Skip to main content
Log in

Lipid Production by Cryptococcus curvatus on Hydrolysates Derived from Corn Fiber and Sweet Sorghum Bagasse Following Dilute Acid Pretreatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corn fiber and sweet sorghum bagasse (SSB) are both pre-processed lignocellulosic materials that can be used to produce liquid biofuels. Pretreatment using dilute sulfuric acid at a severity factor of 1.06 and 1.02 released 83.2 and 86.5 % of theoretically available sugars out of corn fiber and SSB, respectively. The resulting hydrolysates derived from pretreatment of SSB at SF of 1.02 supported growth of Cryptococcus curvatus well. In 6 days, the dry cell density reached 10.8 g/l with a lipid content of 40 % (w/w). Hydrolysates from corn fiber, however, did not lead to any significant cell growth even with addition of nutrients. In addition to consuming glucose, xylose, and arabinose, C. curvatus also utilized formic acid, acetic acid, 4-hydroxymethylfurfural, and levulinic acid for growth. Thus, C. curvatus appeared to be an excellent yeast strain for producing lipids from hydrolysates developed from lignocellulosic feedstocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alvira, P., Tomás-PejÃ, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  2. Banerji, A., Balakrishnan, M., & Kishore, V. V. N. (2013). Low severity dilute-acid hydrolysis of sweet sorghum bagasse. Applied Energy, 104, 197–206.

    Article  CAS  Google Scholar 

  3. Choudhary, R., Umagiliyage, A. L., Liang, Y., Siddaramu, T., Haddock, J., & Markevicius, G. (2012). Microwave pretreatment for enzymatic saccharification of sweet sorghum bagasse. Biomass and Bioenergy, 39, 218–226.

    Article  CAS  Google Scholar 

  4. Cui, Y., Blackburn, J. W., & Liang, Y. (2012). Fermentation optimization for the production of lipid by Cryptococcus curvatus: use of response surface methodology. Biomass and Bioenergy, 47, 410–417.

    Article  CAS  Google Scholar 

  5. Cui, Y., & Liang, Y. (2014). Direct transesterification of wet Cryptococcus curvatus cells to biodiesel through use of microwave irradiation. Applied Energy, 119, 438–444.

    Article  CAS  Google Scholar 

  6. Du, B., Sharma, L. N., Becker, C., Chen, S. F., Mowery, R. A., van Walsum, G. P., et al. (2010). Effect of varying feedstock–pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnology and Bioengineering, 107, 430–440.

    Article  CAS  Google Scholar 

  7. Hector, R. E., Qureshi, N., Hughes, S. R., & Cotta, M. A. (2008). Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Applied Microbiology and Biotechnology, 80, 675–684.

    Article  CAS  Google Scholar 

  8. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66, 10–26.

    Article  CAS  Google Scholar 

  9. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B. R., Tengborg, C., Stenberg, K., Zacchi, G., et al. (1999). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology, 24, 151–159.

    Article  CAS  Google Scholar 

  10. Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31, 1043–1049.

    Article  CAS  Google Scholar 

  11. Liang, Y., Tang, T., Siddaramu, T., Choudhary, R., & Umagiliyage, A. L. (2012). Lipid production from sweet sorghum bagasse through yeast fermentation. Renewable Energy, 40, 130–136.

    Article  CAS  Google Scholar 

  12. Liang, Y., Tang, T., Umagiliyage, A. L., Siddaramu, T., McCarroll, M., & Choudhary, R. (2012). Utilization of sorghum bagasse hydrolysates for producing microbial lipids. Applied Energy, 91, 451–458.

    Article  CAS  Google Scholar 

  13. Liang, Y., Yesuf, J., Schmitt, S., Bender, K., & Bozzola, J. (2009). Study of cellulases from a newly-isolated thermophilic and cellulolytic Brevibacillus sp. strain JXL. Journal of Industrial Microbiology & Biotechnology, 36, 961–970.

    Article  CAS  Google Scholar 

  14. Mussatto, S. I., & Roberto, I. C. (2004). Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technology, 93, 1–10.

    Article  CAS  Google Scholar 

  15. Palmqvist, E., & Hahn-Hägerdal, B. R. (2000). Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technology, 74, 17–24.

    Article  CAS  Google Scholar 

  16. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 74, 25–33.

    Article  CAS  Google Scholar 

  17. Saha, B. C., & Bothast, R. J. (1999). Pretreatment and enzymatic saccharification of corn fiber. Applied Biochemistry and Biotechnology, 76, 65–77.

    Article  CAS  Google Scholar 

  18. Saha, B. C., Dien, B. S., & Bothast, R. J. (1998). Fuel ethanol production from corn fiber current status and technical prospects. Applied Biochemistry and Biotechnology, 70, 115–125.

    Article  Google Scholar 

  19. Serrano-Ruiz, J. C., Ramos-Fernández, E. V., & Sepúlveda-Escribano, A. (2012). From biodiesel and bioethanol to liquid hydrocarbon fuels: new hydrotreating and advanced microbial technologies. Energy & Environmental Science, 5, 5638–5652.

    Article  CAS  Google Scholar 

  20. Sipos, B., Reczey, J., Somorai, Z., Kadar, Z., Dienes, D., & Reczey, K. (2009). Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse. Applied Biochemistry and Biotechnology, 153, 151–162.

    Article  CAS  Google Scholar 

  21. Yu, X., Zheng, Y., Dorgan, K. M., & Chen, S. (2011). Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresource Technology, 102, 6134–6140.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Kimberly Jarosz thankfully acknowledges the opportunity and financial support from the McNair Scholars Program at SIUC. Ashley T. Wardlow from Florida International University appreciates support from a NSF REU program (DMR 1157058) at SIUC. We also thank Dr. Sabrina Trupia at National Corn-to-ethanol Research Center for providing the corn fiber samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanna Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Jarosz, K., Wardlow, A.T. et al. Lipid Production by Cryptococcus curvatus on Hydrolysates Derived from Corn Fiber and Sweet Sorghum Bagasse Following Dilute Acid Pretreatment. Appl Biochem Biotechnol 173, 2086–2098 (2014). https://doi.org/10.1007/s12010-014-1007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1007-y

Keyword

Navigation