–726

    Article  CAS  Google Scholar 

  • Hibbett DS, Donoghue MJ (2001) Analysis of correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Syst Biol 50:215–242

    Article  CAS  PubMed  Google Scholar 

  • Highley TL (1973) Influence of carbon source on cellulase activity of white- and brown-rot fungi. Wood Fiber Sci 5:50–58

    CAS  Google Scholar 

  • Highley TL (1980) Cellulose degradation by cellulose-clearing and non-cellulose-clearing brown-rot fungi. Appl Environ Microbiol 40:1145–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  • Howell C, Steenkjaer Hastrup AC, Goodell B, Jellison J (2009) Temporal changes in wood crystalline cellulose during degradation by brown rot fungi. Int Biodeterior Biodegrad. doi:https://doi.org/10.1016/j.ibiod.2008.11.009

    Article  CAS  Google Scholar 

  • Hyde SM, Wood PM (1997) A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiology 143:259–266

    Article  CAS  PubMed  Google Scholar 

  • Jensen K, Houtman C, Ryan Z, Hammel K (2001) Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 67:2705–2711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin L, Nicholas DD, Kirk TK (1990) Mineralization of the methoxyl carbon of isolated lignin by brown-rot fungi under solid substrate conditions. Wood Sci Tech 24:263–276

    Article  CAS  Google Scholar 

  • Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145

    Article  CAS  PubMed  Google Scholar 

  • Kerem Z, Bao W, Hammel KE (1998) Rapid polyether cleavage via extracellular one-electron oxidation by a brown-rot basidiomycete. Proc Natl Acad Sci U S A 95:10373–10377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleman-Leyer K, Agosin E, Conner AH, Kirk TK (1992) Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Appl Environ Microbiol 58:1266–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JW, Kim HY, Koo BW, Choi DH, Kwon M, Choi IG (2008) Enzymatic saccharification of biologically pretreated Pinus densiflora using enzymes from brown rot fungi. J Biosci Bioeng 106:162–167

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Elander RT, Wyman C (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol 57/58:741–761

    Article  CAS  Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172

    Article  CAS  PubMed  Google Scholar 

  • Lyr H (1960) Formation of ecto-enzyme by wood-destroying and wood inhabiting fungi on various culture media. Part V. A complex medium as carbon source. Arch Microbiol 35:258–278

    CAS  Google Scholar 

  • Mansfield SD, Mooney C, Saddler JN (1999) Substrates and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816

    Article  CAS  PubMed  Google Scholar 

  • Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas F, Martinez AT, Kersten P, Hammel KE, Wymelenberg AV, Gaskell J, Lindquist E, Sabat G, BonDurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavin JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. PNAS 106:1954–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72

    Article  CAS  PubMed  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  PubMed  Google Scholar 

  • Rättö M, Ritschkoff AC, Viikari L (1997) The effect of oxidative pretreatment on cellulose degradation by Poria placenta and Trichoderma reesei cellulases. Appl Microbiol Biotechnol 48:53–57

    Article  Google Scholar 

  • Saha BC (2004) Lignocellulose biodegradation and applications in biotechnology. In: Saha BC, Hayashi K (eds) Lignocellulose biodegradation. American Chemical Society, Washington

    Chapter  Google Scholar 

  • Schilling JS, Jellison J (2006) Metal accumulation without enhanced oxalate secretion in wood degraded by brown rot fungi. Appl Environ Microbiol 72:5662–5665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. NREL/TP-510-42623 Technical Report. National Renewable Energy Laboratory, Golden. www.nrel.gov/biomass/pdfs/42623.pdf

  • Sternberg D, Mandels GR (1980) Regulation of the cellulolytic system in Trichoderma reesei by sophorose: Induction of cellulase and repression of β-glucosidase. J Bacteriol 144:1197–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Um BH, Karim MN, Henk LL (2003) Effect of sulfuric and phosphoric acid pretreatments on enzymatic hydrolysis of corn stover. Appl Biochem Biotechnol 105:115–125

    Article  PubMed  Google Scholar 

  • Valášková V, Baldrian P (2006) Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporous betulinus–production of extracellular enzymes and characterization of the major cellulases. Microbiology 152:3613–3622

    Article  PubMed  CAS  Google Scholar 

  • Varela E, Mester T, Tien M (2003) Culture conditions affecting biodegradation components of the brown-rot fungus Gloeophyllum trabeum. Arch Microbiol 180:251–256

    Article  CAS  PubMed  Google Scholar 

  • Wilcox WW (1978) Review of literature on the effect of early stages of decay on wood strength. Wood Fiber 9:252–257

    Google Scholar 

  • Winandy JE, Morell JJ (1993) Relationship between incipient decay, strength, and chemical composition of Douglas-fir heartwood. Wood Fiber Sci 25:278–288

    CAS  Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. In: Wood WA, Kellog ST (eds) Methods in enzymology. Academic, New York, pp 87–112

    Google Scholar 

  • Yelle DJ, Ralph J, Lu F, Hammel KE (2008) Evidence for cleavage of lignin by a brown rot basidomycete. Environ Microbiol 10:1844–1849

    Article  CAS  PubMed  Google Scholar 

  • Zabel RA, Morrell JJ (1992) Wood microbiology: decay and its prevention. Academic, California

    Google Scholar 

Download references

Acknowledgments

This work was supported with funding by the Initiative for Renewable Energy and the Environment (IREE), project no. SG-B12-2006, at the University of Minnesota and by the U.S. Department of Energy (DOE), project no. GO18088. The authors wish to acknowledge the analytical support given by Drs. Ulrike Tschirner and Waleed Wafa AlDajani and experimental assistance by Adam Norcutt and Ben Carrier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan S. Schilling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilling, J.S., Tewalt, J.P. & Duncan, S.M. Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Appl Microbiol Biotechnol 84, 465–475 (2009). https://doi.org/10.1007/s00253-009-1979-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1979-7

Keywords

Navigation