Skip to main content

Advertisement

Log in

Lignin: untapped biopolymers in biomass conversion technologies

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Lignin is the second most abundant natural aromatic polymer after cellulose in terrestrial ecosystems. Lignins differ in structure, depending on the method of isolation and plant source. However, such differences are not considered to be limiting factors for potential industrial applications. Owing to the lack of toxicity and versatility, several potentially attractive industrial routes exist for the more effective and diverse utilization of lignin. Lignins have been proven to elicit a number of health benefits, viz., anti-inflammatory, anti-carcinogenic, antimicrobial, prebiotic and antioxidant. In addition, lignins have been widely utilised in polymeric materials, carbon fibres, fuels, construction and agriculture. Lignin by-products may be attractive also for developing a range of commercially viable products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8(12):576–581

    Article  Google Scholar 

  2. Austin AT, Ballare CL (2010) Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proc Natl Acad Sci U S A 107(10):4618–4622

    Article  Google Scholar 

  3. Foster CE, Martin TM, Pauly M (2010) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: lignin. J Vis Exp 37:e1745

    Google Scholar 

  4. Karkonen A, Koutaniemi S (2010) Lignin biosynthesis studies in plant tissue cultures. J Integr Plant Biol 52(2):176–185

    Article  Google Scholar 

  5. Broda P, Birch PRJ, Brooks PR, Sims PFG (1996) Lignocellulose degradation by Phanerochaete chrysosporium: gene families and gene expression for a complex process. Mol Microbiol 19(5):923–932

    Article  Google Scholar 

  6. Vicuna R (2000) Ligninolysis—a very peculiar microbial process. Mol Biotechnol 14(2):173–176

    Article  Google Scholar 

  7. Tuomela M, Vikman M, Hatakka A, Itavaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183

    Article  Google Scholar 

  8. Grote M, Klinnert S, Bechmann W (2000) Comparison of degradation state and stability of different humic acids by means of chemolysis with tetramethylammonium hydroxide. J Environ Monit 2(2):165–169

    Article  Google Scholar 

  9. Harayama S (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8(3):268–273

    Article  Google Scholar 

  10. Regalado V, Rodriguez A, Perestelo F, Carnicero A, dela Fuente G, Falcon MA (1997) Lignin degradation and modification by the soil-inhabiting fungus Fusarium proliferatum. Appl Environ Microbiol 63(9):3716–3718

    Google Scholar 

  11. Blaschke L, Forstreuter M, Sheppard LJ, Leith IK, Murray MB, Polle A (2002) Lignification in beech (Fagus sylvatica) grown at elevated CO2 concentrations: interaction with nutrient availability and leaf maturation. Tree Physiol 22(7):469–477

    Article  Google Scholar 

  12. Neutelings G (2011) Lignin variability in plant cell walls: contribution of new models. Plant Sci 181(4):379–386

    Article  Google Scholar 

  13. Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154(2):555–561

    Article  Google Scholar 

  14. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3(1):2–20

    Article  Google Scholar 

  15. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  Google Scholar 

  16. Grabber JH, Lu FC (2007) Formation of syringyl-rich lignins in maize as influenced by feruloylated xylans and p-coumaroylated monolignols. Planta 226(3):741–751

    Article  Google Scholar 

  17. Huttermann A, Mai C, Kharazipour A (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biot 55(4):387–394

    Article  Google Scholar 

  18. Hatfield RD, Chaptman AK (2009) Comparing-corn types for differences in cell wall characteristics and p-coumaroylation of lignin. J Agric Food Chem 57(10):4243–4249

    Article  Google Scholar 

  19. Martone PT, Estevez JM, Lu FC, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19(2):169–175

    Article  Google Scholar 

  20. Uzal EN, Ros LVG, Pomar F, Bernal MA, Paradela A, Albar JP, Barcelo AR (2009) The presence of sinapyl lignin in Ginkgo biloba cell cultures changes our views of the evolution of lignin biosynthesis. Physiol Plant 135(2):196–213

    Article  Google Scholar 

  21. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153(3):895–905

    Article  Google Scholar 

  22. Weng JK, Li X, Stout J, Chapple C (2008) Independent origins of syringyl lignin in vascular plants. Proc Natl Acad Sci U S A 105(22):7887–7892

    Article  Google Scholar 

  23. Bose SK, Francis RC, Govender M, Bush T, Spark A (2009) Lignin content versus syringyl to guaiacyl ratio amongst poplars. Bioresour Technol 100(4):1628–1633

    Article  Google Scholar 

  24. Lam TBT, Kadoya K, Iiyama K (2001) Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the beta-position, in grass cell walls. Phytochemistry 57(6):987–992

    Article  Google Scholar 

  25. Boyce CK, Zwieniecki MA, Cody GD, Jacobsen C, Wirick S, Knoll AH, Holbrook NM (2004) Evolution of xylem lignification and hydrogel transport regulation. Proc Natl Acad Sci U S A 101(50):17555–17558

    Article  Google Scholar 

  26. Peter G, Neale D (2004) Molecular basis for the evolution of xylem lignification. Curr Opin Plant Biol 7(6):737–742

    Article  Google Scholar 

  27. Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    Article  Google Scholar 

  28. Jeffries TW (1994) Biodegradation of lignin and hemicelluloses. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer Academic, Dordrecht, pp 233–277

    Chapter  Google Scholar 

  29. Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28(12):1883–1896

    Article  Google Scholar 

  30. Thevenot M, Dignac MF, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42(8):1200–1211

    Article  Google Scholar 

  31. Cameron MD, Aust SD (2001) Cellobiose dehydrogenase—an extracellular fungal flavocytochrome. Enzym Microb Technol 28(2–3):129–138

    Article  Google Scholar 

  32. Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78(2):93–113

    Article  Google Scholar 

  33. Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44(2):77–87

    Article  Google Scholar 

  34. Guillen F, Martinez MJ, Munoz C, Martinez AT (1997) Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Arch Biochem Biophys 339(1):190–199

    Article  Google Scholar 

  35. Dignac MF, Kogel-Knabner I, Michel K, Matzner E, Knicker H (2002) Chemistry of soil organic matter as related to C:N in Norway spruce forest (Picea abies (L.) Karst.) floors and mineral soils. J Plant Nutr Soil Sci 165(3):281–289

    Article  Google Scholar 

  36. Osono T, Takeda H (2001) Effects of organic chemical quality and mineral nitrogen addition on lignin and holocellulose decomposition of beech leaf litter by Xylaria sp. Eur J Soil Biol 37(1):17–23

    Article  Google Scholar 

  37. Li D, Alic M, Gold MH (1994) Nitrogen regulation of lignin peroxidase gene-transcription. Appl Environ Microbiol 60(9):3447–3449

    Google Scholar 

  38. Miltner A, Zech W (1998) Beech leaf litter lignin degradation and transformation as influenced by mineral phases. Org Geochem 28(7–8):457–463

    Article  Google Scholar 

  39. Bajpai P (2004) Biological bleaching of chemical pulps. Crit Rev Biotechnol 24(1):1–58

    Article  Google Scholar 

  40. Kleinert M, Barth T (2008) Towards a lignincellulosic biorefinery: direct one-step conversion of lignin to hydrogen-enriched biofuel. Energy Fuel 22(2):1371–1379

    Article  Google Scholar 

  41. Baurhoo B, Letellier A, Zhao X, Ruiz-Feria CA (2007) Cecal populations of lactobacilli and bifidobacteria and Escherichia coli populations after in vivo Escherichia coli challenge in birds fed diets with purified lignin or mannanoligosaccharides. Poult Sci 86(12):2509–2516

    Article  Google Scholar 

  42. Baurhoo B, Phillip L, Ruiz-Feria CA (2007) Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poult Sci 86(6):1070–1078

    Google Scholar 

  43. Nadif A, Hunkeler D, Kauper P (2002) Sulfur-free lignins from alkaline pulping tested in mortar for use as mortar additives. Bioresour Technol 84(1):49–55

    Article  Google Scholar 

  44. Zhao J, Wilkins RM (2000) Controlled release of a herbicide from matrix granules based on solvent-fractionated organosolv lignins. J Agric Food Chem 48(8):3651–3661

    Article  Google Scholar 

  45. Bujanovic BM, Goundalkar MJ, Amidon TE (2012) Increasing the value of a biorefinery based on hot-water extraction: lignin products. TAPPI J 11(1):19–26

    Google Scholar 

  46. Amidon TE, Wood CD, Shupe AM, Wang Y, Graves M, Liu SJ (2008) Biorefinery: conversion of woody biomass to chemicals, energy and materials. J Biobased Mater Biol 2(2):100–120

    Article  Google Scholar 

  47. Liu S, Amidon TE, Francis RC, Ramarao BV, Lai Y-Z, Scott GM (2006) From forest biomass to chemicals and energy. Ind Biotechnol 2:113–120

    Article  Google Scholar 

  48. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  Google Scholar 

  49. Pan XJ, Xie D, Yu RW, Saddler JN (2008) The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnol Bioeng 101(1):39–48

    Article  Google Scholar 

  50. Huijgen WJJ, Smit AT, de Wild PJ, den Uil H (2012) Fractionation of wheat straw by prehydrolysis, organosolv delignification and enzymatic hydrolysis for production of sugars and lignin. Bioresour Technol 114:389–398

    Article  Google Scholar 

  51. Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(1–2):39–48

    Article  Google Scholar 

  52. Setzer WN (2011) Lignin-derived oak phenolics: a theoretical examination of additional potential health benefits of red wine. J Mol Model 17(8):1841–1845

    Article  Google Scholar 

  53. Khitrin KS, Fuks SL, Khitrin SV, Kazienkov SA, Meteleva DS (2012) Lignin utilization options and methods. Russ J Gen Chem 82(5):977–984

    Article  Google Scholar 

  54. Ugartondo V, Mitjans M, Vinardell MP (2008) Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour Technol 99(14):6683–6687

    Article  Google Scholar 

  55. Catignani GL, Carter ME (1982) Antioxidant properties of lignin. J Food Sci 47(5):1745

    Article  Google Scholar 

  56. Lu FJ, Chu LH, Gau RJ (1998) Free radical-scavenging properties of lignin. Nutr Cancer 30(1):31–38

    Article  Google Scholar 

  57. Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins—natural antioxidants. Bioresour Technol 95(3):309–317

    Article  Google Scholar 

  58. Ugartondo V, Mitjans M, Vinardell MP (2009) Applicability of lignins from different sources as antioxidants based on the protective effects on lipid peroxidation induced by oxygen radicals. Ind Crop Prod 30(2):184–187

    Article  Google Scholar 

  59. Vinardell MP, Ugartondo V, Mitjans M (2008) Potential applications of antioxidant lignins from different sources. Ind Crop Prod 27(2):220–223

    Article  Google Scholar 

  60. Garcia A, Toledano A, Andres MA, Labidi J (2010) Study of the antioxidant capacity of Miscanthus sinensis lignins. Process Biochem 45(6):935–940

    Article  Google Scholar 

  61. Dong X, Dong MD, Lu YJ, Turley A, Lin T, Wu CQ (2011) Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Ind Crop Prod 34(3):1629–1634

    Article  Google Scholar 

  62. Pouteau C, Dole P, Cathala B, Averous L, Boquillon N (2003) Antioxidant properties of lignin in polypropylene. Polym Degrad Stab 81(1):9–18

    Article  Google Scholar 

  63. Li MF, Sun SN, Xu F, Sun RC (2012) Microwave-assisted organic acid extraction of lignin from bamboo: structure and antioxidant activity investigation. Food Chem 134(3):1392–1398

    Article  Google Scholar 

  64. Lu Q, Liu W, Yang L, Zu Y, Zu B, Zhu M, Zhang Y, Zhang X, Zhang R, Sun Z, Huang J, Zhang X, Li W (2012) Investigation of the effects of different organosolv pulping methods on antioxidant capacity and extraction efficiency of lignin. Food Chem 131(1):313–317

    Article  Google Scholar 

  65. Zhou S, Liu L, Wang B, Xu F, Sun R (2012) Microwave-enhanced extraction of lignin from birch in formic acid: structural characterization and antioxidant activity study. Process Biochem 47:1799–1806

    Google Scholar 

  66. García A, González Alriols M, Spigno G, Labidi J (2012) Lignin as natural radical scavenger. Effect of the obtaining and purification processes on the antioxidant behaviour of lignin. Biochem Eng J 67:173–185

    Article  Google Scholar 

  67. Matsushita Y, Jo E-K, Inakoshi R, Yagami S, Takamoto N, Fukushima K, Lee S-C (2013) Hydrothermal reaction of sulfuric acid lignin generated as a by-product during bioethanol production using lignocellulosic materials to convert bioactive agents. Ind Crop Prod 42:181–188

    Article  Google Scholar 

  68. Núñez-Flores R, Giménez B, Fernández-Martín F, López-Caballero ME, Montero MP, Gómez-Guillén MC (2013) Physical and functional characterization of active fish gelatin films incorporated with lignin. Food Hydrocolloids 30(1):163–172

    Article  Google Scholar 

  69. Sakagami H, Hashimoto K, Suzuki F, Ogiwara T, Satoh K, Ito H, Hatano T, Takashi Y, Fujisawa SI (2005) Molecular requirements of lignin–carbohydrate complexes for expression of unique biological activities. Phytochemistry 66(17):2108–2120

    Article  Google Scholar 

  70. Nakashima H, Murakami T, Yamamoto N, Sakagami H, Tanuma S, Hatano T, Yoshida T, Okuda T (1992) Inhibition of human immunodeficiency viral replication by tannins and related compounds. Antivir Res 18(1):91–103

    Article  Google Scholar 

  71. Nagata K, Sakagami H, Harada H, Nonoyama M, Ishihama A, Konno K (1990) Inhibition of influenza-virus infection by pine cone antitumor substances. Antivir Res 13(1):11–22

    Article  Google Scholar 

  72. Harada H, Sakagami H, Nagata K, Ohhara T, Kawazoe Y, Ishihama A, Hata N, Misawa Y, Terada H, Konno K (1991) Possible involvement of lignin structure in anti-influenza virus activity. Antivir Res 15(1):41–50

    Article  Google Scholar 

  73. Sakagami H, Kushida T, Oizumi T, Nakashima H, Makino T (2010) Distribution of lignin–carbohydrate complex in plant kingdom and its functionality as alternative medicine. Pharmacol Ther 128(1):91–105

    Article  Google Scholar 

  74. Fukuchi K, Sakagami H, Okuda T, Hatano T, Tanuma S, Kitajima K, Inoue Y, Inoue S, Ichikawa S, Nonoyama M, Konno K (1989) Inhibition of herpes simplex virus infection by tannins and related compounds. Antivir Res 11(5–6):285–297

    Article  Google Scholar 

  75. Mukoyama A, Ushijima H, Unten S, Nishimura S, Yoshihara M, Sakagami H (1991) Effect of pine seed shell extract on rotavirus and enterovirus infections. Lett Appl Microbiol 13(3):109–111

    Article  Google Scholar 

  76. Mitsuhashi S, Kishimoto T, Uraki Y, Okamoto T, Ubukata M (2008) Low molecular weight lignin suppresses activation of NF-kappa B and HIV-1 promoter. Bioorg Med Chem 16(5):2645–2650

    Article  Google Scholar 

  77. Davidson PM, Branden AL (1981) Antimicrobial activity of non-halogenated phenolic compounds. J Food Prot 44(8):623

    Google Scholar 

  78. Zemek J, Kosikova B, Augustin J, Joniak D (1979) Antibiotic properties of lignin components. Folia Microbiol 24(6):483–486

    Article  Google Scholar 

  79. Harada H, Sakagami H, Konno K, Sato T, Osawa N, Fujimaki M, Komatsu N (1988) Induction of antimicrobial activity by antitumor substances from pine cone extract of Pinus parviflora Sieb. et Zucc. Anticancer Res 8(4):581–588

    Google Scholar 

  80. Oh-Hara T, Sakagami H, Kawazoe Y, Kaiya T, Komatsu N, Ohsawa N, Fujimaki M, Tanuma S, Konno K (1990) Antimicrobial spectrum of lignin-related pine cone extracts of Pinus parviflora Sieb. et Zucc. In Vivo 4(1):7–12

    Google Scholar 

  81. Nelson JL, Alexander JW, Gianotti L, Chalk CL, Pyles T (1994) Influence of dietary fiber on microbial growth in vitro and bacterial translocation after burn injury in mice. Nutrition 10(1):32–36

    Google Scholar 

  82. Phillip L, Idziak E, Kubow S (2000) The potential use of lignin in animal nutrition, and in modifying microbial ecology of the gut. Paper presented at the Eastern Nutrition Conference, Animal Nutrition Association Canada, Montreal, Québec, Canada

  83. Bourquin LD, Garleb KA, Merchen NR, Fahe GC (1990) Effects of intake and forage level on site and extent of digestion of plant cell wall monomeric components by sheep. J Anim Sci 68(8):2479–2495

    Google Scholar 

  84. Bozin B, Mimica-Dukic N, Simin N, Anackov G (2006) Characterization of the volatile composition of essential oils of some lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J Agric Food Chem 54(5):1822–1828

    Article  Google Scholar 

  85. Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, Gorris LGM, von Wright A (1998) Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem 46(9):3590–3595

    Article  Google Scholar 

  86. Oussalah M, Caillet S, Lacroix M (2006) Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157: H7 and Listeria monocytogenes. J Food Protect 69(5):1046–1055

    Google Scholar 

  87. Pessala P, Schultz E, Kukkola J, Nakari T, Knuutinen J, Herve S, Paasivirta J (2010) Biological effects of high molecular weight lignin derivatives. Ecotoxicol Environ Safe 73(7):1641–1645

    Article  Google Scholar 

  88. Van Beneden S, Roobroeck D, Franca SC, De Neve S, Boeckx P, Hofte M (2010) Microbial populations involved in the suppression of Rhizoctonia solani AG1-1B by lignin incorporation in soil. Soil Biol Biochem 42(8):1268–1274

    Article  Google Scholar 

  89. Libralato G, Avezzu F, Ghirardini AV (2011) Lignin and tannin toxicity to Phaeodactylum tricornutum (Bohlin). J Hazard Mater 194:435–439

    Article  Google Scholar 

  90. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota—introducing the concept of prebiotics. J Nutr 125(6):1401–1412

    Google Scholar 

  91. Yu B, Tsai CC, Hsu JC, Chiou PWS (1998) Effect of different sources of dietary fibre on growth performance, intestinal morphology and caecal carbohydrases of domestic geese. Brit Poult Sci 39(4):560–567

    Article  Google Scholar 

  92. Wang Y, Marx T, Lora J, Phillip LE, McAllister TA (2009) Effects of purified lignin on in vitro ruminal fermentation and growth performance, carcass traits and fecal shedding of Escherichia coli by feedlot lambs. Anim Feed Sci Technol 151(1–2):21–31

    Article  Google Scholar 

  93. Valencia Z, Chavez ER (1997) Lignin as a purified dietary fiber supplement for piglets. Nutr Res 17(10):1517–1527

    Article  Google Scholar 

  94. Alexy P, Kosikova B, Podstranska G (2000) The effect of blending lignin with polyethylene and polypropylene on physical properties. Polymer 41(13):4901–4908

    Article  Google Scholar 

  95. Banu D, El-Aghoury A, Feldman D (2006) Contributions to characterization of poly(vinyl chloride)–lignin blends. J Appl Polym Sci 101(5):2732–2748

    Article  Google Scholar 

  96. Calgeris I, Cakmakci E, Ogan A, Kahraman MV, Kayaman-Apohan N (2012) Preparation and drug release properties of lignin–starch biodegradable films. Starch-Starke 64(5):399–407

    Article  Google Scholar 

  97. Chen P, Zhang LN, Peng SP, Liao B (2006) Effects of nanoscale hydroxypropyl lignin on properties of soy protein plastics. J Appl Polym Sci 101(1):334–341

    Article  Google Scholar 

  98. El Raghi S, Zahran RR, Gebril BE (2000) Effect of weathering on some properties of polyvinyl chloride/lignin blends. Mater Lett 46(6):332–342

    Article  Google Scholar 

  99. Gregorova A, Cibulkova Z, Kosikova B, Simon P (2005) Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym Degrad Stab 89(3):553–558

    Article  Google Scholar 

  100. Huang J, Zhang LN, Chen P (2003) Effects of lignin as a filler on properties of soy protein plastics. II. Alkaline lignin. J Appl Polym Sci 88(14):3291–3297

    Article  Google Scholar 

  101. Kai WH, He Y, Asakawa N, Inoue Y (2004) Effect of lignin particles as a nucleating agent on crystallization of poly(3-hydroxybutyrate). J Appl Polym Sci 94(6):2466–2474

    Article  Google Scholar 

  102. Kramarova Z, Alexy P, Chodak I, Spirk E, Hudec I, Kosikova B, Gregorova A, Suri P, Feranc J, Bugaj P, Duracka M (2007) Biopolymers as fillers for rubber blends. Polym Adv Technol 18(2):135–140

    Article  Google Scholar 

  103. Lepifre S, Froment M, Cazaux F, Houot S, Lourdin D, Coqueret X, Lapierre C, Baumberger S (2004) Lignin incorporation combined with electron-beam irradiation improves the surface water resistance of starch films. Biomacromolecules 5(5):1678–1686

    Article  Google Scholar 

  104. Liu F, Cao D, Xu K, Chen M (2011) Improving the mechanical properties of poly(vinyl chloride)–lignin blends. http://www.4spepro.org/view.php?article=003847-2011-09-28&category=Composites. Accessed 30th July 2012

  105. Liu F, Xu K, Chen M, Cao D (2012) The rheological and mechanical properties of PVC–lignin blends. Int Polym Proc 27(1):121–127

    Article  Google Scholar 

  106. Liu FY, Xu K, Chen MC, Cao DR (2011) The roles of polyacrylate in poly(vinyl chloride)–lignin composites. Polym Compos 32(9):1399–1407

    Article  MATH  Google Scholar 

  107. Mishra SB, Mishra AK, Kaushik NK, Khan MA (2007) Study of performance properties of lignin-based polyblends with polyvinyl chloride. J Mater Proc Technol 183(2–3):273–276

    Article  Google Scholar 

  108. Mousavioun P, George GA, Doherty WOS (2012) Environmental degradation of lignin/poly(hydroxybutyrate) blends. Polym Degrad Stab 97(7):1114–1122

    Article  Google Scholar 

  109. Ouyang WZ, Huang Y, Luo HJ, Wang DS (2012) Preparation and properties of poly(lactic acid)/cellulolytic enzyme lignin/PGMA ternary blends. Chin Chem Lett 23(3):351–354

    Article  Google Scholar 

  110. Pucciariello R, Villani V, Bonini C, D'Auria M, Vetere T (2004) Physical properties of straw lignin-based polymer blends. Polymer 45(12):4159–4169

    Article  Google Scholar 

  111. Reti C, Casetta M, Duquesne S, Bourbigot S, Delobel R (2008) Flammability properties of intumescent PLA including starch and lignin. Polym Adv Technol 19(6):628–635

    Article  Google Scholar 

  112. Rosu L, Cascaval CN, Rosu D (2009) Effect of UV radiation on some polymeric networks based on vinyl ester resin and modified lignin. Polym Test 28(3):296–300

    Article  Google Scholar 

  113. Wang H, Easteal AJ, Edmonds N (2008) Prevulcanized natural rubber latex/modified lignin dispersion for water vapour barrier coatings on paperboard packaging. Adv Mater Res 47–50:93–96

    Article  Google Scholar 

  114. Wood BM, Coles SR, Maggs S, Meredith J, Kirwan K (2011) Use of lignin as a compatibiliser in hemp/epoxy composites. Compos Sci Technol 71(16):1804–1810

    Article  Google Scholar 

  115. Wu RL, Wang XL, Li F, Li HZ, Wang YZ (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100(9):2569–2574

    Article  Google Scholar 

  116. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33(2):259–276

    Article  Google Scholar 

  117. Laycock B, Halley P, Pratt S, Werker A, Lant P (2013) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38:536–583

    Google Scholar 

  118. Johnson DK, Chornet E, Zmierczak W, Shabtai J (2002) Conversion of lignin into a hydrocarbon product for blending with gasoline. Abstr Pap Am Chem Soc 223:U583–U584

    Google Scholar 

  119. Larsen J, Petersen MO, Thirup L, Li HW, Iversen FK (2008) The IBUS process—lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 31(5):765–772

    Article  Google Scholar 

  120. Lumadue MR, Cannon FS, Brown NR (2012) Lignin as both fuel and fusing binder in briquetted anthracite fines for foundry coke substitute. Fuel 97:869–875

    Article  Google Scholar 

  121. Zazo JA, Bedia J, Fierro CM, Pliego G, Casas JA, Rodriguez JJ (2012) Highly stable Fe on activated carbon catalysts for CWPO upon FeCl3 activation of lignin from black liquors. Catal Today 187(1):115–121

    Article  Google Scholar 

  122. Mahmoudi K, Hamdi N, Kriaa A, Srasra E (2012) Adsorption of methyl orange using activated carbon prepared from lignin by ZnCl2 treatment. Russ J Phys Chem 86(8):1294–1300

    Article  Google Scholar 

  123. Maradur SP, Kim CH, Kim SY, Kim BH, Kim WC, Yang KS (2012) Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Met 162(5–6):453–459

    Article  Google Scholar 

  124. Baker DA, Gallego NC, Baker FS (2012) On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. J Appl Polym Sci 124(1):227–234

    Article  Google Scholar 

  125. Qin W, Kadla JF (2011) Effect of organoclay reinforcement on lignin-based carbon fibers. Ind Eng Chem Res 50(22):12548–12555

    Article  Google Scholar 

  126. Balan V, Bals B, Chundawat SP, Marshall D, Dale BE (2009) Lignocellulosic biomass pretreatment using AFEX. In: Mielenz JR (ed) Biofuels: methods and protocols. Methods in molecular biology, vol. 581. Humana, New Jersey, pp 61–77

    Google Scholar 

  127. Carioca JOB (2010) Biofuels: problems, challenges and perspectives. Biotechnol J 5(3):260–273

    Article  Google Scholar 

  128. Jegannathan KR, Chan ES, Ravindra P (2009) Harnessing biofuels: a global Renaissance in energy production? Renew Sust Energ Rev 13(8):2163–2168

    Article  Google Scholar 

  129. Li X, Ximenes E, Kim Y, Slininger M, Meilan R, Ladisch M, Chapple C (2010) Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnol Biofuels 3:27

    Google Scholar 

  130. Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11(3):278–285

    Article  Google Scholar 

  131. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25(7):759–761

    Article  MathSciNet  Google Scholar 

  132. Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174(3):246–263

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Monaghan Biosciences Ltd. and The Irish Research Council (IRC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manimaran Ayyachamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayyachamy, M., Cliffe, F.E., Coyne, J.M. et al. Lignin: untapped biopolymers in biomass conversion technologies. Biomass Conv. Bioref. 3, 255–269 (2013). https://doi.org/10.1007/s13399-013-0084-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-013-0084-4

Keywords

Navigation