Skip to main content

Advertisement

Log in

Pretreatment of Reed by Wet Oxidation and Subsequent Utilization of the Pretreated Fibers for Ethanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Common reed (Phragmites australis) is often recognized as a promising source of renewable energy. However, it is among the least characterized crops from the bioethanol perspective. Although one third of reed dry matter is cellulose, without pretreatment, it resists enzymatic hydrolysis like lignocelluloses usually do. In the present study, wet oxidation was investigated as the pretreatment method to enhance the enzymatic digestibility of reed cellulose to soluble sugars and thus improve the convertibility of reed to ethanol. The most effective treatment increased the digestibility of reed cellulose by cellulases more than three times compared to the untreated control. During this wet oxidation, 51.7% of the hemicellulose and 58.3% of the lignin were solubilized, whereas 87.1% of the cellulose remained in the solids. After enzymatic hydrolysis of pretreated fibers from the same treatment, the conversion of cellulose to glucose was 82.4%. Simultaneous saccharification and fermentation of pretreated solids resulted in a final ethanol concentration as high as 8.7 g/L, yielding 73% of the theoretical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DM:

dry matter

ECC:

enzymatically converted cellulose

FPU:

filter paper unit

HPLC:

high performance liquid chromatography

IU:

international unit

SSF:

simultaneous saccharification and fermentation

WO:

wet oxidation

References

  1. den Hartog, C., Květ, J., & Sukopp, H. (1989). Aquatic botany, 35, 1–4. doi:10.1016/0304-3770(89)90062-4.

    Article  Google Scholar 

  2. Ditlhogo, M. K. M., James, R., Laurence, B. R., & Sutherland, W. J. (1992). Journal of Applied Ecology, 29, 265–276. doi:10.2307/2404495.

    Article  Google Scholar 

  3. Cowie, N., Sutherland, W. J., Ditlhogo, M. K. M., & James, R. (1992). Journal of Applied Ecology, 29, 277–284. doi:10.2307/2404496.

    Article  Google Scholar 

  4. Ostendorp, W. (1989). Aquatic Botany, 35, 5–26. doi:10.1016/0304-3770(89)90063-6.

    Article  Google Scholar 

  5. Tscharntke, T. (1992). Conservation Biology, 6, 530–536. doi:10.1046/j.1523-1739.1992.06040530.x.

    Article  Google Scholar 

  6. Rolletschek, H. (1999). Limnologica, 29, 86–92. doi:10.1016/S0075-9511(99)80043-7.

    Google Scholar 

  7. Chambers, R. M., Meyerson, L. A., & Saltonstall, K. (1999). Aquatic Botany, 64, 261–273. doi:10.1016/S0304-3770(99)00055-8.

    Article  Google Scholar 

  8. Marks, M., Lapin, B., & Randall, J. (1994). Natural Areas Journal, 14, 285–294.

    Google Scholar 

  9. Warren, R. S., Fell, P. E., Grimsby, J. L., Buck, E. L., Rilling, G. C., & Fertik, R. A. (2001). Estuaries, 24, 90–107. doi:10.2307/1352816.

    Article  Google Scholar 

  10. Allirand, J. -M., & Gosse, G. (1995). Biomass and Bioenergy, 9, 441–448. doi:10.1016/0961-9534(95)00042-9.

    Article  Google Scholar 

  11. Kauppi, P., Selkäinaho, J., & Puttonen, P. (1983). Annales Botanici Fennici, 20, 51–55.

    Google Scholar 

  12. Daniels, R. E. (1991). Aquatic Botany, 42, 41–48. doi:10.1016/0304-3770(91)90104-D.

    Article  Google Scholar 

  13. Lissner, J., & Schierup, H. -H. (1997). Aquatic Botany, 55, 247–260. doi:10.1016/S0304-3770(96)01085-6.

    Article  CAS  Google Scholar 

  14. Kühl, H., Koppitz, H., Rolletschek, H., & Kohl, J. G. (1999). Aquatic Botany, 64, 235–246. doi:10.1016/S0304-3770(99)00053-4.

    Article  Google Scholar 

  15. Hansen, D. L., Lambertini, C., Jampeetong, A., & Brix, H. (2007). Aquatic Botany, 86, 269–279. doi:10.1016/j.aquabot.2006.11.005.

    Article  Google Scholar 

  16. Granéli, W. (1989). Aquatic Botany, 35, 99–109. doi:10.1016/0304-3770(89)90070-3.

    Article  Google Scholar 

  17. Weisner, S. E. B., & Granéli, W. (1989). Aquatic Botany, 35, 71–80. doi:10.1016/0304-3770(89)90068-5.

    Article  Google Scholar 

  18. Lenssen, J. P. M., Menting, F. B. J., van der Putten, W. H., & Blom, C. W. P. M. (1999). Aquatic Botany, 64, 151–165. doi:10.1016/S0304-3770(99)00012-1.

    Article  Google Scholar 

  19. Kresovich, S., Wagner, C. K., Scantland, D. A., Groet, S. S., & Lawhon, W. T.(1981). The utilization of emergent aquatic plants for biomass energy systems development. Report to Solar Energy Research Institute, Golden, Colorado Aquatic Species Program.

  20. Kresovich, S., Wagner, C. K., Scantland, D. A., & Lawhon, W. T. (1981). Biomass, 1, 127–144. doi:10.1016/0144-4565(81)90021-4.

    Article  Google Scholar 

  21. Duke, J. A. (1983). Handbook of Energy Crops: Phragmites australis (Cav.) Trin. ex Steud. Center for New Crops and Plants Products, Purdue University, West Lafayette, IN. Available from: http://www.hort.purdue.edu/newcrop/duke_energy. Accessed: May 15, 2008.

  22. Fren, K. (1997). Plants for A Future: Edible and Useful Plants for A Healthier World. Hampshire: Permanent.

    Google Scholar 

  23. Hagelberg, E., & Lyytinen, S. (2007). in: Read Up on Reed (Ikonen, I., and Hagelberg, E., eds.), Southwest Finland Regional Environment Centre, Turku, Finland, pp. 94-101.

  24. Börjesson, P. (1999). Biomass and Bioenergy, 16, 137–154. doi:10.1016/S0961-9534(98)00080-4.

    Article  Google Scholar 

  25. Bridgeman, T. G., Jones, J. M., Shield, I., & Williams, P. T. (2008). Fuel, 87, 844–856. doi:10.1016/j.fuel.2007.05.041.

    Article  CAS  Google Scholar 

  26. Jasinskas, A., Zaltauskas, A., & Kryzeviciene, A. (2008). Biomass and Bioenergy, 32, 981–987. doi:10.1016/j.biombioe.2008.01.025.

    Article  CAS  Google Scholar 

  27. Pahkala, K., Aalto, M., Isolahti, M., Poikola, J., & Jauhiainen, L. (2008). Biomass and Bioenergy, 32, 1009–1015. doi:10.1016/j.biombioe.2008.02.004.

    Article  Google Scholar 

  28. Landström, S., Lomakka, L., & Andersson, S. (1996). Biomass and Bioenergy, 11, 333–341. doi:10.1016/0961-9534(96)00041-4.

    Article  Google Scholar 

  29. Hansson, P. A., & Fredriksson, H. (2004). Agriculture Ecosystems & Environment, 102, 365–375. doi:10.1016/j.agee.2003.08.005.

    Article  Google Scholar 

  30. Granéli, W. (1984). Biomass, 4, 183–208. doi:10.1016/0144-4565(84)90056-8.

    Article  Google Scholar 

  31. Burvall, J. (1996). Biomass and Bioenergy, 12, 149–154. doi:10.1016/S0961-9534(96)00064-5.

    Article  Google Scholar 

  32. Hadders, G., & Olsson, R. (1996). Biomass and Bioenergy, 12, 171–175. doi:10.1016/S0961-9534(96)00047-5.

    Article  Google Scholar 

  33. Björk, S., & Granéli, W. (1978). Ambio, 7, 150–156.

    Google Scholar 

  34. Monti, A., Di Virgilio, N., & Venturi, G. (2008). Biomass and Bioenergy, 32, 216–223. doi:10.1016/j.biombioe.2007.09.012.

    Article  CAS  Google Scholar 

  35. Ahring, B. K., Jensen, K., Nielsen, P., Bjerre, A. B., & Schmidt, A. S. (1996). Bioresource Technology, 58, 107–113. doi:10.1016/S0960-8524(96)00090-9.

    Article  CAS  Google Scholar 

  36. Bjerre, A. B., Olesen, A. B., Fernqvist, T., Ploger, A., & Schmidt, A. S. (1996). Biotechnology and Bioengineering, 49, 568–577. doi:10.1002/(SICI)1097-0290(19960305)49:5<568::AID-BIT10>3.0.CO;2-6.

    Article  CAS  Google Scholar 

  37. Schmidt, A. S., & Thomsen, A. B. (1998). Bioresource Technology, 64, 139–151. doi:10.1016/S0960-8524(97)00164-8.

    Article  CAS  Google Scholar 

  38. Klinke, H. B., Ahring, B. K., Schmidt, A. S., & Thomsen, A. B. (2002). Bioresource Technology, 82, 15–26. doi:10.1016/S0960-8524(01)00152-3.

    Article  CAS  Google Scholar 

  39. Varga, E., Schmidt, A. S., Réczey, K., & Thomsen, A. B. (2003). Applied Biochemistry and Biotechnology, 104, 37–50. doi:10.1385/ABAB:104:1:37.

    Article  CAS  Google Scholar 

  40. Hägglund, E. (1951). Chemistry of wood pp. 420–428. New York: Academic.

    Google Scholar 

  41. Kaar, W. E., Cool, L. G., Merriman, M. M., & Brink, D. L. (1991). Journal of Wood Chemistry and Technology, 11, 447–463. doi:10.1080/02773819108051086.

    Article  CAS  Google Scholar 

  42. Boschker, H. T. S., & Cappenberg, T. E. (1998). FEMS Microbiology Ecology, 25, 79–86. doi:10.1111/j.1574-6941.1998.tb00461.x.

    Article  CAS  Google Scholar 

  43. Szczodrak, J. (1988). Biotechnology and Bioengineering, 32, 771–776. doi:10.1002/bit.260320608.

    Article  CAS  Google Scholar 

  44. Spindler, D. D., Wyman, C. E., Grohmann, K., & Mohagheghi, A. (1989). Applied Biochemistry and Biotechnology, 20/21, 529–540. doi:10.1007/BF02936507.

    Article  Google Scholar 

  45. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268. doi:10.1351/pac198759020257.

    Article  CAS  Google Scholar 

  46. Berghem, L. E. R., & Pettersson, L. G. (1974). European Journal of Biochemistry, 46, 295–305. doi:10.1111/j.1432-1033.1974.tb03621.x.

    Article  CAS  Google Scholar 

  47. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 25–33. doi:10.1016/S0960-8524(99)00161-3.

    Article  CAS  Google Scholar 

  48. Klinke, H. B., Olsson, L., Thomsen, A. B., & Ahring, B. K. (2003). Biotechnology and Bioengineering, 81, 738–747. doi:10.1002/bit.10523.

    Article  CAS  Google Scholar 

  49. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Applied Microbiology and Biotechnology, 66, 10–26. doi:10.1007/s00253-004-1642-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the European Commission (ENK6-CT-2002-00604) and the National Research Fund of Hungary (OTKA-K72710). The Hungarian–Portuguese Intergovernmental S&T Cooperation Program (OMFB-00370/2007) is gratefully acknowledged for supporting the mobility of researchers (Costa-Ferreira, M., Kádár, Zs., and Szijártó, N.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nóra Szijártó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szijártó, N., Kádár, Z., Varga, E. et al. Pretreatment of Reed by Wet Oxidation and Subsequent Utilization of the Pretreated Fibers for Ethanol Production. Appl Biochem Biotechnol 155, 83–93 (2009). https://doi.org/10.1007/s12010-009-8549-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8549-4

Keywords

Navigation