Skip to main content
Log in

Microalgae engineering toolbox: Selectable and screenable markers

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Engineering microalgae has opened a new era for plant biologists and biotechnologists. Microalgae had been proved as a promising candidate for the production of biopharmaceuticals, nutraceuticals, antioxidants, antimicrobial and antiviral compounds, in dyeing and food industry as well for biofuel production. Genetic transformation of some important microalgae has been successful, but several other potential microalgae species still need scientific attention. The success of the genetic transformation depends mainly on the utilization of the selectable and screenable markers. Like for other higher crop plants, several useful markers have been reported for microalgae transformation. In this follow-up, we compared different marker genes for genetic engineering of approximately all the industrially important microalgae. We have discussed the expression host, the targeted genome, appropriate selection agent, as well as the transformation method. Genetic transformation is an expensive and labor intensive process and this review will aid to shorten the time span by providing a database of appropriate markers for microalgae research which could serve as a guide for those involved in the genetic engineering of microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cardozo, K. H. M., T. Guaratini, M. P. Barros, V. R. Falcao, A. P. Tonon, N. P. Lopes, S. Campos, M. A. Torres, A. O. Souza, P. Colepicolo, and E. Pinto (2007) Metabolites from algae with economical impact. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 146: 60–78.

    Article  CAS  Google Scholar 

  2. Andersen, R. A. (1992) Diversity of eukaryotic algae. Biodiversity Conserv. 1: 267–292.

    Article  Google Scholar 

  3. Sambamurty, A. V. S. S. (2005) A textbook of Algae. pp. 22–31. I.K. International Pvt. Ltd. New Delhi, India.

    Google Scholar 

  4. Starcks, S. (2012) A place in the sun-Algae is the crop of the future, Geel Flanders Today. Retrieved 8 December 2012. http://www.flanderstoday.eu/current-affairs/place-sun.

    Google Scholar 

  5. Salih, F. M. (2011) Microalgae tolerance to high concentrations of carbon dioxide: A review. J. Environ. Prot. 2: 648–654.

    Article  CAS  Google Scholar 

  6. Arnold, M. (2013) Sustainable algal biomass production by cultivation in waste water flows. VTT Technology. 147: pp. 1–84. VTT Technical Research Centre of Finlad, Espoo. Finland.

    Google Scholar 

  7. Abdel-Raouf, N., A. A. Al-Homaidan, and I. B. M. Ibraheem (2012) Microalgae and wastewater treatment. Saudi J. Biol. Sci. 19: 257–275.

    Article  CAS  Google Scholar 

  8. Pratheesh, P. T., G. M. Shonima, J. Thomas, C. I. Abraham, and K. G. Muraleedhara (2012) Study on efficacy of different Agrobacterium tumefaciens strains in genetic transformation of microalga Chlamydomonas reinhardtii. Adv. Appl. Sci. Res. 3: 2679–2686.

    CAS  Google Scholar 

  9. Prasad, B., N. Vadakedath, H. J. Jeong, T. General, M. G. Cho, and W. Lein (2014) Agrobacterium tumefaciens-mediated genetic transformation of haptophytes (Isochrysis species). Appl. Microbiol. Biotechnol. 98: 8629–8639.

    Article  CAS  Google Scholar 

  10. Oey, M., I. L. Ross, and B. Hankamer (2014) Gateway-assisted vector construction to facilitate expression of foreign proteins in the chloroplast of single celled algae. PLoS ONE. 9: e86841.

    Article  CAS  Google Scholar 

  11. Lerche, K. and A. Hallmann (2014) Stable nuclear transformation of Pandorina morum. BMC Biotechnol. 14: 65.

    Article  CAS  Google Scholar 

  12. Rasala, B. A., S.-S. Chao, M. Pier, D. J. Barrera, and S. P. Mayfield (2014) Enhanced genetic tools for engineering multigene traits into green algae. PLoS ONE. 9: e94028.

    Article  CAS  Google Scholar 

  13. Brueggeman, A. J., D. Kuehler, D. P. Weeks (2014) Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production. Plant Biotechnol. J. 12: 894–902.

    Article  CAS  Google Scholar 

  14. Feng, S., W. Feng, L. Zhao, H. Gu, Q. Li, K. Shi, S. Guo, and N. Zhang (2014) Preparation of transgenic Dunaliella salina for immunization against white spot syndrome virus in crayfish. Arch. Virol. 159: 519–525.

    Article  CAS  Google Scholar 

  15. Zorin, B., O. Grundman, I. Khozin-Goldberg, S. Leu, M. Shapira, Y. Kaye, N. Tourasse, O. Vallon, and S. Boussiba (2014) Development of a nuclear transformation system for Oleaginous green alga Lobosphaera (Parietochloris) incisa and genetic complementation of a mutant strain, deficient in arachidonic acid biosynthesis. PLoS ONE. 9: e105223.

    Article  CAS  Google Scholar 

  16. Brasileiro, A. C. M. and D. M. A. Dusi (1999) Genetic transformation in plants. In: Torres, A. C., L. S. Caldas, and J. A. Buso (eds.). Tissue Culture and Genetic Transformation of Plants. pp. 679–735. EMBRAPA-SPI/EMBRAPA-CNPH, Brasilia, Brazil.

    Google Scholar 

  17. Sawahel, W. A. (1994) Transgenic plants: performance, release and containment. World J. Microbiol. Biotechnol. 10: 139–144.

    Article  CAS  Google Scholar 

  18. Corneille, S., K. Lutz, Z. Svab, and P. Maliga (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J. 27: 171–178.

    Article  CAS  Google Scholar 

  19. Day, A. and M. Goldschmidt-Clermont (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol. J. 9: 540–553.

    Article  CAS  Google Scholar 

  20. Young, R. E. B. and S. Purton (2014) Cytosine deaminase as a negative selectable marker for the microalgal chloroplast: a strategy for the isolation of nuclear mutations that affect chloroplast gene expression. Plant J. 80: 915–925.

    Article  CAS  Google Scholar 

  21. Serino, G. and P. Maliga (1997) A negative selection scheme based on the expression of Cytosine deaminase in plastids. Plant J. 12: 697–701.

    Article  CAS  Google Scholar 

  22. Remacle, C., S. Cline, L. Boutaffala, S. Gabilly, V. Larosa, M. R. Barbieri, N. Coosemans, and P. P. Hamel (2009) The ARG9 gene encodes the plastid-resident N-Acetyl Ornithine aminotransferase in the green alga Chlamydomonas reinhardtii. Eukaryot. Cell. 8: 1460–1463.

    Article  CAS  Google Scholar 

  23. Murakami, T., H. Anzai, S. Imai, A. Satoh, K. Nagaoka, and C. J. Thompson (1986) The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol. Gen. Genet. 205: 42–50.

    Article  CAS  Google Scholar 

  24. De Block, M., J. Botterman, M. Vandewiele, J. Dockx, C. Thoen, V. Gossele, N. R. Movva, C. Thompson, M. V. Montagu, and J. Leemans (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6: 2513–2518.

    CAS  Google Scholar 

  25. Jiang, G.-Z., Y.-M. Lu, X.-L. Niu, and L.-X. Xue (2005) The actin gene promoter-derived bar as dominant selectable marker for nuclear transformation of Dunaliella salina. Acta Gene. Sin. 32: 424–433.

    CAS  Google Scholar 

  26. Pue, N. and L. W. Guddat (2014) Acetohydroxyacid synthase: A target for antimicrobial drug discovery. Curr. Pharm. Des. 20: 740–753.

    Article  CAS  Google Scholar 

  27. Lapidot, M., D. Raveh, A. Sivan, S. M. Arad, and M. Shapira (2002) Stable chloroplast transformation of the unicellular red algae Porphyridium species. Plant Physiol. 129: 7–12.

    Article  CAS  Google Scholar 

  28. Steinbrenner, J. and G. Sandmann (2006) Transformation of the green alga Haematococcus pluvialis with a Phytoene desaturase for accelerated astaxanthin biosynthesis. Appl. Environ. Microbiol. 72: 7477–7484.

    Article  CAS  Google Scholar 

  29. Liu, J., Z. Sun, H. Gerken, J. Huang, Y. Jiang, and F. Chen (2014) Genetic engineering of the green alga Chlorella zofingiensis: a modified Norflurazon-resistant Phytoene desaturase gene as a dominant selectable marker. Appl. Microbiol. Biotechnol. 98: 5069–5079.

    Article  CAS  Google Scholar 

  30. Benveniste, R. and J. Davies (1973) Mechanisms of antibiotic resistance in bacteria. Annu. Rev. Biochem. 42: 471–506.

    Article  CAS  Google Scholar 

  31. Brasileiro, A. C. M. (1998) Neomicina Phosphotransferase II (NPT II). In: Brasileiro A. C. M. and V. T. C. Carneiro (eds.). Manual de Transformacao Genetica de Plantas. pp. 143–154. Embrapa-SPI/Embrapa-Cenargen, Brasilia, Brazil.

    Google Scholar 

  32. Dumas, P., M. Bergdoll, C. Cagnon, and J. M. Masson (1994) Crystal structure and site-directed mutagenesis of a bleomycin resistance protein and their significance for drug sequencing. EMBO J. 13: 2483–2492.

    CAS  Google Scholar 

  33. Van-Den Elzen, P. J. M., J. Townsend, K. Y. Lee, and J. R. A. Bedbrook (1985) A chimeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol. Biol. 5: 299–302.

    Article  CAS  Google Scholar 

  34. Christou, P. and T. L. Ford (1995) Recovery of chimeric rice plants from dry seed using electric discharge particle acceleration. Ann. Bot. 75: 449–454.

    Article  Google Scholar 

  35. Kord, M. A., El.-S. T. A.-S. Sayed, and Y. S. El-Sadi (2011) Molecular cloning and characterization of Streptomycin and Spectinomycin resistance gene (aadA) in Salmonella typhimurium isolated from Egypt. Global J. Mol. Sci. 6: 15–21.

    CAS  Google Scholar 

  36. Goldschmidt-Clermont, M. (1991) Transgenic expression of aminoglycoside Adenine transferase in the chloroplast: a selectable marker of site-directed transformation of Chlamydomonas. Nucleic Acids Res. 19: 4083–4089.

    Article  CAS  Google Scholar 

  37. Su, Z. L., K. X. Qian, C. P. Tan, C. X. Meng, and S. Qin (2005) Recombination and heterologous expression of allophycocyanin gene in the chloroplast of Chlamydomonas reinhardtii. Acta Biochim. Biophys. Sin. 37: 709–712.

    Article  CAS  Google Scholar 

  38. Guo, S.-L., X.-Q. Zhao, Y. Tang, C. Wan, M. A. Alam, S.-H. Ho, F.-W. Bai, and J.-S. Chang (2013) Establishment of an efficient genetic transformation system in Scenedesmus obliquus. J. Biotechnol. 163: 61–68.

    Article  CAS  Google Scholar 

  39. Xie, W.-H., C.-C. Zhu, N.-S. Zhang, D.-W. Li, W.-D. Yang, J.-S. Liu, R. Sathishkumar, and H.-Y. Li (2014) Construction of novel chloroplast expression vector and development of an efficient transformation system for the Diatom Phaeodactylum tricornutum. Mar. Biotechnol. 16: 538–546.

    Article  CAS  Google Scholar 

  40. Diaz-Santos, E., M. De-La Vega, M. Vila, J. Vigara, and R. Leon (2013) Efficiency of different heterologous promoters in the unicellular microalga Chlamydomonas reinhardtii. Biotechnol. Prog. 29: 319–328.

    Article  CAS  Google Scholar 

  41. Noor-Mohammadi, S., A. Pourmir, and T. W. Johannes (2014) Method for assembling and expressing multiple genes in the nucleus of microalgae. Biotechnol. Lett. 36: 561–566.

    Article  CAS  Google Scholar 

  42. Kindle, K. L., K. L. Richards, and D. B. Stern (1991) Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. 88: 1721–1725.

    Article  CAS  Google Scholar 

  43. Newman, S. M., J. E. Boynton, N. W. Gillham, B. L. Randolph-Anderson, A. M. Johnson, and E. H. Harris (1990) Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: Molecular and genetic characterization of integration events. Genetics. 126: 875–888.

    CAS  Google Scholar 

  44. Bateman, J. M. and S. Purton (2000) Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Mol. Gen. Genet. 263: 404–410.

    Article  CAS  Google Scholar 

  45. Ahmad, I., A. K. Sharma, H. Daniell, and S. Kumar (2015) Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica Diacylglycerol acyltransferase 2. Plant Biotechnol. J. 13: 540–550.

    Article  CAS  Google Scholar 

  46. Georgianna, D. R., M. J. Hannon, M. Marcuschi, S. Wu, K. Botsch, A. J. Lewis, J. Hyun, M. Mendez, and S. P. Mayfield (2013) Production of recombinant enzymes in the marine alga Dunaliella tertiolecta. Algal Res. 2: 2–9.

    Article  Google Scholar 

  47. Ubeda-Minguez, P., T. Chileh, Y. Dautor, F. Garcia-Maroto, and D. L. Alonso (2015) Tools for microalgal biotechnology: development of an optimized transformation method for an industrially promising microalga-Tetraselmis chuii. J. Appl. Phycol. 27: 223–232.

    Article  CAS  Google Scholar 

  48. Boynton, J. E., N. W. Gillham, E. H. Harris, J. P. Hosler, A. M. Johnson, A. R. Jones, B. L. Randolph-Anderson, D. Robertson, T. M. Klein, K. B. Shark, and J. C. Sanford (1988) Chloroplast transformation in Chlamydomonas with high velocity micro projectiles. Sci. 240: 1534–1538.

    Article  CAS  Google Scholar 

  49. Redding, K., F. MacMillan, W. Leibl, K. Brettel, J. Hanley, A. W. Rutherford, J. Breton, and J. D. Rochaix (1998) A systematic survey of conserved histidines in the core subunits of Photosystem-I by site-directed mutagenesis reveals the likely axial ligands of P700. EMBO J. 17: 50–60.

    Article  CAS  Google Scholar 

  50. Cheng, R., R. Ma, K. Li, H. Rong, X. Lin, Z. Wang, S. Yang, and Y. Ma (2012) Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium. Microbiol. Res. 167: 179–186.

    Article  CAS  Google Scholar 

  51. Franklin, S., B. Ngo, E. Efuet, and S. P. Mayfield (2002) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J. 30: 733–744.

    Article  CAS  Google Scholar 

  52. Przibilla, E., S. Heiss, U. Johanningmeier, and A. Trebst (1991) Site-specific mutagenesis of the D1 subunit of Photosystem II in wild-type Chlamydomonas. Plant Cell. 3: 169–174.

    Article  CAS  Google Scholar 

  53. Newman, S. M., E. H. Harris, A. M. Johnson, J. E. Boynton, and N. W. Gillham (1992) Nonrandom distribution of chloroplast recombination events in Chlamydomonas reinhardtii: evidence for a hotspot and an adjacent cold region. Genetics. 132: 413–429.

    CAS  Google Scholar 

  54. Cheng, Q., A. Day, M. Dowson-Day, G. F. Shen, and R. Dixon (2005) The Klebsiella pneumoniae nitrogenase Fe protein gene (nifH) functionally substitutes for the chlL gene in Chlamydomonas reinhardtii. Biochem. Biophys. Res. Commun. 329: 966–975.

    Article  CAS  Google Scholar 

  55. Kim, D. H., Y. T. Kim, J. J. Cho, J. H. Bae, S. B. Hur, I. Hwang, and T. J. Choi (2002) Stable integration and functional expression of Flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar. Biotechnol. 4: 63–73.

    Article  CAS  Google Scholar 

  56. Bai, L.-L., W.-B. Yin, Y.-H. Chen, L.-L. Niu, Y.-R. Sun, S.-M. Zhao, F.-Q. Yang, R. R.-C. Wang, Q. Wu, X.-Q. Zhang, and Z.-M. Hu (2013) A new strategy to produce a defensin: Stable production of mutated NP-1 in Nitrate reductase-deficient Chlorella ellipsoidea. PLoS ONE. 8: e54966.

    Article  CAS  Google Scholar 

  57. Muto, M., Y. Fukuda, M. Nemoto, T. Yoshino, T. Matsunaga, and T. Tanaka (2013) Establishment of a genetic transformation system for the marine Pennate diatom Fistulifera sp. strain JPCC DA0580-A high triglyceride producer. Mar. Biotechnol. 15: 48–55.

    Article  CAS  Google Scholar 

  58. Rasala, B. A., P. A. Lee, Z. Shen, S. P. Briggs, M. Mendez, and S. P. Mayfield (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS ONE. 7: e43349.

    Article  CAS  Google Scholar 

  59. Fuhrmann, M., A. Hausherr, L. Ferbitz, T. Schodl, M. Heitzer, and P. Hegemann (2004) Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol. Biol. 55: 869–881.

    Article  CAS  Google Scholar 

  60. Hou, Q., S. Qiu, Q. Liu, J. Tian, Z. Hu, and J. Ni (2013) Selenoprotein-transgenic Chlamydomonas reinhardtii. Nutrients. 5: 624–636.

    Article  CAS  Google Scholar 

  61. Liu, L., Y. Wang, Y. Zhang, X. Chen, P. Zhang, and S. Ma (2013) Development of a new method for genetic transformation of the green alga Chlorella ellipsoidea. Mol. Biotechnol. 54: 211–219.

    Article  CAS  Google Scholar 

  62. Miyahara, M., M. Aoi, N. Inoue-Kashino, Y. Kashino, and K. Ifuku (2013) Highly efficient transformation of the diatom Phaeodactylum tricornutum by multi-pulse electroporation. Biosci. Biotechnol. Biochem. 77: 874–876.

    Article  CAS  Google Scholar 

  63. Zhang, C. and H. Hu (2014) High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation. Mar. Genomics. 16: 63–66.

    Article  CAS  Google Scholar 

  64. Kilian, O., C. S. E. Benemann, K. K. Niyogi, and B. Vick (2011) High-efficiency homologous recombination in the oilproducing alga Nannochloropsis sp. Proc. Natl. Acad. Sci. 108: 21265–21269.

    Article  CAS  Google Scholar 

  65. Li, F., D. Gao, and H. Hu (2014) High-efficiency nuclear transformation of the oleaginous marine Nannochloropsis species using PCR product. Biosci. Biotechnol. Biochem. 78: 812–817.

    Article  CAS  Google Scholar 

  66. Radakovits, R., R. E. Jinkerson, S. I. Fuerstenberg, H. Tae, R. E. Settlage, J. L. Boore, and M. C. Posewitz (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat. commun. 3: 686.

    Article  CAS  Google Scholar 

  67. Geng, D., Y. Wang, P. Wang, W. Li, and Y. Sun (2003) Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J. Appl. Phycol. 15: 451–456.

    Article  CAS  Google Scholar 

  68. Kumar, S. V., R. W. Misquitta, V. S. Reddy, B. J. Rao, and M. V. Rajam (2004) Genetic transformation of the green alga Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci. 166: 731–738.

    Article  CAS  Google Scholar 

  69. Kathiresan, S., A. Chandrashekar, G. A. Ravishankar, and R. Sarada (2009) Agrobacterium-mediated transformation in the green alga Haematococcus pluvialis (Chlorophyceae, Volvocales). J. Phycol. 45: 642–649.

    Article  CAS  Google Scholar 

  70. Anila, N., A. Chandrashekar, G. A. Ravishankar, and R. Sarada (2011) Establishment of Agrobacterium tumefaciens mediated genetic transformation in Dunaliella bardawil. Eur. J. Phycol. 46: 36–44.

    Article  CAS  Google Scholar 

  71. Cha, T. S., W. Yee, and A. Aziz (2012) Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World J. Microbiol. Biotechnol. 28: 771–1779.

    Article  CAS  Google Scholar 

  72. Pratheesh, P. T., M. Vineetha, and G. M. Kurup (2014) An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Mol. Biotechnol. 56: 507–515.

    Article  CAS  Google Scholar 

  73. Kim, S., Y.-C. Lee, D.-H. Cho, H. U. Lee, Y. S. Huh, G.-J. Kim, and H.-S. Kim (2014) A simple and non-invasive method for nuclear transformation of intact-walled Chlamydomonas reinhardtii. PLoS ONE. 9: e101018.

    Article  CAS  Google Scholar 

  74. Rathod, J. P., G. Prakash, R. Pandit, and A. M. Lali (2013) Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri. Photosynth. Res. 118: 141–146.

    Article  CAS  Google Scholar 

  75. Gregory, J. A., A. B. Topol, D. Z. Doerner, and S. Mayfield (2013) Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines. Appl. Environ. Microbiol. 79: 3917–3925.

    Article  CAS  Google Scholar 

  76. Jones, C. S., T. Luong, M. Hannon, M. Tran, J. A. Gregory, Z. Shen, S. P. Briggs, and S. P. Mayfield (2013) Heterologous expression of the C-terminal antigenic domain of the malaria vaccine candidate Pfs48/45 in the green algae Chlamydomonas reinhardtii. Appl. Microbiol. Biotechnol. 97: 1987–1995.

    Article  CAS  Google Scholar 

  77. Dreesen, I. A., G. Charpin-El Hamri, and M. Fussenegger (2010) Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. J. Biotechnol. 145: 273–280.

    Article  CAS  Google Scholar 

  78. Demurtas, O. C., S. Massa, P. Ferrante, A. Venuti, R. Franconi, and G. Giuliano (2013) A Chlamydomonas derived human Papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS ONE. 8: e61473.

    Article  CAS  Google Scholar 

  79. Kawata, Y., S. Yano, H. Kojima, and M. Toyomizu (2004) Transformation of Spirulina platensis Strain C1 (Arthrospira sp. PCC9438) with Tn5 Transposase-transposon DNA-cation liposome complex. Mar. Biotechnol. 6: 355–363.

    Article  CAS  Google Scholar 

  80. Niu, Y. F., M. H. Zhang, W.H. Xie, J. N. Li, Y. F. Gao, W. D. Yang, J. S. Liu, and H. Y. Li (2011) A new inducible expression system in a transformed green alga, Chlorella vulgaris. Genet. Mol. Res. 10: 3427–3434.

    Article  CAS  Google Scholar 

  81. Leon, R., I. Couso, and. Fernandez (2007) Metabolic engineering of ketocarotenoids biosynthesis in the unicellular microalga Chlamydomonas reinhardtii. J. Biotechnol. 130: 143–152.

    Article  CAS  Google Scholar 

  82. Cordero, B. F., I. Couso, R. Leon, H. Rodriguez, and M. A. Vargas (2011) Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Appl. Microbiol. Biotechnol. 91: 341–351.

    Article  CAS  Google Scholar 

  83. Vila, M., E. Diaz-Santos, M. De La Vega, H. Rodriguez, A. Vargas, and R. Leon (2012) Promoter trapping in microalgae using the antibiotic Paromomycin as selective agent. Mar. Drugs. 10: 2749–2765.

    Article  CAS  Google Scholar 

  84. Jefferson, R. A., S. M. Burgess, and D. Hirsh (1986) Beta-glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. 83: 8447–8451.

    Article  CAS  Google Scholar 

  85. Jefferson, R. A., T. A. Kavanagh, and M. W. Bevan (1987) GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    CAS  Google Scholar 

  86. Shimomura, O., F. H. Johnson, and Y. Saiga (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan Aequorea. J. Cell. Comp. Physiol. 59: 223–239.

    Article  CAS  Google Scholar 

  87. Ormo, M., A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and S. J. Remington (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Sci. 273: 1392–1395.

    Article  CAS  Google Scholar 

  88. Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher (1994) Green fluorescent protein as a marker for gene expression. Sci. 263: 802–805.

    Article  CAS  Google Scholar 

  89. Stepanenko, O. V., V. V. Verkhusha, I. M. Kuznetsova, V. N. Uversky, and K. K. Turoverov (2008) Fluorescent proteins as biomarkers and biosensors: Throwing color lights on molecular and cellular processes. Curr. Protein Pept. Sci. 9: 338–369.

    Article  CAS  Google Scholar 

  90. Buhmann, M. T., N. Poulsen, J. Klemm, M. R. Kennedy, C. D. Sherrill, and N. Kroger (2014) A tyrosine-rich cell surface protein in the diatom Amphora coffeaeformis identified through transcriptome analysis and genetic transformation. PLoS ONE. 9: e110369.

    Article  CAS  Google Scholar 

  91. Gould, S. J. and S. Subramani (1988) Firefly luciferase as a tool in molecular and cell biology. Anal. Biochem. 175: 5–13.

    Article  CAS  Google Scholar 

  92. Shimomura, O. (1985) Bioluminescence in the sea: Photoprotein systems. Symp. Soc. Exp. Biol. 39: 351–372.

    CAS  Google Scholar 

  93. Oba, Y., M. Ojika, and S. Inouye (2003) Firefly luciferase is a bifunctional enzyme: ATP-dependent monooxygenase and a long chain fatty acyl-CoA synthetase. FEBS Lett. 540: 251–254.

    Article  CAS  Google Scholar 

  94. Eichler-Stahlberg, A., W. Weisheit, O. Ruecker, and M. Heitzer (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta. 229: 873–883.

    Article  CAS  Google Scholar 

  95. Hochuli, E., W. Bannwarth, H. Dobeli, R. Gentz, and D. Stuber (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Nat. Biotechnol. 6: 1321–1325.

    Article  CAS  Google Scholar 

  96. Wang, X., M. Brandsma, R. Tremblay, D. Maxwell, A. M. Jevnikar, N. Huner, and S. Ma (2008) A novel expression platform for the production of diabetes-associated auto antigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol. 8: 87.

    Article  CAS  Google Scholar 

  97. Yoon, S. M., S. Y. Kim, K. F. Li, B. H. Yoon, S. Choe, and M. M. Kuo (2011) Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks. Appl. Microbiol. Biotechnol. 91: 553–563.

    Article  CAS  Google Scholar 

  98. Hopp, T. P., S. P. Kathryn, L. P. Virginia, T. L. Randell, J. M. Carl, P. C. Douglas, L. U. David, and J. C. Paul (1988) A short polypeptide marker sequence useful for recombinant protein identification and purification. Nat. Biotechnol. 6: 1204–1210.

    Article  CAS  Google Scholar 

  99. Cha, T.-S., C.-F. Chen, W. Yee, A. Aziz, and S.-H. Loh (2011) Cinnamic acid, coumarin and vanillin: Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. J. Microbiol. Methods. 84: 430–434.

    Article  CAS  Google Scholar 

  100. Chen, Y., Y. Wang, Y. Sun, L. Zhang, and W. Li (2001) Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Curr. Genet. 39: 365–370.

    Article  CAS  Google Scholar 

  101. Park, S., Y. Lee, J.-H. Lee, and E. S. Jin (2013) Expression of the high light-inducible Dunaliella LIP promoter in Chlamydomonas reinhardtii. Planta. 238: 1147–1156.

    Article  CAS  Google Scholar 

  102. Garcia-Echauri, A. A. and G. A. Cardineau (2015) TETX: A novel nuclear selection marker for Chlamydomonas reinhardtii transformation. Plant Meth. 11: 27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-Gi Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, K.M.I., Kim, MS., Stahl, U. et al. Microalgae engineering toolbox: Selectable and screenable markers. Biotechnol Bioproc E 21, 224–235 (2016). https://doi.org/10.1007/s12257-015-0386-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0386-4

Keywords

Navigation