Skip to main content
Log in

Stable nuclear transformation of the oleaginous microalga Neochloris oleoabundans by electroporation

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Biodiesel from microalgae is technically feasible, but not yet economically viable. A potential approach to improve microalgae as an economically viable biodiesel feedstock is to increase microalgal lipid content via genetic engineering. Genetic manipulation of microalgae requires the accessibility to stable nuclear transformation. In this study, we describe a strategy for developing a stable nuclear transformation system of the oleaginous microalga Neochloris oleoabundans using electroporation. The hygromycin B-resistant gene Hyg3, which was used as a positively selectable marker, consisted of aph7” gene encoding aminoglycoside phosphotransferase of Streptomyces hygroscopicus and intron1 of Chlamydomonas reinhardtii rbcS2 gene, under the control of C. reinhardtii HSP70A-RBCS2 hybrid promoter. The transformation frequency was 5.2 × 10−4 transformants mg−1 DNA. The transformants showed stable hygromycin B-resistant phenotype for at least 6 months in the absence of the antibiotic selection. Co-transformation frequency of unselectable green fluorescent protein gene (Gfp) adapted to C. reinhardtii codon usage (ChGfp) and selectable Hyg3 gene was 2.6 × 10−4 transformants mg−1 DNA; up to 90 % of the transformants exhibited green fluorescent protein (GFP) activity. The ChGfp and Hyg3 gene were integrated into the nuclear genome of N. oleoabundans. The GFP fluorescence signal of the transformants under confocal laser scanning microscope was visible. The successful stable nuclear transformation system not only provides a basis for molecular genetics study, but also enables subsequent genetic engineering in the microalga to increase lipid content for biodiesel production. The strategy for developing the stable nuclear transformation system presented in this study may be applicable to other microalgal species without sequenced genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7″ gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153:401–412

    Article  CAS  PubMed  Google Scholar 

  • Bischoff HW, Bold HC (1963) Phycological studies. IV. Some algae from enchanted rock and related algae species. Univ Texas Pub 4:1–95

    Google Scholar 

  • Brown LE, Sprecher S, Keller L (1991) Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Cell Biol 11:2328–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunke K, Anthony J, Sternberg E, Weeks D (1984) Repeated consensus sequence and pseudopromoters in the four coordinately regulated tubulin genes of Chlamydomonas reinhardtii. Mol Cell Biol 4:1115–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chow K-C, Tung W (1999) Electrotransformation of Chlorella vulgaris. Plant Cell Rep 18:778–780

    Article  CAS  Google Scholar 

  • Chungjatupornchai W, Watcharawipas A (2014) Diacylglycerol acyltransferase type 2 cDNA from the oleaginous microalga Neochloris oleoabundans: cloning and functional characterization. J Appl Phycol. doi:10.1007/s10811-014-0448-6

    Google Scholar 

  • Chungjatupornchai W, Senawong T, Panyim S (1999) Isolation and characterization of Synechococcus PCC7942 promoters: tRNApro gene functions as a promoter. Curr Microbiol 38:210–216

    Article  CAS  PubMed  Google Scholar 

  • Coll J (2006) Methodologies for transferring DNA into eukaryotic microalgae: a review. Span J Agric Res 4:316–330

    Article  Google Scholar 

  • Deason T, Silva P, Watanabe S, Floyd G (1991) Taxonomic status of the species of the green algal genus Neochloris. Plant Syst Evol 177:213–219

    Article  Google Scholar 

  • Draper J, Scott R (1998) The isolation of plant nucleic acids. In: Draper J, Scott R, Armitage P, Walden R (eds) Plant genetic transformation and gene expression: a laboratory manual. Blackwell Scientific Publications, London, pp 199–236

    Google Scholar 

  • Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 19:353–361

    Article  CAS  PubMed  Google Scholar 

  • Gurskaya N, Fradkov A, Pounkova N, Staroverov D, Bulina M, Yanushevich Y, Labas Y, Lukyanov S, Lukyanov K (2003) A colourless green fluorescent protein homologue from the non-fluorescent hydromedusa Aequorea coerulescens and its fluorescent mutants. Biochem J 373:403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallmann A, Wodniok S (2006) Swapped green algal promoters: aphVIII-based gene constructs with Chlamydomonas flanking sequences work as dominant selectable markers in Volvox and vice versa. Plant Cell Rep 25:582–591

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker. EMBO J 6:3901–3908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinegris DM, van Es MA, Janssen M, Brandenburg WA, Wijffels RH (2010) Carotenoid fluorescence in Dunaliella salina. J Appl Phycol 22:645–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerche K, Hallmann A (2009) Stable nuclear transformation of Gonium pectorale. BMC Biotechnol 9:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447

    Article  CAS  Google Scholar 

  • Odell JT, Nagy F, Chua N-H (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Lin H, Jiang P (2012) Advances in genetic engineering of marine algae. Biotechnol Adv 30:1602–1613

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed R, Hurt E (2002) A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108:523–531

    Article  CAS  PubMed  Google Scholar 

  • Rose AB, Last RL (1997) Introns act post‐transcriptionally to increase expression of the Arabidopsis thaliana tryptophan pathway gene PAT1. Plant J 11:455–464

    Article  CAS  PubMed  Google Scholar 

  • Schroda M (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 49:69–84

    Article  CAS  PubMed  Google Scholar 

  • Schroda M, Blöcker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21:121–131

    Article  CAS  PubMed  Google Scholar 

  • Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148(4):1821–1828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan C, Qin S, Zhang Q, Jiang P, Zhao F (2005) Establishment of a micro-particle bombardment transformation system for Dunaliella salina. J Microbiol 43:361

    CAS  PubMed  Google Scholar 

  • Tornabene T, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Technol 5:435–440

    Article  CAS  Google Scholar 

  • Zhang C, Hu H (2014) High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation. Mar Genomics 16:63–66

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Wolfgang Mages (Universität Regensburg, Germany) for providing plasmids pHyg3 and pHyg4. This work was supported by Mahidol University and The Thailand Research Fund to Wipa Chungjatupornchai. Paweena Kitraksa was supported by the 60th Year Supreme Reign of His Majesty King Bhumibol Adulyadej Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wipa Chungjatupornchai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chungjatupornchai, W., Kitraksa, P. & Fa-aroonsawat, S. Stable nuclear transformation of the oleaginous microalga Neochloris oleoabundans by electroporation. J Appl Phycol 28, 191–199 (2016). https://doi.org/10.1007/s10811-015-0594-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0594-5

Keywords

Navigation