Skip to main content

The Use of Omics Technologies, Random Mutagenesis, and Genetic Transformation Techniques to Improve Algae for Biodiesel Industry

  • Chapter
  • First Online:
Technological Advancement in Algal Biofuels Production

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 437 Accesses

Abstract

Biodiesel as a transportation fuel has gained interest because of fossil fuel depletion and global warming. Algae, with the ability to grow fast in a variety of conditions, are a sustainable choice for biodiesel production. The most critical challenge is insufficient lipid yield in algal sources and associated high biorefinery costs. It is well-known that some algal strains accumulate relatively high lipid under environmental or nutritional stress that hinder algal growth. Genomic, transcriptomic, and proteomic analyses of stressed algal strains help identify and characterize essential molecules that induce lipid accumulation. Random mutagenesis, in addition to the development of algal strains with high lipid content for the biodiesel industry, provides clues for further genetic engineering attempts if combined with omics technologies. Another powerful genetic engineering tool to improve algae growth, lipid content, and stress tolerance is genetic transformation. In the present chapter, first, the commonly used omics methods and the use of omics data to improve algae species with potential in the biodiesel industry are summarized. In addition, random mutagenesis and its applications in strain improvement for the biodiesel industry are examined. Finally, genetic transformation methods and vector construction strategies are reviewed as well as up-to-date reports on the progress in algal transformation for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Widyan MI, Al-Shyoukh AO (2002) Experimental evaluation of the transesterification of waste palm oil into biodiesel. Bioresour Technol 85(3):253–256

    Article  PubMed  CAS  Google Scholar 

  • Anand V, Kashyap M, Samadhiya K, Kiran B (2019) Strategies to unlock lipid production improvement in algae. Int J Environ Sci Technol 16(3):1829–1838

    Article  Google Scholar 

  • Anila N, Chandrashekar A, Ravishankar GA, Sarada R (2011) Establishment of Agrobacterium tumefaciens-mediated genetic transformation in Dunaliella bardawil. Eur J Phycol 46(1):36–44

    Article  CAS  Google Scholar 

  • Antolın G, Tinaut FV, Briceno Y, Castano V, Perez C, Ramırez AI (2002) Optimisation of biodiesel production by sunflower oil transesterification. Bioresour Technol 83(2):111–114

    Article  PubMed  Google Scholar 

  • Arriola MB, Velmurugan N, Zhang Y, Plunkett MH, Hondzo H, Barney BM (2018) Genome sequences of Chlorella sorokiniana UTEX 1602 and Micractinium conductrix SAG 241.80: implications to maltose excretion by a green alga. Plant J 93(3):566–586

    Article  PubMed  CAS  Google Scholar 

  • Astafyeva Y, Alawi M, Indenbirken D, Danso D, Grundhoff A, Hanelt D et al (2020) Draft genome sequence of the green alga Scenedesmus acuminatus SAG 38.81. Microbiol Resour Announc 9(24):e01278–e01219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai X, Song H, Lavoie M, Zhu K, Su Y, Ye H et al (2016) Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum. Sci Rep 6(1):1–10

    Google Scholar 

  • Bashir KMI, Kim MS, Stahl U, Cho MG (2016) Microalgae engineering toolbox: selectable and screenable markers. Biotechnol Bioprocess Eng 21(2):224–235

    Article  CAS  Google Scholar 

  • Bashir KMI, Moo-Sang K, Stahl U, Cho MG (2018) Agrobacterium-mediated genetic transformation of Dictyosphaerium pulchellum for the expression of erythropoietin. J Appl Phycol 30(6):3503

    Article  CAS  Google Scholar 

  • Beacham TA, Macia VM, Rooks P, White DA, Ali ST (2015) Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis. Biotechnol Rep 7:87–94

    Article  CAS  Google Scholar 

  • Beaulieu L (2019) Insights into the regulation of algal proteins and bioactive peptides using proteomic and transcriptomic approaches. Molecules 24(9):1708

    Article  PubMed Central  CAS  Google Scholar 

  • Bengtsson A, Bengtsson H (2006) Microarray image analysis: background estimation using quantile and morphological filters. BMC Bioinformatics 7(1):1–15

    Article  Google Scholar 

  • Benites LF, Poulton N, Labadie K, Sieracki ME, Grimsley N, Piganeau G (2019) Single cell ecogenomics reveals mating types of individual cells and ssDNA viral infections in the smallest photosynthetic eukaryotes. Philos Trans R Soc B 374(1786):20190089

    Article  CAS  Google Scholar 

  • Beranek DT (1990) Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res 231:11–30

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S et al (2013) Genome of the red alga Porphyridium purpureum. Nat Commun 4(1):1–10

    Article  CAS  Google Scholar 

  • Bjellqvist B, Ek K, Righetti PG, Gianazza E, Görg A, Westermeier R, Postel W (1982) Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 6(4):317–339

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A et al (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22(9):2943–2955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan DD et al (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13(5):1–12

    Article  Google Scholar 

  • Blanc-Mathieu R, Verhelst B, Derelle E, Rombauts S, Bouget FY, Carré I et al (2014) An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies. BMC Genomics 15(1):1–12

    Article  Google Scholar 

  • Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6(5):33

    Article  PubMed Central  Google Scholar 

  • Bogen C, Al-Dilaimi A, Albersmeier A, Wichmann J, Grundmann M, Rupp O et al (2013) Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production. BMC Genomics 14(1):1–18

    Article  Google Scholar 

  • Bose JL (2014) Chemical and UV mutagenesis. In: Bose JL (ed) The genetic manipulation of Staphylococci. Humana Press, New York, NY, pp 111–115

    Chapter  Google Scholar 

  • Bouaid A, Martinez M, Aracil J (2007) Long storage stability of biodiesel from vegetable and used frying oils. Fuel 86(16):2596–2602

    Article  CAS  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456(7219):239–244

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  PubMed  CAS  Google Scholar 

  • Buermans HPJ, Den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta Mol Bas Dis 1842(10):1932–1941

    Article  CAS  Google Scholar 

  • de Carvalho LM, Borelli G, Camargo AP, de Assis MA, de Ferraz SMF, Fiamenghi MB et al (2019) Bioinformatics applied to biotechnology: a review towards bioenergy research. Biomass Bioenergy 123:195–224

    Article  Google Scholar 

  • Cazzaniga S, Dall’Osto L, Szaub J, Scibilia L, Ballottari M, Purton S, Bassi R (2014) Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor. Biotechnol Biofuels 7(1):1–13

    Article  Google Scholar 

  • Cecchin M, Marcolungo L, Rossato M, Girolomoni L, Cosentino E, Cuine S et al (2019) Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions. Plant J 100(6):1289–1305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cha TS, Chen CF, Yee W, Aziz A, Loh SH (2011) Cinnamic acid, coumarin and vanillin: alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. J Microbiol Methods 84(3):430–434

    Article  PubMed  CAS  Google Scholar 

  • Chang WC, Zheng HQ, Chen CNN (2016) Comparative transcriptome analysis reveals a potential photosynthate partitioning mechanism between lipid and starch biosynthetic pathways in green microalgae. Algal Res 16:54–62

    Article  Google Scholar 

  • Chatterjee N, Walker GC (2017) Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 58(5):235–263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Hu H (2019) High efficiency transformation by electroporation of the freshwater alga Nannochloropsis limnetica. World J Microbiol Biotechnol 35(8):1–10

    Article  Google Scholar 

  • Chen Z, Lee WG (2019) Electroporation for microalgal biofuels: a review. Sustain Energy Fuels 3(11):2954–2967

    Article  CAS  Google Scholar 

  • Chen X, Wei S, Ji Y, Guo X, Yang F (2015) Quantitative proteomics using SILAC: principles, applications, and developments. Proteomics 15(18):3175–3192

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Kao AL, Tsai ZC, Chow TJ, Chang HY, Zhao XQ et al (2016) Expression of type 2 diacylglycerol acyltransferase gene DGTT1 from Chlamydomonas reinhardtii enhances lipid production in Scenedesmus obliquus. Biotechnol J 11(3):336–344

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Harst A, You W, Xu J, Ning K, Poetsch A (2019a) Proteomic study uncovers molecular principles of single-cell-level phenotypic heterogeneity in lipid storage of Nannochloropsis oceanica. Biotechnol Biofuels 12(1):1–14

    Article  Google Scholar 

  • Chen D, Yuan X, Liang L, Liu K, Ye H, Liu Z et al (2019b) Overexpression of acetyl-CoA carboxylase increases fatty acid production in the green alga Chlamydomonas reinhardtii. Biotechnol Lett 41(10):1133–1145

    Article  PubMed  CAS  Google Scholar 

  • Chen HH, Xue LL, Liang MH, Jiang JG (2020) Intervention of triethylamine on Dunaliella tertiolecta reveals metabolic insights into triacylglycerol accumulation. Algal Res 47:101876

    Article  Google Scholar 

  • Chen MY, Teng WK, Zhao L, Hu CX, Zhou YK, Han BP et al (2021) Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J 15(1):211–227

    Article  PubMed  Google Scholar 

  • Cheng Q, Day A, Dowson-Day M, Shen GF, Dixon R (2005) The Klebsiella pneumoniae nitrogenase Fe protein gene (nifH) functionally substitutes for the chlL gene in Chlamydomonas reinhardtii. Biochem Biophys Res Commun 329(3):966–975

    Article  PubMed  CAS  Google Scholar 

  • Cheng R, Ma R, Li K, Rong H, Lin X, Wang Z et al (2012) Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium. Microbiol Res 167(3):179–186

    Article  PubMed  CAS  Google Scholar 

  • Chernokalskaya E, Gutierrez S, Pitt AM, Leonard JT (2004) Ultrafiltration for proteomic sample preparation. Electrophoresis 25(15):2461–2468

    Article  PubMed  CAS  Google Scholar 

  • Chiu CW, Chen HM, Wu TT, Shih YC, Huang KK, Tsai YF et al (2015) Differential proteomics of monosodium urate crystals-induced inflammatory response in dissected murine air pouch membranes by iTRAQ technology. Proteomics 15(19):3338–3348

    Article  PubMed  CAS  Google Scholar 

  • Choi YE, Hwang H, Kim HS, Ahn JW, Jeong WJ, Yang JW (2013) Comparative proteomics using lipid over-producing or less-producing mutants unravels lipid metabolisms in Chlamydomonas reinhardtii. Bioresour Technol 145:108–115

    Article  PubMed  CAS  Google Scholar 

  • Choi JI, Yoon M, Joe M, Park H, Lee SG, Han SJ, Lee PC (2014) Development of microalga Scenedesmus dimorphus mutant with higher lipid content by radiation breeding. Bioprocess Biosyst Eng 37(12):2437–2444

    Article  PubMed  CAS  Google Scholar 

  • Chungjatupornchai W, Fa-Aroonsawat S (2021) Enhanced triacylglycerol production in oleaginous microalga Neochloris oleoabundans by co-overexpression of lipogenic genes: Plastidial LPAAT1 and ER-located DGAT2. J Biosci Bioeng 131(2):124–130

    Article  PubMed  CAS  Google Scholar 

  • Chungjatupornchai W, Kitraksa P, Fa-aroonsawat S (2016) Stable nuclear transformation of the oleaginous microalga Neochloris oleoabundans by electroporation. J Appl Phycol 28(1):191–199

    Article  CAS  Google Scholar 

  • Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465(7298):617–621

    Article  PubMed  CAS  Google Scholar 

  • Cong WT, Hwang SY, Jin LT, Choi JK (2008) Sensitive fluorescent staining for proteomic analysis of proteins in 1-D and 2-D SDS-PAGE and its comparison with SYPRO Ruby by PMF. Electrophoresis 29(21):4304–4315

    Article  PubMed  CAS  Google Scholar 

  • Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141(1–2):31–41

    Article  PubMed  CAS  Google Scholar 

  • Crossway A, Oakes JV, Irvine JM, Ward B, Knauf VC, Shewmaker CK (1986) Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol Gen Genet MGG 202(2):179–185

    Article  CAS  Google Scholar 

  • Cui Y, Wang J, Jiang P, Bian S, Qin S (2010) Transformation of Platymonas (Tetraselmis) subcordiformis (Prasinophyceae, Chlorophyta) by agitation with glass beads. World J Microbiol Biotechnol 26(9):1653–1657

    Article  CAS  Google Scholar 

  • Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492(7427):59–65

    Article  PubMed  CAS  Google Scholar 

  • Dahlin LR, Gerritsen AT, Henard CA, Van Wychen S, Linger JG, Kunde Y et al (2019) Development of a high-productivity, halophilic, thermotolerant microalga Picochlorum renovo. Commun Biol 2(1):1–9

    Article  Google Scholar 

  • Dasgupta CN, Nayaka S, Toppo K, Singh AK, Deshpande U, Mohapatra A (2018) Draft genome sequence and detailed characterization of biofuel production by oleaginous microalga Scenedesmus quadricauda LWG002611. Biotechnol Biofuels 11(1):1–15

    Google Scholar 

  • Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9(5):540–553

    Article  PubMed  CAS  Google Scholar 

  • Dementyeva P, Freudenberg RA, Baier T, Rojek K, Wobbe L, Weisshaar B, Kruse O (2021) A novel, robust and mating-competent Chlamydomonas reinhardtii strain with an enhanced transgene expression capacity for algal biotechnology. Biotechnol Rep 31:e00644

    Article  CAS  Google Scholar 

  • Desouky O, Ding N, Zhou G (2015) Targeted and non-targeted effects of ionizing radiation. J Radiat Res Appl Sci 8(2):247–254

    Article  CAS  Google Scholar 

  • Doan TTY, Obbard JP (2012) Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow cytometric cell sorting. Algal Res 1(1):17–21

    Article  CAS  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  PubMed  CAS  Google Scholar 

  • Dong Z, Chen Y (2013) Transcriptomics: advances and approaches. Sci China Life Sci 56(10):960–967

    Article  PubMed  CAS  Google Scholar 

  • Doron L, Segal NA, Shapira M (2016) Transgene expression in microalgae—from tools to applications. Front Plant Sci 7:505

    Article  PubMed  PubMed Central  Google Scholar 

  • Douchi D, Mosey M, Astling DP, Knoshaug EP, Nag A, McGowen J, Laurens LM (2021) Nuclear and chloroplast genome engineering of a productive non-model alga Desmodesmus armatus: insights into unusual and selective acquisition mechanisms for foreign DNA. Algal Res 53:102152

    Article  Google Scholar 

  • Dunahay TG (1993) Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques 15(3):452–455

    PubMed  CAS  Google Scholar 

  • Dupree EJ, Jayathirtha M, Yorkey H, Mihasan M, Petre BA, Darie CC (2020) A critical review of bottom-up proteomics: the good, the bad, and the future of this field. Proteomes 8(3):14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Esland L, Larrea-Alvarez M, Purton S (2018) Selectable markers and reporter genes for engineering the chloroplast of Chlamydomonas reinhardtii. Biology 7(4):46

    Article  PubMed Central  CAS  Google Scholar 

  • Fan J, Cui Y, Wan M, Wang W, Li Y (2014) Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels 7(1):1–14

    Article  Google Scholar 

  • Fan J, Ning K, Zeng X, Luo Y, Wang D, Hu J et al (2015) Genomic foundation of starch-to-lipid switch in oleaginous Chlorella spp. Plant Physiol 169(4):2444–2461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fattore N, Bellan A, Pedroletti L, Vitulo N, Morosinotto T (2021) Acclimation of photosynthesis and lipids biosynthesis to prolonged nitrogen and phosphorus limitation in Nannochloropsis gaditana. Algal Res 58:102368

    Article  Google Scholar 

  • Fayyaz M, Chew KW, Show PL, Ling TC, Ng IS, Chang JS (2020) Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnol Adv 43:107554

    Article  PubMed  CAS  Google Scholar 

  • Gafken PR, Lampe PD (2006) Methodologies for characterizing phosphoproteins by mass spectrometry. Cell Commun Adhes 13(5–6):249–262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gan Q, Jiang J, Han X, Wang S, Lu Y (2018) Engineering the chloroplast genome of oleaginous marine microalga Nannochloropsis oceanica. Front Plant Sci 9:439

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao C, Wang Y, Shen Y, Yan D, He X, Dai J, Wu Q (2014) Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes. BMC Genomics 15(1):1–14

    Article  CAS  Google Scholar 

  • Garcia PA, Ge Z, Moran JL, Buie CR (2016) Microfluidic screening of electric fields for electroporation. Sci Rep 6(1):1–11

    Article  Google Scholar 

  • Goncalves EC, Koh J, Zhu N, Yoo MJ, Chen S, Matsuo T et al (2016) Nitrogen starvation-induced accumulation of triacylglycerol in the green algae: evidence for a role for ROC 40, a transcription factor involved in circadian rhythm. Plant J 85(6):743–757

    Article  PubMed  CAS  Google Scholar 

  • Görg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4(12):3665–3685

    Article  PubMed  Google Scholar 

  • Görg A, Drews O, Weiss W (2006) Isoelectric focusing in immobilized pH gradient strips using the IPGphor unit: sample in-gel rehydration. CSH Protoc 1:526–531

    Google Scholar 

  • Grant GR, Farkas MH, Pizarro AD, Lahens NF, Schug J, Brunk BP, Stoeckert CJ, Hogenesch JB, Pierce EA (2011) Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics 27:2518–2528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griebel T, Zacher B, Ribeca P, Raineri E, Lacroix V, Guigo R, Sammeth M (2012) Modelling and simulating generic RNA-Seq experiments with the flux simulator. Nucleic Acids Res 40:10073–10083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guarnieri MT, Pienkos PT (2015) Algal omics: unlocking bioproduct diversity in algae cell factories. Photosynth Res 123(3):255–263

    Article  PubMed  CAS  Google Scholar 

  • Guarnieri MT, Nag A, Yang S, Pienkos PT (2013) Proteomic analysis of Chlorella vulgaris: potential targets for enhanced lipid accumulation. J Proteome 93:245–253

    Article  CAS  Google Scholar 

  • Guerrera IC, Kleiner O (2005) Application of mass spectrometry in proteomics. Biosci Rep 25(1–2):71–93

    Article  PubMed  CAS  Google Scholar 

  • Guillory WX, Onyshchenko A, Ruck EC, Parks M, Nakov T, Wickett NJ, Alverson AJ (2018) Recurrent loss, horizontal transfer, and the obscure origins of mitochondrial introns in diatoms (Bacillariophyta). Genome Biol Evol 10(6):1504–1515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo SL, Zhao XQ, Tang Y, Wan C, Alam MA, Ho SH et al (2013) Establishment of an efficient genetic transformation system in Scenedesmus obliquus. J Biotechnol 163(1):61–68

    Article  PubMed  CAS  Google Scholar 

  • Haslam RP, Hamilton ML, Economou CK, Smith R, Hassall KL, Napier JA, Sayanova O (2020) Overexpression of an endogenous type 2 diacylglycerol acyltransferase in the marine diatom Phaeodactylum tricornutum enhances lipid production and omega-3 long-chain polyunsaturated fatty acid content. Biotechnol Biofuels 13:1–17

    Article  Google Scholar 

  • Hatey F, Tosser-Klopp G, Clouscard-Martinato C, Mulsant P, Gasser F (1998) Expressed sequence tags for genes: a review. Genet Sel Evol 30(6):521–541

    Article  PubMed Central  CAS  Google Scholar 

  • Hawkins RL, Nakamura M (1999) Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr Microbiol 38(6):335–341

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Ye J, Zhang J, Lin Y, He M, Huang J (2016) Transcriptome analysis of Chlorella zofingiensis to identify genes and their expressions involved in astaxanthin and triacylglycerol biosynthesis. Algal Res 17:236–243

    Article  Google Scholar 

  • Hung CH, Ho MY, Kanehara K, Nakamura Y (2013) Functional study of diacylglycerol acyltransferase type 2 family in Chlamydomonas reinhardtii. FEBS Lett 587(15):2364–2370

    Article  PubMed  CAS  Google Scholar 

  • Ibáñez-Salazar A, Rosales-Mendoza S, Rocha-Uribe A, Ramírez-Alonso JI, Lara-Hernández I, Hernández-Torres A et al (2014) Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii. J Biotechnol 184:27–38

    Article  PubMed  Google Scholar 

  • Ikehata H, Ono T (2011) The mechanisms of UV mutagenesis. J Radiat Res 52(2):115–125

    Article  PubMed  CAS  Google Scholar 

  • Issaq HJ, Veenstra TD (2008) Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. Biotechniques 44(5):697–700

    Article  PubMed  CAS  Google Scholar 

  • Jackson HO, Berepiki A, Baylay AJ, Terry MJ, Moore CM, Bibby TS (2019) An inducible expression system in the alga Nannochloropsis gaditana controlled by the nitrate reductase promoter. J Appl Phycol 31(1):269–279

    Article  CAS  Google Scholar 

  • Jaeger D, Winkler A, Mussgnug JH, Kalinowski J, Goesmann A, Kruse O (2017) Time-resolved transcriptome analysis and lipid pathway reconstruction of the oleaginous green microalga Monoraphidium neglectum reveal a model for triacylglycerol and lipid hyperaccumulation. Biotechnol Biofuels 10(1):1–34

    Article  Google Scholar 

  • Jaiswal D, Sengupta A, Sohoni S, Sengupta S, Phadnavis AG, Pakrasi HB, Wangikar PP (2018) Genome features and biochemical characteristics of a robust, fast growing and naturally transformable cyanobacterium Synechococcus elongatus PCC 11801 isolated from India. Sci Rep 8(1):1–13

    Article  Google Scholar 

  • Jallet D, Xing D, Hughes A, Moosburner M, Simmons MP, Allen AE, Peers G (2020) Mitochondrial fatty acid β-oxidation is required for storage-lipid catabolism in a marine diatom. New Phytol 228(3):946–958

    Article  PubMed  CAS  Google Scholar 

  • Jeon S, Koh HG, Cho JM, Kang NK, Chang YK (2021) Enhancement of lipid production in Nannochloropsis salina by overexpression of endogenous NADP-dependent malic enzyme. Algal Res 54:102218

    Article  Google Scholar 

  • Jinturkar KA, Rathi MN, Misra A (2011) Gene delivery using physical methods. In: Mishra A (ed) Challenges in delivery of therapeutic genomics and proteomics. Elsevier, Amsterdam, pp 83–126

    Chapter  Google Scholar 

  • Kaeppler HF, Gu W, Somers DA, Rines HW, Cockburn AF (1990) Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep 9(8):415–418

    Article  PubMed  CAS  Google Scholar 

  • Kallio MA, Tuimala JT, Hupponen T, Klemelä P, Gentile M, Scheinin I et al (2011) Chipster: user-friendly analysis software for microarray and other high-throughput data. BMC Genomics 12(1):1–14

    Article  Google Scholar 

  • Kaloudas D, Pavlova N, Penchovsky R (2021) Lignocellulose, algal biomass, biofuels and biohydrogen: a review. Environ Chem Lett 19:1–16

    Article  Google Scholar 

  • Kang NK, Jeon S, Kwon S, Koh HG, Shin SE, Lee B et al (2015) Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol Biofuels 8(1):1–13

    Article  Google Scholar 

  • Kang NK, Kim EK, Kim YU, Lee B, Jeong WJ, Jeong BR, Chang YK (2017) Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina. Biotechnol Biofuels 10(1):1–14

    Article  Google Scholar 

  • Kania K, Zienkiewicz M, Drożak A (2020) Stable transformation of unicellular green alga Coccomyxa subellipsoidea C-169 via electroporation. Protoplasma 257(2):607–611

    Article  PubMed  CAS  Google Scholar 

  • Kannan N, Donnellan P (2021) Algae-assisted microbial fuel cells: a practical overview. Bioresour Technol Rep 15:100747

    Article  CAS  Google Scholar 

  • Karthikaichamy A, Deore P, Rai V, Bulach D, Beardall J, Noronha S, Srivastava S (2017) Time for multiple extraction methods in proteomics? a comparison of three protein extraction methods in the Eustigmatophyte alga Microchloropsis gaditana CCMP526. OMICS 21(11):678–683

    Article  PubMed  CAS  Google Scholar 

  • Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2009) Agrobacterium-mediated transformation in the green alga Haematococcus pluvialis (Chlorophyceae, Volvocales) 1. J Phycol 45(3):642–649

    Article  PubMed  CAS  Google Scholar 

  • Kaye Y, Grundman O, Leu S, Zarka A, Zorin B, Didi-Cohen S et al (2015) Metabolic engineering toward enhanced LC-PUFA biosynthesis in Nannochloropsis oceanica: overexpression of endogenous Δ12 desaturase driven by stress-inducible promoter leads to enhanced deposition of polyunsaturated fatty acids in TAG. Algal Res 11:387–398

    Article  Google Scholar 

  • Khan S, Fu P (2020) Biotechnological perspectives on algae: a viable option for next generation biofuels. Curr Opin Biotechnol 62:146–152

    Article  PubMed  CAS  Google Scholar 

  • Kim YH (2018) Control of the culture conditions of Chlamydomonas reinhardtii for efficient delivery of exogenous materials in electroporation. Algal Res 35:388–394

    Article  Google Scholar 

  • Kim YI, Cho JY (2019) Gel-based proteomics in disease research: is it still valuable? Biochim Biophys Acta Prot Proteom 1867(1):9–16

    Article  CAS  Google Scholar 

  • Kim DH, Kim YT, Cho JJ, Bae JH, Hur SB, Hwang I, Choi TJ (2002) Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar Biotechnol 4(1):63–73

    Article  CAS  Google Scholar 

  • Kim J, Kwak HS, Sim SJ, Jin E (2019a) Overexpression of malic enzyme isoform 2 in Chlamydomonas reinhardtii PTS42 increases lipid production. Bioresour Technol Rep 7:100239

    Article  Google Scholar 

  • Kim YH, Kwon SG, Bae SJ, Park SJ (2019b) Optimization of the droplet electroporation method for wild type Chlamydomonas reinhardtii transformation. Bioelectrochemistry 126:29–37

    Article  PubMed  CAS  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci 87(3):1228–1232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klaitong P, Watcharawipas A, Fa-aroonsawat S, Chungjatupornchai W (2021) Nitrogen starvation-inducible promoter of microalga Neochloris oleoabundans lipogenic gene encoding diacylglycerol acyltransferase 2. J Appl Phycol 33(1):331–341

    Article  CAS  Google Scholar 

  • Knoshaug EP, Nag A, Astling DP, Douchi D, Laurens LM (2020) Draft genome sequence of the biofuel-relevant microalga Desmodesmus armatus. Microbiol Resour Announc 9(6):e00896–e00819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kotnik T, Frey W, Sack M, Meglič SH, Peterka M, Miklavčič D (2015) Electroporation-based applications in biotechnology. Trends Biotechnol 33(8):480–488

    Article  PubMed  CAS  Google Scholar 

  • Krishnan A, Likhogrud M, Cano M, Edmundson S, Melanson JB, Huesemann M et al (2021) Picochlorum celeri as a model system for robust outdoor algal growth in seawater. Sci Rep 11(1):1–13

    Article  Google Scholar 

  • Kukurba KR, Montgomery SB (2015) RNA sequencing and analysis. Cold Spring Harb Protoc 2015(11):pdb-top084970

    Article  Google Scholar 

  • Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166(3):731–738

    Article  CAS  Google Scholar 

  • Kurtzman AL (1991) Direct gene transfer and transient gene expression in a marine red alga using the biolistic method. J Phycol 27:42

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci 104(50):19908–19913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larsson L, Frisén J, Lundeberg J (2021) Spatially resolved transcriptomics adds a new dimension to genomics. Nat Methods 18(1):15–18

    Article  PubMed  CAS  Google Scholar 

  • Lawrence CW (1991) [18] Classical mutagenesis techniques. Methods Enzymol 194:273–281

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Choi GG, Choi YE, Sung M, Park MS, Yang JW (2014) Enhancement of lipid productivity by ethyl methane sulfonate-mediated random mutagenesis and proteomic analysis in Chlamydomonas reinhardtii. Korean J Chem Eng 31(6):1036–1042

    Article  CAS  Google Scholar 

  • Lee JW, Lee MW, Ha JS, Kim DS, Jin E, Lee HG, Oh HM (2020a) Development of a species-specific transformation system using the novel endogenous promoter calreticulin from oleaginous microalgae Ettlia sp. Sci Rep 10(1):1–12

    Google Scholar 

  • Lee BS, Koo KM, Ryu J, Hong MJ, Kim SH, Kwon SJ et al (2020b) Overexpression of fructose-1, 6-bisphosphate aldolase 1 enhances accumulation of fatty acids in Chlamydomonas reinhardtii. Algal Res 47:101825

    Article  Google Scholar 

  • Li Y, Mu J, Chen D, Han F, Xu H, Kong F et al (2013a) Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic-Cu (II) stressed (HCuS) coupling cultivation. Bioresour Technol 148:283–292

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Yuan Z, Mu J, Chen D, Feng B (2013b) Proteomic analysis of lipid accumulation in Chlorella protothecoides cells by heterotrophic N deprivation coupling cultivation. Energy Fuel 27(7):4031–4040

    Article  CAS  Google Scholar 

  • Li Y, Han F, Xu H, Mu J, Chen D, Feng B, Zeng H (2014) Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P). Bioresour Technol 174:24–32

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Mu J, Chen D, Xu H, Han F, Feng B, Zeng H (2015) Proteomics analysis for enhanced lipid accumulation in oleaginous Chlorella vulgaris under a heterotrophic-Na+ induction two-step regime. Biotechnol Lett 37(5):1021–1030

    Article  PubMed  Google Scholar 

  • Li DW, Cen SY, Liu YH, Balamurugan S, Zheng XY, Alimujiang A et al (2016) A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. J Biotechnol 229:65–71

    Article  PubMed  CAS  Google Scholar 

  • Li H, Han J, Pan J, Liu T, Parker CE, Borchers CH (2017) Current trends in quantitative proteomics–an update. J Mass Spectrom 52(5):319–341

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Meng T, Ling X, Li J, Zheng C, Shi Y et al (2018a) Overexpression of malonyl-CoA: ACP transacylase in Schizochytrium sp. to improve polyunsaturated fatty acid production. J Agric Food Chem 66(21):5382–5391

    Article  PubMed  CAS  Google Scholar 

  • Li DW, Xie WH, Hao TB, Cai JX, Zhou TB, Balamurugan S et al (2018b) Constitutive and chloroplast targeted expression of acetyl-CoA carboxylase in oleaginous microalgae elevates fatty acid biosynthesis. Mar Biotechnol 20(5):566–572

    Article  CAS  Google Scholar 

  • Liang C, Cao S, Zhang X, Zhu B, Su Z, Xu D et al (2013) De novo sequencing and global transcriptome analysis of Nannochloropsis sp. (Eustigmatophyceae) following nitrogen starvation. Bioenergy Res 6(2):494–505

    Article  Google Scholar 

  • Liu J, Sun Z, Gerken H, Huang J, Jiang Y, Chen F (2014) Genetic engineering of the green alga Chlorella zofingiensis: a modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. Appl Microbiol Biotechnol 98(11):5069–5079

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Pei G, Diao J, Chen Z, Liu L, Chen L, Zhang W (2017) Screening and transcriptomic analysis of Crypthecodinium cohnii mutants with high growth and lipid content using the acetyl-CoA carboxylase inhibitor sethoxydim. Appl Microbiol Biotechnol 101(15):6179–6191

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Zhang D, Zhang J, Chen Y, Liu X, Fan C et al (2021) Overexpression of the Transcription Factor AtLEC1 Significantly Improved the Lipid Content of Chlorella ellipsoidea. Front Bioeng Biotechnol 9:113

    Google Scholar 

  • Loechler E, Green CL, Essigmann JM (1984) In vivo mutagenesis by O6-methylguanine built into a unique site in a viral genome. Proc Natl Acad Sci U S A 81:6271–6275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Longworth J, Wu D, Huete-Ortega M, Wright PC, Vaidyanathan S (2016) Proteome response of Phaeodactylum tricornutum, during lipid accumulation induced by nitrogen depletion. Algal Res 18:213–224

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T (2017) Transcriptomics technologies. PLoS Comput Biol 13(5):e1005457

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Zhang X, Gu X, Lin H, Melis A (2021) Engineering microalgae: transition from empirical design to programmable cells. Crit Rev Biotechnol 41:1–24

    Article  Google Scholar 

  • Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14(4):441–447

    Article  CAS  Google Scholar 

  • Ma Q, Wang J, Lu S, Lv Y, Yuan Y (2013a) Quantitative proteomic profiling reveals photosynthesis responsible for inoculum size dependent variation in Chlorella sorokiniana. Biotechnol Bioeng 110(3):773–784

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Wang Z, Zhu M, Yu C, Cao Y, Zhang D, Zhou G (2013b) Increased lipid productivity and TAG content in Nannochloropsis by heavy-ion irradiation mutagenesis. Bioresour Technol 136:360–367

    Article  PubMed  CAS  Google Scholar 

  • Mackintosh JA, Choi HY, Bae SH, Veal DA, Bell PJ, Ferrari BC et al (2003) A fluorescent natural product for ultra sensitive detection of proteins in one-dimensional and two-dimensional gel electrophoresis. Proteomics 3(12):2273–2288

    Article  PubMed  CAS  Google Scholar 

  • Mahan KM, Polle JEW, McKie-Krisberg Z, Lipzen A, Kuo A, Grigoriev IV, Lane TW (2021) Davis AK annotated genome sequence of the high-biomass-producing yellow-green alga Tribonema minus. Microbiol Resour Announc 10(24):e0032721. https://doi.org/10.1128/MRA.00327-2

    Article  PubMed  Google Scholar 

  • Manandhar-Shrestha K, Hildebrand M (2013) Development of flow cytometric procedures for the efficient isolation of improved lipid accumulation mutants in a Chlorella sp. microalga. J Appl Phycol 25(6):1643–1651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mao X, Lao Y, Sun H, Li X, Yu J, Chen F (2020) Time-resolved transcriptome analysis during transitions of sulfur nutritional status provides insight into triacylglycerol (TAG) and astaxanthin accumulation in the green alga Chromochloris zofingiensis. Biotechnol Biofuels 13(1):1–18

    Article  Google Scholar 

  • Mehtani J, Arora N, Patel A, Jain P, Pruthi PA, Poluri KM, Pruthi V (2017) Augmented lipid accumulation in ethyl methyl sulphonate mutants of oleaginous microalga for biodiesel production. Bioresour Technol 242:121–127

    Article  PubMed  CAS  Google Scholar 

  • Meleady P (2018) Two-dimensional gel electrophoresis and 2D-DIGE. In: Ohlendieck K (ed) Difference gel electrophoresis. Humana Press, New York, NY, pp 3–14

    Chapter  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mezlini AM, Smith EJM, Fiume M, Buske O, Savich GL, Shah S, Aparicio S, Chiang DY, Goldenberg A, Brudno M (2013) iReckon: simultaneous isoform discovery and abundance estimation from RNA-seq data. Genome Res 23:519–529. PubMed: 23204306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michelet L, Lefebvre-Legendre L, Burr SE, Rochaix JD, Goldschmidt-Clermont M (2011) Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas. Plant Biotechnol J 9(5):565–574

    Article  PubMed  CAS  Google Scholar 

  • Mock T, Otillar RP, Strauss J, McMullan M, Paajanen P, Schmutz J et al (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541(7638):536–540

    Article  PubMed  CAS  Google Scholar 

  • Moha-León JD, Pérez-Legaspi IA, Ortega-Clemente LA, Rubio-Franchini I, Ríos-Leal E (2019) Improving the lipid content of Nannochloropsis oculata by a mutation-selection program using UV radiation and quizalofop. J Appl Phycol 31(1):191–199

    Article  Google Scholar 

  • Moore CE, Curtis B, Mills T, Tanifuji G, Archibald JM (2012) Nucleomorph genome sequence of the cryptophyte alga Chroomonas mesostigmatica CCMP1168 reveals lineage-specific gene loss and genome complexity. Genome Biol Evol 4(11):1162–1175

    Article  PubMed  PubMed Central  Google Scholar 

  • Mortz E, Krogh TN, Vorum H, Görg A (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1(11):1359–1363

    Article  PubMed  CAS  Google Scholar 

  • Mosey M, Douchi D, Knoshaug EP, Laurens LM (2021) Methodological review of genetic engineering approaches for non-model algae. Algal Res 54:102221

    Article  Google Scholar 

  • Muñoz CF, de Jaeger L, Sturme MH, Lip KY, Olijslager JW, Springer J et al (2018) Improved DNA/protein delivery in microalgae–a simple and reliable method for the prediction of optimal electroporation settings. Algal Res 33:448–455

    Article  Google Scholar 

  • Muñoz CF, Weusthuis RA, D’Adamo S, Wijffels RH (2019) Effect of single and combined expression of lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, and diacylglycerol acyltransferase on lipid accumulation and composition in Neochloris oleoabundans. Front Plant Sci 10:1573

    Article  PubMed  PubMed Central  Google Scholar 

  • Myers SA, Klaeger S, Satpathy S, Viner R, Choi J, Rogers J et al (2018) Evaluation of advanced precursor determination for tandem mass tag (TMT)-based quantitative proteomics across instrument platforms. J Proteome Res 18(1):542–547

    PubMed  Google Scholar 

  • Ndimba BK, Ndimba RJ, Johnson TS, Waditee-Sirisattha R, Baba M, Sirisattha S et al (2013) Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae. J Proteome 93:234–244

    Article  CAS  Google Scholar 

  • Ng IS, Tan SI, Kao PH, Chang YK, Chang JS (2017) Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnol J 12(10):1600644

    Article  Google Scholar 

  • Ngan CY, Wong CH, Choi C, Yoshinaga Y, Louie K, Jia J et al (2015) Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae. Nat Plants 1(8):1–12

    Article  Google Scholar 

  • Niu YF, Zhang MH, Li DW, Yang WD, Liu JS, Bai WB, Li HY (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11(11):4558–4569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noochanong W, Jirakranwong P, Chanprame S (2018) EMS-induced mutation followed by quizalofop-screening increased lipid productivity in Chlorella sp. Bioprocess Biosyst Eng 41(5):613–619

    Article  PubMed  Google Scholar 

  • Noor Z, Ahn SB, Baker MS, Ranganathan S, Mohamedali A (2021) Mass spectrometry–based protein identification in proteomics—a review. Brief Bioinform 22(2):1620–1638

    Article  PubMed  CAS  Google Scholar 

  • Norzagaray-Valenzuela CD, Germán-Báez LJ, Valdez-Flores MA, Hernández-Verdugo S, Shelton LM, Valdez-Ortiz A (2018) Establishment of an efficient genetic transformation method in Dunaliella tertiolecta mediated by Agrobacterium tumefaciens. J Microbiol Methods 150:9–17

    Article  PubMed  CAS  Google Scholar 

  • Ogura A, Akizuki Y, Imoda H, Mineta K, Gojobori T, Nagai S (2018) Comparative genome and transcriptome analysis of diatom, Skeletonema costatum, reveals evolution of genes for harmful algal bloom. BMC Genomics 19(1):1–12

    Article  Google Scholar 

  • Ortiz-Matamoros MF, Islas-Flores T, Voigt B, Menzel D, Baluška F, Villanueva MA (2015) Heterologous DNA uptake in cultured Symbiodinium spp. aided by Agrobacterium tumefaciens. PLoS One 10(7):e0132693

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Matamoros MF, Villanueva MA, Islas-Flores T (2018) Genetic transformation of cell-walled plant and algae cells: delivering DNA through the cell wall. Brief Funct Genom 17(1):26–33

    Article  CAS  Google Scholar 

  • Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N et al (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci 104(18):7705–7710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasaribu B, Jiang PL (2021) Agrobacterium tumefaciens Mediated Transformation of Symbiodinium spp. Turk J Fish Aquat Sci 21(6):291–298

    Article  Google Scholar 

  • Patel VK, Maji D, Pandey SS, Rout PK, Sundaram S, Kalra A (2016) Rapid budding EMS mutants of Synechocystis PCC 6803 producing carbohydrate or lipid enriched biomass. Algal Res 16:36–45

    Article  Google Scholar 

  • Peng H, Wei D, Chen G, Chen F (2016) Transcriptome analysis reveals global regulation in response to CO 2 supplementation in oleaginous microalga Coccomyxa subellipsoidea C-169. Biotechnol Biofuels 9(1):1–17

    Article  CAS  Google Scholar 

  • Perin G, Bellan A, Segalla A, Meneghesso A, Alboresi A, Morosinotto T (2015) Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production. Biotechnol Biofuels 8(1):1–13

    Article  Google Scholar 

  • Peterson CL, Reece DL, Thompson JC, Beck SM, Chase C (1996) Ethyl ester of rapeseed used as a biodiesel fuel—a case study. Biomass Bioenergy 10(5–6):331–336

    Article  CAS  Google Scholar 

  • Pivato M, Perozeni F, Licausi F, Cazzaniga S, Ballottari M (2021) Heterologous expression of cyanobacterial Orange Carotenoid Protein (OCP2) as a soluble carrier of ketocarotenoids in Chlamydomonas reinhardtii. Algal Res 55:102255

    Article  PubMed  PubMed Central  Google Scholar 

  • Polle JE, Barry K, Cushman J, Schmutz J, Tran D, Hathwaik LT et al (2017) Draft nuclear genome sequence of the halophilic and beta-carotene-accumulating green alga Dunaliella salina strain CCAP19/18. Genome Announc 5(43):e01105–e01117

    Article  PubMed  PubMed Central  Google Scholar 

  • Poulsen N, Chesley PM, Kröger N (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae) 1. J Phycol 42(5):1059–1065

    Article  Google Scholar 

  • Prasad B, Vadakedath N, Jeong HJ, General T, Cho MG, Lein W (2014) Agrobacterium tumefaciens-mediated genetic transformation of haptophytes (Isochrysis species). Appl Microbiol Biotechnol 98(20):8629–8639

    Article  PubMed  CAS  Google Scholar 

  • Prasad B, Lein W, Lindenberger CP, Buchholz R, Vadakedath N (2019) Stable nuclear transformation of rhodophyte species Porphyridium purpureum: advanced molecular tools and an optimized method. Photosynth Res 140(2):173–188

    Article  PubMed  CAS  Google Scholar 

  • Pratheesh PT, Vineetha M, Kurup GM (2014) An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Mol Biotechnol 56(6):507–515

    Article  PubMed  CAS  Google Scholar 

  • Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I et al (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329(5988):223–226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin S, Lin H, Jiang P (2012) Advances in genetic engineering of marine algae. Biotechnol Adv 30(6):1602–1613

    Article  PubMed  CAS  Google Scholar 

  • Qu D, Miao X (2021) Carbon flow conversion induces alkali resistance and lipid accumulation under alkaline conditions based on transcriptome analysis in Chlorella sp. BLD. Chemosphere 265:129046

    Article  PubMed  CAS  Google Scholar 

  • Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 3(1):1–11

    Article  Google Scholar 

  • Rai V, Karthikaichamy A, Das D, Noronha S, Wangikar PP, Srivastava S (2016) Multi-omics frontiers in algal research: techniques and progress to explore biofuels in the postgenomics world. OMICS 20(7):387–399

    Article  PubMed  CAS  Google Scholar 

  • Rai V, Muthuraj M, Gandhi MN, Das D, Srivastava S (2017) Real-time iTRAQ-based proteome profiling revealed the central metabolism involved in nitrogen starvation induced lipid accumulation in microalgae. Sci Rep 7(1):1–16

    Article  CAS  Google Scholar 

  • Rasala BA, Chao SS, Pier M, Barrera DJ, Mayfield SP (2014) Enhanced genetic tools for engineering multigene traits into green algae. PLoS One 9(4):e94028

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathod JP, Prakash G, Pandit R, Lali AM (2013) Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri. Photosynth Res 118(1):141–146

    Article  PubMed  CAS  Google Scholar 

  • Razeghifard R (2013) Algal biofuels. Photosynth Res 117(1):207–219

    Article  PubMed  CAS  Google Scholar 

  • Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F et al (2013) Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499(7457):209–213

    Article  PubMed  CAS  Google Scholar 

  • Reijnders MJ, van Heck RG, Lam CM, Scaife MA, dos Santos VAM, Smith AG, Schaap PJ (2014) Green genes: bioinformatics and systems-biology innovations drive algal biotechnology. Trends Biotechnol 32(12):617–626

    Article  PubMed  CAS  Google Scholar 

  • Remacle C, Cline S, Boutaffala L, Gabilly S, Larosa V, Barbieri MR et al (2009) The ARG9 gene encodes the plastid-resident N-acetyl ornithine aminotransferase in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 8(9):1460–1463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Remmers IM, D’Adamo S, Martens DE, de Vos RC, Mumm R, America AH et al (2018) Orchestration of transcriptome, proteome and metabolome in the diatom Phaeodactylum tricornutum during nitrogen limitation. Algal Res 35:33–49

    Article  Google Scholar 

  • Rossoni AW, Price DC, Seger M, Lyska D, Lammers P, Bhattacharya D, Weber AP (2019) The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions. elife 8:e45017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruecker O, Zillner K, Groebner-Ferreira R, Heitzer M (2008) Gaussia-luciferase as a sensitive reporter gene for monitoring promoter activity in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Gen Genomics 280(2):153–162

    Article  CAS  Google Scholar 

  • Run C, Fang L, Fan J, Fan C, Luo Y, Hu Z, Li Y (2016) Stable nuclear transformation of the industrial alga Chlorella pyrenoidosa. Algal Res 17:196–201

    Article  Google Scholar 

  • Saal LH, Troein C, Vallon-Christersson J, Gruvberger S, Borg Å, Peterson C (2002) BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome Biol 3(8):1–6

    Article  Google Scholar 

  • Sachdeva N, Gupta RP, Mathur AS, Tuli DK (2016) Enhanced lipid production in thermo-tolerant mutants of Chlorella pyrenoidosa NCIM 2738. Bioresour Technol 221:576–587

    Article  PubMed  CAS  Google Scholar 

  • Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA et al (2006) [9] TM4 microarray software suite. Methods Enzymol 411:134–193

    Article  PubMed  CAS  Google Scholar 

  • Sahoo S, Mahapatra SR, Das N, Parida BK, Rath S, Misra N, Suar M (2020) Functional elucidation of hypothetical proteins associated with lipid accumulation: prioritizing genetic engineering targets for improved algal biofuel production. Algal Res 47:101887

    Article  Google Scholar 

  • Salama ES, Govindwar SP, Khandare RV, Roh HS, Jeon BH, Li X (2019) Can omics approaches improve microalgal biofuels under abiotic stress? Trends Plant Sci 24(7):611–624

    Article  PubMed  CAS  Google Scholar 

  • San Cha T, Yee W, Aziz A (2012) Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World J Microbiol Biotechnol 28(4):1771–1779

    Article  Google Scholar 

  • Sanitha M, Radha S, Fatima AA, Devi SG, Ramya M (2014) Agrobacterium-mediated transformation of three freshwater microalgal strains. Pol J Microbiol 63(4):387–382

    Article  PubMed  Google Scholar 

  • Sarayloo E, Simsek S, Unlu YS, Cevahir G, Erkey C, Kavakli IH (2018) Enhancement of the lipid productivity and fatty acid methyl ester profile of Chlorella vulgaris by two rounds of mutagenesis. Bioresour Technol 250:764–769

    Article  PubMed  CAS  Google Scholar 

  • Schubert OT, Röst HL, Collins BC, Rosenberger G, Aebersold R (2017) Quantitative proteomics: challenges and opportunities in basic and applied research. Nat Protoc 12(7):1289–1294

    Article  PubMed  CAS  Google Scholar 

  • Scranton MA, Ostrand JT, Fields FJ, Mayfield SP (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J 82(3):523–531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shahar N, Landman S, Weiner I, Elman T, Dafni E, Feldman Y et al (2020) The integration of multiple nuclear-encoded transgenes in the green alga Chlamydomonas reinhardtii results in higher transcription levels. Front Plant Sci 10:1784

    Article  PubMed  PubMed Central  Google Scholar 

  • Shang C, Bi G, Yuan Z, Wang Z, Alam MA, Xie J (2016) Discovery of genes for production of biofuels through transcriptome sequencing of Dunaliella parva. Algal Res 13:318–326

    Article  Google Scholar 

  • Shang C, Zhu S, Wang Z, Qin L, Alam MA, Xie J, Yuan Z (2017) Proteome response of Dunaliella parva induced by nitrogen limitation. Algal Res 23:196–202

    Article  Google Scholar 

  • Sharma T, Chauhan RS (2016) Comparative transcriptomics reveals molecular components associated with differential lipid accumulation between microalgal sp., Scenedesmus dimorphus and Scenedesmus quadricauda. Algal Res 19:109–122

    Article  Google Scholar 

  • Sharma PK, Goud VV, Yamamoto Y, Sahoo L (2021) Efficient Agrobacterium tumefaciens-mediated stable genetic transformation of green microalgae, Chlorella sorokiniana. 3 Biotech 11(4):1–11

    Article  Google Scholar 

  • Shi H, Chen H, Gu Z, Zhang H, Chen W, Chen YQ (2016) Application of a delta-6 desaturase with α-linolenic acid preference on eicosapentaenoic acid production in Mortierella alpina. Microb Cell Factories 15(1):1–14

    Article  Google Scholar 

  • Shiio Y, Aebersold R (2006) Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat Protoc 1(1):139–145

    Article  PubMed  CAS  Google Scholar 

  • Shoguchi E, Beedessee G, Tada I, Hisata K, Kawashima T, Takeuchi T et al (2018) Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics 19(1):1–11

    Article  Google Scholar 

  • Shrager J, Hauser C, Chang CW, Harris EH, Davies J, McDermott J et al (2003) Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiol 131(2):401–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Sickmann A, Mreyen M, Meyer HE (2003) Mass spectrometry—a key technology in proteom research. Adv Biochem Eng Biotechnol 83:141–176

    PubMed  CAS  Google Scholar 

  • Siddiqui A, Wei Z, Boehm M, Ahmad N (2020) Engineering microalgae through chloroplast transformation to produce high-value industrial products. Biotechnol Appl Biochem 67(1):30–40

    Article  PubMed  CAS  Google Scholar 

  • Sierra LS, Dixon CK, Wilken LR (2017) Enzymatic cell disruption of the microalgae Chlamydomonas reinhardtii for lipid and protein extraction. Algal Res 25:149–159

    Article  Google Scholar 

  • Simon DP, Narayanan A, Gouda KM, Sarada R (2015) Vir gene inducers in Dunaliella salina; an insight in to the Agrobacterium-mediated genetic transformation of microalgae. Algal Res 11:121–124

    Article  Google Scholar 

  • Simon DP, Anila N, Gayathri K, Sarada R (2016) Heterologous expression of β-carotene hydroxylase in Dunaliella salina by Agrobacterium-mediated genetic transformation. Algal Res 18:257–265

    Article  Google Scholar 

  • Sirikhachornkit A, Suttangkakul A, Vuttipongchaikij S, Juntawong P (2018) De novo transcriptome analysis and gene expression profiling of an oleaginous microalga Scenedesmus acutus TISTR8540 during nitrogen deprivation-induced lipid accumulation. Sci Rep 8(1):1–12

    Article  CAS  Google Scholar 

  • Sivakumar G, Xu J, Thompson RW, Yang Y, Randol-Smith P, Weathers PJ (2012) Integrated green algal technology for bioremediation and biofuel. Bioresour Technol 107:1–9

    Article  PubMed  CAS  Google Scholar 

  • Smalley T, Fields FJ, Berndt AJ, Ostrand JT, Heredia V, Mayfield SP (2020) Improving biomass and lipid yields of Desmodesmus armatus and Chlorella vulgaris through mutagenesis and high-throughput screening. Biomass Bioenergy 142:105755

    Article  CAS  Google Scholar 

  • Smita P, Gunjan P, Lali AM (2020) Reduced chlorophyll antenna mutants of Chlorella saccharophila for higher photosynthetic efficiency and biomass productivity under high light intensities. J Appl Phycol 32(3):1559–1567

    Article  Google Scholar 

  • Song P, Li L, Liu J (2013) Proteomic analysis in nitrogen-deprived Isochrysis galbana during lipid accumulation. PLoS One 8(12):e82188

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivasan R, Gothandam KM (2016) Synergistic action of D-glucose and acetosyringone on Agrobacterium strains for efficient Dunaliella transformation. PLoS One 11(6):e0158322

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS (2011) Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 29(12):615–623

    Article  PubMed  CAS  Google Scholar 

  • Sturme MH, Gong Y, Heinrich JM, Klok AJ, Eggink G, Wang D et al (2018) Transcriptome analysis reveals the genetic foundation for the dynamics of starch and lipid production in Ettlia oleoabundans. Algal Res 33:142–155

    Article  Google Scholar 

  • Suzuki S, Yamaguchi H, Nakajima N, Kawachi M (2018) Raphidocelis subcapitata (= Pseudokirchneriella subcapitata) provides an insight into genome evolution and environmental adaptations in the Sphaeropleales. Sci Rep 8(1):1–13

    Article  Google Scholar 

  • Takahashi H, Tanaka S, Hayashi S, Miyaki S, Takahashi A, Onai S et al (2018) Draft genome sequence of Trebouxiophyceae sp. strain KSI-1, isolated from an island hot spring. Microbiol Resour Announc 7(16):e01185–e01118

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan KWM, Lee YK (2017) Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii. J Biotechnol 247:60–67

    Article  PubMed  CAS  Google Scholar 

  • Tan C, Qin S, Zhang Q, Jiang P, Zhao F (2005) Establishment of a micro-particle bombardment transformation system for Dunaliella salina. J Microbiol 43(4):361–365

    PubMed  CAS  Google Scholar 

  • Teh KY, Afifudeen CW, Aziz A, Wong LL, Loh SH, San Cha T (2019) De novo whole genome sequencing data of two mangrove-isolated microalgae from Terengganu coastal waters. Data Brief 27:104680

    Article  PubMed  PubMed Central  Google Scholar 

  • Teng C, Qin S, Liu J, Yu D, Liang C, Tseng C (2002) Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. J Appl Phycol 14(6):497–500

    Article  CAS  Google Scholar 

  • Tokunaga S, Sanda S, Uraguchi Y, Nakagawa S, Sawayama S (2019) Overexpression of the DOF-type transcription factor enhances lipid synthesis in Chlorella vulgaris. Appl Biochem Biotechnol 189(1):116–128

    Article  PubMed  CAS  Google Scholar 

  • Toyomizu M, Suzuki K, Kawata Y, Kojima H, Akiba Y (2001) Effective transformation of the cyanobacterium Spirulina platensis using electroporation. J Appl Phycol 13(3):209–214

    Article  CAS  Google Scholar 

  • Tran NAT, Padula MP, Evenhuis CR, Commault AS, Ralph PJ, Tamburic B (2016) Proteomic and biophysical analyses reveal a metabolic shift in nitrogen deprived Nannochloropsis oculata. Algal Res 19:1–11

    Article  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tyers M, Mann M (2003) From genomics to proteomics. Nature 422(6928):193–197

    Article  PubMed  CAS  Google Scholar 

  • Ünlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis 18(11):2071–2077

    Article  PubMed  Google Scholar 

  • Valenzuela J, Mazurie A, Carlson RP, Gerlach R, Cooksey KE, Peyton BM, Fields MW (2012) Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels 5(1):1–17

    Article  Google Scholar 

  • Vigeolas H, Duby F, Kaymak E, Niessen G, Motte P, Franck F, Remacle C (2012) Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus. J Biotechnol 162(1):3–12

    Article  PubMed  CAS  Google Scholar 

  • Vignard J, Mirey G, Salles B (2013) Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother Oncol 108(3):362–369

    Article  PubMed  CAS  Google Scholar 

  • Walker TL, Collet C, Purton S (2005) Algal transgenics in the genomic era 1. J Phycol 41(6):1077–1093

    Article  Google Scholar 

  • Wan M, Jin X, Xia J, Rosenberg JN, Yu G, Nie Z et al (2014) The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana. Appl Microbiol Biotechnol 98(22):9473–9481

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Wang Y, Su Q, Gao X (2007) Transient expression of the GUS gene in a unicellular marine green alga, Chlorella sp. MACC/C95, via electroporation. Biotechnol Bioprocess Eng 12(2):180–183

    Article  CAS  Google Scholar 

  • Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Miecz-kowski P, Grimm SA, Perou CM et al (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38:e178

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang D, Ning K, Li J, Hu J, Han D, Wang H et al (2014) Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet 10(1):e1004094

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Liu YH, Hu DX, Balamurugan S, Lu Y, Yang WD et al (2015) Identification of a putative patatin-like phospholipase domain-containing protein 3 (PNPLA3) ortholog involved in lipid metabolism in microalga Phaeodactylum tricornutum. Algal Res 12:274–279

    Article  Google Scholar 

  • Wang H, Gao L, Shao H, Zhou W, Liu T (2017) Lipid accumulation and metabolic analysis based on transcriptome sequencing of filamentous oleaginous microalgae Tribonema minus at different growth phases. Bioprocess Biosyst Eng 40(9):1327–1335

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Li Y, Lu J, Deng X, Li H, Hu Z (2018) Effect of overexpression of LPAAT and GPD1 on lipid synthesis and composition in green microalga Chlamydomonas reinhardtii. J Appl Phycol 30(3):1711–1719

    Article  PubMed  CAS  Google Scholar 

  • Wannathong T, Waterhouse JC, Young RE, Economou CK, Purton S (2016) New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 100(12):5467–5477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wardman P (2009) The importance of radiation chemistry to radiation and free radical biology (The 2008 Silvanus Thompson Memorial Lecture). Br J Radiol 82(974):89–104

    Article  PubMed  CAS  Google Scholar 

  • Wase N, Black PN, Stanley BA, DiRusso CC (2014) Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. J Proteome Res 13(3):1373–1396

    Article  PubMed  CAS  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41(2):135–160

    Article  CAS  Google Scholar 

  • Wei H, Shi Y, Ma X, Pan Y, Hu H, Li Y et al (2017) A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica. Biotechnol Biofuels 10(1):1–18

    Article  Google Scholar 

  • Williams RS, Johnston SA, Riedy M, DeVit MJ, McElligott SG, Sanford JC (1991) Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc Natl Acad Sci 88(7):2726–2730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Worden AZ, Lee JH, Mock T, Rouzé P, Simmons MP, Aerts AL et al (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324(5924):268–272

    Article  PubMed  CAS  Google Scholar 

  • Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26:873–881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu H, Kerr MK, Cui X, Churchill GA (2003) MAANOVA: a software package for the analysis of spotted cDNA microarray experiments. In: Parmigiani G et al (eds) The analysis of gene expression data. Springer, New York, NY, pp 313–341

    Chapter  Google Scholar 

  • Xie WH, Zhu CC, Zhang NS, Li DW, Yang WD, Liu JS et al (2014) Construction of novel chloroplast expression vector and development of an efficient transformation system for the diatom Phaeodactylum tricornutum. Mar Biotechnol 16(5):538–546

    Article  CAS  Google Scholar 

  • Xing G, Li J, Li W, Lam SM, Yuan H, Shui G, Yang J (2021a) AP2/ERF and R2R3-MYB family transcription factors: potential associations between temperature stress and lipid metabolism in Auxenochlorella protothecoides. Biotechnol Biofuels 14(1):1–16

    Article  Google Scholar 

  • Xing W, Zhang R, Shao Q, Meng C, Wang X, Wei Z et al (2021b) Effects of Laser Mutagenesis on Microalgae Production and Lipid Accumulation in Two Economically Important Fresh Chlorella Strains under Heterotrophic Conditions. Agronomy 11(5):961

    Article  CAS  Google Scholar 

  • Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9

    Article  PubMed  Google Scholar 

  • Yan N, Fan C, Chen Y, Hu Z (2016) The potential for microalgae as bioreactors to produce pharmaceuticals. Int J Mol Sci 17(6):962

    Article  PubMed Central  Google Scholar 

  • Yang ZK, Ma YH, Zheng JW, Yang WD, Liu JS, Li HY (2014) Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum. J Appl Phycol 26(1):73–82

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Xiang W, Li T, Long L (2018) Transcriptome analysis for phosphorus starvation-induced lipid accumulation in Scenedesmus sp. Sci Rep 8(1):1–11

    Article  Google Scholar 

  • Yao Y, Lu Y, Peng KT, Huang T, Niu YF, Xie WH et al (2014) Glycerol and neutral lipid production in the oleaginous marine diatom Phaeodactylum tricornutum promoted by overexpression of glycerol-3-phosphate dehydrogenase. Biotechnol Biofuels 7(1):1–9

    Article  Google Scholar 

  • Ye N, Zhang X, Miao M, Fan X, Zheng Y, Xu D et al (2015) Saccharina genomes provide novel insight into kelp biology. Nat Commun 6(1):1–11

    Article  Google Scholar 

  • Yi Z, Su Y, Xu M, Bergmann A, Ingthorsson S, Rolfsson O et al (2018) Chemical mutagenesis and fluorescence-based high-throughput screening for enhanced accumulation of carotenoids in a model marine diatom Phaeodactylum tricornutum. Mar Drugs 16(8):272

    Article  PubMed Central  Google Scholar 

  • Yin W, Hu H (2021) High-efficiency transformation of a centric diatom Chaetoceros muelleri by electroporation with a variety of selectable markers. Algal Res 55:102274

    Article  Google Scholar 

  • You W, Wei L, Gong Y, El Hajjami M, Xu J, Poetsch A (2020) Integration of proteome and transcriptome refines key molecular processes underlying oil production in Nannochloropsis oceanica. Biotechnol Biofuels 13(1):1–19

    Article  Google Scholar 

  • Young RE, Purton S (2016) Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 14(5):1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR III (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113(4):2343–2394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang K, Tang C, Liang X, Zhao Q, Zhang J (2018) Isobaric tags for relative and absolute quantification (iTRAQ)-based untargeted quantitative proteomic approach to identify change of the plasma proteins by salbutamol abuse in beef cattle. J Agric Food Chem 66(1):378–386

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wang H, Yang R, Wang L, Yang G, Liu T (2020a) Genetic transformation of Tribonema minus, a eukaryotic filamentous oleaginous yellow-green alga. Int J Mol Sci 21(6):2106

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Qu C, Zhang K, He Y, Zhao X, Yang L et al (2020b) Adaptation to extreme Antarctic environments revealed by the genome of a sea ice green alga. Curr Biol 30(17):3330–3341

    Article  PubMed  CAS  Google Scholar 

  • Zhang YT, Wei W, Wang Y, Ni BJ (2021a) Enhancing methane production from algae anaerobic digestion using diatomite. J Clean Prod 315:128138

    Article  CAS  Google Scholar 

  • Zhang Y, Pan Y, Ding W, Hu H, Liu J (2021b) Lipid production is more than doubled by manipulating a diacylglycerol acyltransferase in algae. GCB Bioenergy 13(1):185–200

    Article  CAS  Google Scholar 

  • Zhang Y, Ye Y, Bai F, Liu J (2021c) The oleaginous astaxanthin-producing alga Chromochloris zofingiensis: potential from production to an emerging model for studying lipid metabolism and carotenogenesis. Biotechnol Biofuels 14(1):1–37

    Article  CAS  Google Scholar 

  • Zhao D, Huang D, Li Y, Wu M, Zhong W, Cheng Q et al (2016) A flow-through cell electroporation device for rapidly and efficiently transfecting massive amounts of cells in vitro and ex vivo. Sci Rep 6(1):1–9

    Google Scholar 

  • Zhou H, Wilkens A, Hanelt D, von Schwartzenberg K (2021) Expanding the molecular toolbox for Zygnematophyceae–transient genetic transformation of the desmid Micrasterias radians var. evoluta. Eur J Phycol 56(1):51–60

    Article  Google Scholar 

  • Zienkiewicz K, Zienkiewicz A, Poliner E, Du ZY, Vollheyde K, Herrfurth C et al (2017) Nannochloropsis, a rich source of diacylglycerol acyltransferases for engineering of triacylglycerol content in different hosts. Biotechnol Biofuels 10(1):1–20

    Article  Google Scholar 

  • Zou LG, Chen JW, Zheng DL, Balamurugan S, Li DW, Yang WD et al (2018) High-efficiency promoter-driven coordinated regulation of multiple metabolic nodes elevates lipid accumulation in the model microalga Phaeodactylum tricornutum. Microb Cell Factories 17(1):1–8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adiguzel, A.O. (2023). The Use of Omics Technologies, Random Mutagenesis, and Genetic Transformation Techniques to Improve Algae for Biodiesel Industry. In: Srivastava, N., Mishra, P.K. (eds) Technological Advancement in Algal Biofuels Production. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-6806-8_2

Download citation

Publish with us

Policies and ethics