Skip to main content

Advertisement

Log in

Challenges of the utilization of wood polymers: how can they be overcome?

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Diminishing fossil fuel resources as well as growing environmental and energy security concerns, in parallel with growing demands on raw materials and energy, have intensified global efforts to utilize wood biopolymers as a renewable resource to produce biofuels and biomaterials. Wood is one of the most abundant biopolymer composites on earth that can be converted into biofuels as well as used as a platform to produce bio-based materials. The major biopolymers in wood are cellulose, hemicelluloses, and lignin which account for >90% of dry weight. These polymers are generally associated with each other in wood cell walls resulting in an intricate and dynamic cell wall structure. This mini-review provides an overview of major wood biopolymers, their structure, and recent developments in their utilization to develop biofuels. Advances in genetic modifications to overcome the recalcitrance of woody biomass for biofuels are discussed and point to a promising future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  PubMed  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technol 101:4851–4861

    Article  CAS  Google Scholar 

  • Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  PubMed  Google Scholar 

  • Atalla RH, Brady JW, Matthews JF, Ding SY, Himmel ME (2008) Structures of plant cell wall celluloses. In: Himmel ME (ed) Biomass recalcitrance: deconstruction the plant cell wall for bioenergy. Blackwell Publishing, pp 188–212

  • Balakshin MY, Capanema EA, Chen CL, Gracz HS (2003) Elucidation of the structures of residual and dissolved pine kraft lignins using an HMQC NMR technique. J Agric Food Chem 51:6116–6127

    Article  CAS  PubMed  Google Scholar 

  • Balakshin MY, Capanema EA, Chang HM (2007) MWL fraction with a high concentration of lignin–carbohydrate linkages: isolation and 2D NMR spectroscopic analysis. Holzforschung 61:1–7

    Article  CAS  Google Scholar 

  • Barakat A, Bagniewska-Zadworna A, Frost CJ, Carlson JE (2010) Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides × P. nigra): evidence from herbivore damage for subfunctionalization and functional divergence. BMC Plant Biol 10:100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, Dupree P, Turner SR (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J 52:1154–1168

    Article  CAS  PubMed  Google Scholar 

  • Brunow G, Kilpelainen I, Sipila J, Syrjanen K, Karhunen P, Setala H, Rummakko P (1998) Oxidative coupling of phenols and the biosynthesis of lignin. In: Lignin and lignan biosynthesis, ACS Symposium Series 697. American Chemical Society, pp 131–147

  • Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin process chemistry. Ind Crops Prod 20:131–141

    Article  CAS  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  PubMed  Google Scholar 

  • Coleman HD, Canam T, Kang KY, Ellis DD, Mansfield SD (2007) Over-expression of UDP-glucose pyrophosphorylase in hybrid poplar affects carbon allocation. J Exp Bot 58:4257–4268

    Article  CAS  PubMed  Google Scholar 

  • Coleman HD, Park J-Y, Nair R, Chapple C, Mansfield SD (2008) RNAi-mediated suppression of p-Coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proc Natl Acad Sci USA 105:4501–4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA 106:13118–13123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davin LB, Lewis NG (2005) Lignin primary structures and dirigent sites. Curr Opin Biotechnol 16:407–415

    Article  CAS  PubMed  Google Scholar 

  • Demirbas A (2009) Biorefineries: current activities and future development. Energ Convers Manage 50:2782–2801

    Article  CAS  Google Scholar 

  • Den Haan R, Je McBride, La Grange DC, Lynd LR, Zyl WH (2007a) Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb Technol 40:1291–1299

    Article  CAS  Google Scholar 

  • Den Haan R, Rose SH, Lynd LR, Zyl WH (2007b) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87–94

    Article  CAS  Google Scholar 

  • Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606

    Article  CAS  PubMed  Google Scholar 

  • Dinus RJ, Payne P, Sewell NM, Chiang VL, Tuskan GA (2001) Genetic modification of short rotation popular wood: properties for ethanol fuel and fiber production. Crit Rev Plant Sci 20:51–69

    Article  CAS  Google Scholar 

  • Eggeling L, Sahm H (1980) Degradation of conyferyl alcohol and other lignin-related aromatic compounds by Nocardia sp. DSM 1069. Arch Microbiol 126:141–148

    Article  CAS  Google Scholar 

  • Foston M, Hubbell CA, Davis M, Ragauskas AJ (2009) Variations in cellulosic ultrastructure of poplar. BioEnergy Res 2:193–197

    Article  Google Scholar 

  • Foust TD, Ibsen KN, Dayton DC, Hess JR, Kenney KE (2008) The biorefinery. In: Himmel ME (ed) Biomass recalcitrance: deconstruction the plant cell wall for bioenergy. Blackwell Publishing, pp 7–37

  • Grange DC, Haan R, Zyl WH (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 87:1195–1208

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A, Sampathkumar A, Baskin TI, Parsson S, Somerville CR (2010) Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc Natl Acad Sci USA 107:12866–12871

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerriero G, Fugelstad J, Bulone V (2010) What do we really know about cellulose biosynthesis in higher plants? J Integr Plant Biol 52(2):161–175

    Article  CAS  PubMed  Google Scholar 

  • Guillaumie S, Mzid R, Méchin V, Léon C, Hichri I, Destrac-Irvine A, Trossat-Magnin C, Delrot S, Lauvergeat V (2010) The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Mol Biol 72:215–234

    Article  CAS  PubMed  Google Scholar 

  • Haigler CH, Singh B, Zhang D, Hwang S, Wu C, Cai WX, Hozain M, Kang W, Kiedaisch B, Strauss RE, Hequet EF, Wyatt BG, Jividen GM, Holaday AS (2007) Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions. Plant Mol Biol 63:815–832

    Article  CAS  PubMed  Google Scholar 

  • Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Accepted in Biofuels Bioprod Biorefin

  • Harholt J, Suttangkakul A, Scheller HV (2010) Biosynthesis of pectins. Plant Physiol 153:384–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris PJ, Stone BA (2008) Chemistry and molecular organization of plant cell walls. In: Himmel ME (ed) Biomass recalcitrance: deconstruction the plant cell wall for bioenergy. Blackwell Publishing, pp 61–93

  • Haygreen JG, Bowyer JL (1996) Composition and structure of wood cells. In: Forest products and wood science, 3rd edn. Iowa State Univ. Press, Ames, pp 41–56

  • Hiruta O, Yamamura K, Takebe H, Futamura T, Iinuma K, Tanaka H (1997) Application of maxblend fermentor for microbial processes. J Ferment Bioeng 83:79–86

    Article  CAS  Google Scholar 

  • Hou L (2010) Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Biochem Biotechnol 160:1084–1093

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Beristain G, Utrilla J, Hernández-Chávez G, Bolívar F, Gosset G, Martinez A (2008) Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 is limited by pyruvate decarboxylase. J Mol Microbiol Biotechnol 15:55–64

    Article  CAS  PubMed  Google Scholar 

  • Johnson DK, Elander RT (2008) Pretreatments for enhanced digestibility of feedstocks. In: Himmel ME (ed) Biomass recalcitrance: deconstruction the plant cell wall for bioenergy. Blackwell Publishing, pp 436–453

  • Joshi CP, Mansfield SD (2007) The cellulose paradox—simple molecule, complex biosynthesis. Curr Opin Plant Biol 10:220–226

    Article  CAS  PubMed  Google Scholar 

  • Kalluri UC, Keller M (2010) Bioenergy research: a new paradigm in multidisciplinary research. J Royal Soc Interface 7:1391–1401

    Article  Google Scholar 

  • Kalscheuer R, Luftmann H, Steinbüchel A (2004) Synthesis of novel lipids in Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl Environ Microbiol 70:7119–7125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  CAS  PubMed  Google Scholar 

  • Karhunen P, Rummakko P, Sipila J, Brunow G (1995) Dibenzodioxocins: a novel type of linkage in softwood lignins. Tetrahedron Lett 36:169–170

    Article  CAS  Google Scholar 

  • Keegstra K (2010) Plant cell walls. Plant Physiol 154:483–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitin P, Voelker SL, Meinzer FC, Beeckman H, Strauss SH, Lachenbruch B (2010) Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy. Plant Physiol 154:887–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kukkola EM, Koutaniemi S, Pollanen E, Gustafsson M, Karhunen P, Lundell TK, Saranpaa P, Kilpelainen I, Teeri TH, Fagerstedt KV (2004) The dibenzodioxocin lignin substructure is abundant in the inner part of the secondary wall in Norway spruce and silver birch xylem. Planta 218:497–500

    Article  CAS  PubMed  Google Scholar 

  • Kwon Y, Kim SH, Jung MS, Kim MS, Oh JE, Ju HW, Kim KI, Vierling E, Lee H, Hong SW (2007) Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses. Plant J 49:184–193

    Article  CAS  PubMed  Google Scholar 

  • Lee C, O’Neill MA, Tsumuraya Y, Darvill AG, Ye Z-H (2007) The irregular xylem9 Mutant is deficient in xylan xylosyltransferase activity. Plant Cell Physiol 48:1624–1634

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2009) Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50:1075–1089

    Article  CAS  PubMed  Google Scholar 

  • Leplé JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefèbvre A, Joseleau JP, Grima-Pettenati J, Rycke RD, Andersson-Gunnerås S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjana W (2007) Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell wall polysaccharides - a complex process. Curr Opin Plant Biol 9:621–630

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chapple C (2010) Understanding lignification: challenges beyond monolignol biosynthesis. Plant Physiol 154:449–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhao Z, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41:312–317

    Article  CAS  Google Scholar 

  • Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756

    Article  CAS  PubMed  Google Scholar 

  • Liepman AH, Nairn CJ, Willats WGT, Sørensen I, Roberts AW, Keegstra K (2007) Functional genomic analysis supports conservation of function among cellulose synthase-like A gene family members and suggests diverse roles of mannans in plants. Plant Physiol 143:1881–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Vora H, Khosla C (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10:333–339

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotech 16:577–583

    Article  CAS  PubMed  Google Scholar 

  • Mansfield SD (2009) Solutions for dissolution—engineering cell walls for deconstruction. Curr Opin Biotechnol 20:286–294

    Article  CAS  PubMed  Google Scholar 

  • Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53

    Article  CAS  PubMed  Google Scholar 

  • Mellerowicz EJ, Sundberg B (2008) Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr Opin Plant Biol 11:293–300

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renewable Energy 34:1–5

    Article  CAS  Google Scholar 

  • Mohnen D, Bar-Peled M, Somerville C (2008) Cell wall polysaccharide synthesis. In: Himmel ME (ed) Biomass recalcitrance: deconstruction the plant cell wall for bioenergy. Blackwell Publishing, pp 94–187

  • Moreton RS (1988) Single cell oil. Longman Scientific & Technical copublished with Wiley, USA

    Google Scholar 

  • Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Hofte H (1998) A plasma membrane-bound putative endo-1,4-β-d-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J 17:5563–5576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimlos MR, Matthews JF, Crowley MF, Walker RC, Chukkapall G, Brady JW, Adney WS, Cleary JM, Zhong L, Himmel ME (2007) Molecular modeling suggests induced fit of family I carbohydrate-binding modules with a broken-chain cellulose surface. Protein Eng Des Sel 20:179–187

    Article  CAS  PubMed  Google Scholar 

  • Pagant S, Bichet A, Sugimoto K, Lerouxel O, Desprez T, McCann M, Lerouge P, Vernhettes S, Höfte H (2002) KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell 14:2001–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica on industrial glycerol in a single-state continuous culture. Bioresour Technol 82:43–49

    Article  CAS  PubMed  Google Scholar 

  • Pena MJ, Zhong R, Zhou G-K, Richardson EA, O’Neill MA, Darvill AG, York WS, Ye Z-H (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé JC, Pollet B, Mila I, Webster EA, Marstorp HG (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612

    Article  CAS  PubMed  Google Scholar 

  • Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels Bioprod Biorefin 2:58–73

    Article  CAS  Google Scholar 

  • Rabinovich ML, Melnick MS, Bolobova AV (2002) The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Moscow) 67:1026–1050

    Article  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006a) The path forward for biofuels and biomaterials. Science 311:484–487

    Article  CAS  PubMed  Google Scholar 

  • Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL (2006b) From wood to fuels: integrating biofuels and pulp production. Ind Biotechnol 2:55–65

    Article  CAS  Google Scholar 

  • Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM, Ralph SA, Reddy MSS, Chen F, Dixon RA (2006) Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem 281:8843–8853

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20:155–160

    Article  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and biotechnology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  CAS  PubMed  Google Scholar 

  • Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2000) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC, Boca Raton, pp 35–74

    Google Scholar 

  • Rudolf A, Baudel H, Zacchi G, Hahn-Hägerdal B, Lidén G (2008) Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol Bioeng 99:783–790

    Article  CAS  PubMed  Google Scholar 

  • Sannigrahi P, Pu Y, Ragauskas AJ (2010) Cellulosic biorefineries—unleashing lignin opportunities. Curr Opin Environ Sustainability 2:383–393

    Article  Google Scholar 

  • Santos DS, Camelo AC, Rodrigues KCP, Carlos LC, Pereira N Jr (2010) Ethanol production from sugarcane bagasse by Zymomonas mobilis using simultaneous saccharification and fermentation (SSF) process. Appl Biochem Biotechnol 161:93–105

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P, McCann MC, Benfey PN (2001) COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev 15:1115–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Tech 46:541–549

    Article  CAS  Google Scholar 

  • Söderström J, Galbe M, Zacchi G (2005) Separate versus simultaneous saccharification and fermentation of two-step steam pretreated softwood for ethanol production. J Wood Chem Technol 25:187–202

    Article  CAS  Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    Article  CAS  PubMed  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–563

    Article  CAS  PubMed  Google Scholar 

  • Stephen JD, Mabee WE, Saddler JN (2010) Biomass logistics as a determinant of second generation biofuel facility scale, location and technology selection. Biofuels Bioprod Biorefin 4:503–518

    Article  CAS  Google Scholar 

  • Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD (2009) The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiol 150:621–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman, CE (2011) Lignin content in natural Populus variants affects sugar release, early edn. Proc Nat Acad Sci USA (Mar. 28):1–6

  • Suzuki S, Li L, Sun Y-H, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sykes R, Kodrzycki B, Tuskan G, Foutz K, Davis M (2008) Within tree variability of lignin composition in Populus. Wood Sci Technol 42:649–661

    Article  CAS  Google Scholar 

  • Takahashi J, Rudsander UJ, Hedenström M, Banasiak A, Harholt J, Amelot N, Immerzeel P, Ryden P, Endo S, Ibatullin FM, Brumer H, Campillo E, Master ER, Scheller HV, Sundberg B, Teeri TT, Mellerowicz EJ (2009) KORRIGAN1 and its aspen homolog PttCel9A1 decrease cellulose crystallinity in Arabidopsis stems. Plant Cell Physiol 50:1099–1115

    Article  CAS  PubMed  Google Scholar 

  • Tronchet M, Balagué C, Kroj T, Jouanin L, Roby D (2010) Cinnamyl alcohol dehydrogenases C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol 11:83–92

    Article  CAS  PubMed  Google Scholar 

  • van Parijs FRD, Morreel K, Ralph J, Boerjan W, Merks RMH (2010) Modeling lignin polymerization: I. Simulation model of dehydrogenation polymers. Plant Physiol 153:1332–1344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285

    Article  CAS  PubMed  Google Scholar 

  • Vanholme R, Van Acker R, Boerjan W (2010) Potential of Arabidopsis systems biology to advance the biofuel field. Trends Biotechnol 28:543–547

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan PT, Briggs M (2008) Biodiesel production-current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430

    Article  CAS  PubMed  Google Scholar 

  • Vispute TP, Zhang H, Sanna A, Xiao R, Huber GW (2010) Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 330:1222–1227

    Article  CAS  PubMed  Google Scholar 

  • Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki C, Patten AM, Davin LB, Lewis NG, Tuskan GE, Gunter L, Decker SR, Selig MG, Sykes R, Himmel ME, Kitin P, Shevchenko O, Strauss SH (2010) Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiol 154:874–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at pilot-plant scale. Appl Microbiol Biotechnol 55:547–555

    Article  CAS  PubMed  Google Scholar 

  • Wältermann M, Stöveken T, Steinbüchel A (2007) Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthases/acyl-CoA:diacylglycerol acyltransferases. Biochimie 89:230–242

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Srichuwong S, Arakane M, Tamiya S, Yoshinaga M, Watanabe I, Yamamoto M, Ando A, Tokuyasu K, Nakamura T (2010) Selection of stress-tolerant yeasts for simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash to ethanol. Bioresource Technol 101:9710–9714

    Article  CAS  Google Scholar 

  • Wu S, Hu C, Jin G, Zhao X, Zhao ZK (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101:6124–6129

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M, Kubo M, Fukuda H, Demura T (2008) VASCULARRELATED NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55:652–664

    Article  CAS  PubMed  Google Scholar 

  • York WS, O’Neill MA (2008) Biochemical control of xylan biosynthesis—which end is up? Curr Opin Plant Biol 11:258–265

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Gellerstedt G (2001) NMR observation of a new lignin structure, a spiro-dienone. Chem Commun (Cambridge, UK) 24:2744–2745

    Article  CAS  Google Scholar 

  • Zhang Y, Ratledge C (2008) Multiple isoforms of malic enzyme in the oleaginous fungus, Mortierella alpina. Mycol Res 112:725–730

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Gellerstedt G, Ralph J, Lu F (2006) NMR studies on the occurrence of spirodienone structures in lignins. J Wood Chem Technol 26:65–79

    Article  CAS  Google Scholar 

  • Zhang M, Shukla P, Ayyachamy M, Permaul K, Singh S (2010) Improved bioethanol production through simultaneous saccharification and fermentation of lignocellulosic agricultural wastes by Kluyveromyces marxianus 6556. World J Microbiol Biotechnol 26:1041–1046

    Article  CAS  Google Scholar 

  • Zhong R, Burk D, Morrison W, Ye Z (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14:3101–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Lee C, Ye Z-H (2010) Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiol 152:1044–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002

    Article  CAS  PubMed  Google Scholar 

  • Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99:7881–7885

    Article  CAS  PubMed  Google Scholar 

  • Zhu JY, Pan X, Zalesny RS Jr (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87:847–857

    Article  CAS  PubMed  Google Scholar 

  • Zinoviev S, Mueller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. ChemSusChem 3(10):1106–1133

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported and performed as part of the BioEnergy Science Center. The BioEnergy Science Center is a US DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. M. Kosa is thankful for the PSE (Paper Science and Engineering) scholarship at Georgia Tech for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerald A. Tuskan or Arthur J. Ragauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, Y., Kosa, M., Kalluri, U.C. et al. Challenges of the utilization of wood polymers: how can they be overcome?. Appl Microbiol Biotechnol 91, 1525–1536 (2011). https://doi.org/10.1007/s00253-011-3350-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3350-z

Keywords

Navigation