Skip to main content
Log in

An Efficient Protocol for the Agrobacterium-mediated Genetic Transformation of Microalga Chlamydomonas reinhardtii

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Algal-based recombinant protein production has gained immense interest in recent years. The development of algal expression system was earlier hindered due to the lack of efficient and cost-effective transformation techniques capable of heterologous gene integration and expression. The recent development of Agrobacterium-mediated genetic transformation method is expected to be the ideal solution for these problems. We have developed an efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Pre-treatment of Agrobacterium in TAP induction medium (pH 5.2) containing 100 μM acetosyringone and 1 mM glycine betaine and infection of Chlamydomonas with the induced Agrobacterium greatly improved transformation frequency. This protocol was found to double the number of transgenic events on selection media compared to that of previous reports. PCR was used successfully to amplify fragments of the hpt and GUS genes from transformed cells, while Southern blot confirmed the integration of GUS gene into the genome of C. reinhardtii. RT-PCR, Northern blot and GUS histochemical analyses confirm GUS gene expression in the transgenic cell lines of Chlamydomonas. This protocol provides a quick, efficient, economical and high-frequency transformation method for microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mayfield, S. P., Franklin, S. E., & Lerner, R. A. (2003). Expression and assembly of a fully active antibody in algae. Proceedings of the National Academy of Sciences of the United States of America, 100, 438–442.

    Article  CAS  Google Scholar 

  2. Griesbeck, C., Kobl, I., & Heitzer, M. (2006). Chlamydomonas reinhardtii: A protein expression system for pharmaceutical and biotechnological proteins. Molecular Biotechnology, 34, 213–223.

    Article  CAS  Google Scholar 

  3. Rasala, B. A., Muto, M., Lee, P. A., Jager, M., Cardoso, R. M., Behnke, C. A., et al. (2010). Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnology Journal, 8, 719–733.

    Article  CAS  Google Scholar 

  4. Mayfield, S. P., Manuell, A. L., Chen, S., Wu, J., Tran, M., Siefker, D., et al. (2007). Chlamydomonas reinhardtii chloroplasts as protein factories. Current Opinion in Biotechnology, 18, 126–133.

    Article  CAS  Google Scholar 

  5. Harris, E. H. (2001). Chlamydomonas as a model organism. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 363–406.

    Article  CAS  Google Scholar 

  6. Den, R. M., Han, M., & Niyogi, K. K. (2001). Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii. Trends in Plant Science, 6, 364–371.

    Article  Google Scholar 

  7. Franklin, S. E., & Mayfield, S. P. (2004). Prospects for molecular farming in the green alga Chlamydomonas. Current Opinion in Plant Biology, 7, 159–165.

    Article  CAS  Google Scholar 

  8. Walker, T. L., Purton, S., Becker, D. K., & Collet, C. (2005). Microalgae as bioreactors. Plant Cell Reports, 24, 629–641.

    Article  CAS  Google Scholar 

  9. Vahrenholz, C., Riemen, G., Pratje, E., Dujon, B., & Michaelis, G. (1993). Mitochondrial DNA of Chlamydomonas reinhardtii: The structure of the ends of the linear 15.8-kb genome suggests mechanisms for DNA replication. Current Genetics, 24, 241–247.

    Article  CAS  Google Scholar 

  10. Maul, J. E., Lilly, J. W., Cui, L., de-Pamphilis, C. W., Miller, W., Harris, E. H., et al. (2002). The Chlamydomonas reinhardtii plastid chromosome: Islands of genes in a sea of repeats. The Plant Cell, 14, 2659–2679.

    Article  CAS  Google Scholar 

  11. Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., et al. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318, 245–250.

    Article  CAS  Google Scholar 

  12. Specht, E., Miyake-Stoner, S., & Mayfield, S. (2010). Micro-algae come of age as a platform for recombinant protein production. Biotechnology Letters, 32, 1373–1383.

    Article  CAS  Google Scholar 

  13. Koop, H. U., Herz, S., & Golds, T. (2007). The genetic transformation of plastids. In Bock Ralph (Ed.), Cell and molecular biology of plastids (Vol. 19, pp. 457–510)., Topics in current genetics Berlin: Springer.

    Chapter  Google Scholar 

  14. Ladygin, V. G. (2003). The transformation of the unicellular alga Chlamydomonas reinhardtii by electroporation. Microbiology, 72, 585–591.

    Article  CAS  Google Scholar 

  15. Kindle, K. L. (1990). High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 87, 1228–1232.

    Article  CAS  Google Scholar 

  16. Wang, K., Drayton, P., Frame, B., Dunwell, J., & Thompson, J. (1995). Whisker-mediated plant transformation—an alternative technology. In Vitro Cellular & Developmental Biology, 31, 101–104.

    Article  CAS  Google Scholar 

  17. Kumar, S. V., Misquitta, R. W., Reddy, V. S., Rao, B. J., & Rajam, M. V. (2004). Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Science, 166, 731–738.

    Article  CAS  Google Scholar 

  18. Wang, K. (2006). Agrobacterium protocols, vol 1 (2nd ed., pp. 77–84). Totowa, New Jersey, USA: Humana Press.

    Google Scholar 

  19. De-Groot, M. J., Bundock, P., Hooykaas, P. J., & Beijersbergen, A. G. (1998). Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology, 16, 839–842.

    Article  CAS  Google Scholar 

  20. Kunik, T., Tzfira, T., Kapulnik, Y., Gafni, Y., Dingwall, C., & Citovsky, V. (2001). Genetic transformation of HeLa cells by Agrobacterium. Proceedings of the National Academy of Sciences of the United States of America, 98, 1871–1876.

    Article  CAS  Google Scholar 

  21. Cha, T. S., Chen, C. F., Yee, W., Aziz, A., & Loh, S. H. (2011). Cinnamic acid, coumarin and vanillin: Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. Journal of Microbiol Methods, 84, 430–434.

    Article  CAS  Google Scholar 

  22. Kathiresan, S., Chandrashekar, A., Ravishankar, A., & Sarada, R. (2009). Agrobacterium-mediated transformation in the green alga Haematococcus pluvialis (Chlorophyceae, Volvocales). Journal of Phycology, 45, 642–649.

    Article  CAS  Google Scholar 

  23. Anila, N., Chandrashekar, A., Ravishankar, G. A., & Sarada, R. (2011). Establishment of Agrobacterium tumefaciens-mediated genetic transformation in Dunaliella bardawil. European Journal of Phycology, 46, 36–44.

    Article  CAS  Google Scholar 

  24. Cheng, R., Ma, R., Li, K., Rong, H., Lin, X., Wang, Z., et al. (2012). Agrobacterium tumefaciens-mediated transformation of marine microalgae Schizochytrium. Microbiological Research, 167, 179–186.

    Article  CAS  Google Scholar 

  25. Cha, T. S., Yee, W., & Aziz, A. (2012). Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World Journal of Microbiology and Biotechnology, 28, 1771–1779.

    Article  CAS  Google Scholar 

  26. Gorman, D. S., & Levine, R. P. (1965). Cytochrome f and plastocyanin: Their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 54, 1665–1669.

    Article  CAS  Google Scholar 

  27. Hood, E. E., Helmer, G. L., Fraley, R. T., & Chilton, M. D. (1986). The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. Journal of Bacteriology, 168, 1291–1301.

    CAS  Google Scholar 

  28. Pratheesh, P. T., Shonima, G. M., Thomas, Jiji, Abraham, C. I., & Muraleedhara Kurup, G. (2012). Study on efficacy of different Agrobacterium tumefaciens strains in genetic transformation of microalga Chlamydomonas reinhardtii. Advances in Applied Science Research, 3, 2679–2686.

    CAS  Google Scholar 

  29. Holsters, M., de-Waele, D., Depicker, A., Messens, E., Montagu, V. M., & Schell, J. (1978). Transfection and transformation of Agrobacterium tumefaciens. Molecular and General Genetics, 163, 181–187.

    Article  CAS  Google Scholar 

  30. Rajam, M. V., and Kumar, S. V. (2006) Green alga (Chlamydomonas reinhardtii), methods in molecular biology, ed 1, vol 344. In Agrobacterium protocols, vol 2, Part VIII (pp 421–433).

  31. Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissues. Focus., 12, 13–15.

    Google Scholar 

  32. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology, 98, 503–517.

    Article  CAS  Google Scholar 

  33. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. ISBN 978-0-87969-577-4.

    Google Scholar 

  34. Jefferson, R. A. (1987). Assaying chimeric genes in plants: The uidA gene fusion system. Plant Molecular Biology Report, 5, 387–405.

    Article  CAS  Google Scholar 

  35. Lake, V., & Willows, R. D. (2003). Rapid extraction of RNA and analysis of transcript levels in Chlamydomonas reinhardtii using real-time RT-PCR: Magnesium chelatase chlH, chlD and chlI gene expression. Photosynthesis Research, 77, 69–76.

    Article  CAS  Google Scholar 

  36. Gelvin, S. B. (2000). Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 223–256.

    Article  CAS  Google Scholar 

  37. Gelvin, S. B. (2003). Agrobacterium and plant transformation: The biology behind the “gene-jockeying” tool. Microbiology and Molecular Biology Reviews, 67, 16–37.

    Article  CAS  Google Scholar 

  38. Song, Y. N., Shibuya, M., Ebzuka, Y., & Sankawa, U. (1991). Identification of plant factors inducing virulence gene expression in Agrobacterium tumefaciens. Chemical & Pharmaceutical Bulletin, 39, 2347–2350.

    Article  CAS  Google Scholar 

  39. Dye, F., Berthelot, K., Griffon, B., Delay, D., & Delmotte, F. M. (1997). Alkylsyringamides, new inducers of Agrobacterium tumefaciens virulence genes. Biochemie., 79, 3–6.

    Article  CAS  Google Scholar 

  40. Godwin, I., Todd, G., Ford-Lloyd, B., & Newbury, H. J. (1991). The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Reports, 9, 671–675.

    Article  CAS  Google Scholar 

  41. Liu, C. N., Steck, T. R., Habeck, L. L., Meyer, J. A., & Gelvin, S. B. (1993). Multiple copies of virG allow induction of Agrobacterium tumefaciens vir genes and T-DNA processing at alkaline pH. Molecular Plant–Microbe Interactions, 6, 144–156.

    Article  CAS  Google Scholar 

  42. Alt-Moerbe, J., Neddermann, P., Von-Lintig, J., & Schroder, J. (1988). Temperature sensitive step in Ti plasmid vir-region induction and correlation with cytokinin secretion by Agrobacteria. Molecular and General Genetics, 213, 1–8.

    Article  CAS  Google Scholar 

  43. Turk, S. C. H. J., Melchers, L. S., den Dulk-Ras, H., Regensburg-Tuink, A. J. A., & Hooykass, P. J. J. (1991). Environmental conditions differentially affect vir gene induction in different Agrobacterium strains. Role of the VirA sensor protein. Plant Molecular Biology, 16, 1051–1059.

    Article  CAS  Google Scholar 

  44. Van-Wordragen, M. F., De-Jong, J., Schornagel, M. J., & Dons, J. J. M. (1992). Rapid screening for host-bacterium interactions in Agrobacterium-mediated gene transfer to chrysanthemum, by using the GUS-intron gene. Plant Science, 81, 207–214.

    Article  CAS  Google Scholar 

  45. Jacq, B., Lesobre, O., Sangwan, R. S., & Sangwan-Norreel, B. S. (1993). Factors influencing T-DNA transfer in Agrobacterium-mediated transformation of sugarbeet. Plant Cell Reports, 12, 621–624.

    Article  CAS  Google Scholar 

  46. Vernade, D., Herrera-Estrella, T. A., Wang, K., & Montagu, M. V. (1988). Glycine betaine allows enhanced induction of the Agrobacterium tumefaciens vir genes by acetosyringone at low pH. Journal of Bacteriology, 170, 5822–5829.

    CAS  Google Scholar 

  47. Stachel, S. E., & Zambryski, P. C. (1986). virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell, 46, 325–333.

    Article  CAS  Google Scholar 

  48. James, D. J., Uratsu, S., Cheng, J., Negri, P., Viss, P., & Dandekar, A. M. (1993). Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple. Plant Cell Reports, 12, 559–563.

    Article  CAS  Google Scholar 

  49. Norelli, J., Mills, J., & Aldwinckle, H. (1996). Leaf wounding increases efficiency of Agrobacterium-mediated transformation of apple. HortScience, 31, 1026–1027.

    Google Scholar 

  50. Wang, K. (2006). Agrobacterium protocols, vol 2 (2nd ed., pp. 157–261). Totowa, New Jersey, USA: Humana Press.

    Google Scholar 

Download references

Acknowledgments

We would like to thank School of Biosciences, Mahatma Gandhi University, Kerala for providing research facilities. This work was supported by University grants commission (UGC), New Delhi, in the form of junior and senior research fellowship (RGNF) to the first author which is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. T. Pratheesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratheesh, P.T., Vineetha, M. & Kurup, G.M. An Efficient Protocol for the Agrobacterium-mediated Genetic Transformation of Microalga Chlamydomonas reinhardtii . Mol Biotechnol 56, 507–515 (2014). https://doi.org/10.1007/s12033-013-9720-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9720-2

Keywords

Navigation