Skip to main content
Log in

Overexpression of acetyl-CoA carboxylase increases fatty acid production in the green alga Chlamydomonas reinhardtii

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Chlamydomonas reinhardtii is a photosynthetic unicellular model algae with multiple biotechnological advantages, and its fatty acids can be used to produce biofuels. Numerous studies suggest that acetyl-coA carboxylase (ACCa) catalyzes the first committed and rate-limiting step of fatty acid biosynthesis, thereby playing a central role in oil accumulation. Here, we cloned and overexpressed ACCa in C. reinhardtii to directly evaluate its effect on fatty acid synthesis. GC–MS analysis found that the unsaturated FAs contents of the CW15-24 and CW15-85 strains were 55.45% and 56.15%, which were significantly enriched compared to the wild type CW15 (48.39%). Under the optimized conditions, the content of lipid by overexpressed the ACCa gene in the mutant CW15-85 (0.46 g/l) was 1.16-fold greater than control through optimization of N and P sources. Altogether, our data clearly demonstrate that ACCa overexpression in C. reinhardtii can directly increase the synthesis of fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avidan O, Pick U (2015) Acetyl-coa synthetase is activated as part of the pdh-bypass in the oleaginous green alga chlorella desiccata. J Exp Bot 66:7287–7298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blank GS, Dale HR, Cornelius WS (2010) Diatom mineralization of silicic acid. viii. metabolic requirements and the timing of protein synthesis. J Phycol 22:382–389

    Article  Google Scholar 

  • Brennan L, Fernandez AB, Mostaert AS, Owende P (2012) Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production. J Microbiol Methods 90:37–143

    Article  CAS  Google Scholar 

  • Carrera P, Saskya E, Hankamer B, Oey M (2018) Optimising light conditions increases recombinant protein production in, chlamydomonas reinhardtii, chloroplasts. Algal Res 32:329–340

    Article  Google Scholar 

  • Cooksey KE, Williams SA, Callis PR (1987) Nile red: a fluorophore useful in assessing the relative lipid content of single cells. Metabol Struct Funct 37:645–647

    Google Scholar 

  • Davis MS, Solbiati J, Cronan JE (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275:28593–28598

    Article  CAS  PubMed  Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57:223

    Article  Google Scholar 

  • Fernandez-Pastor I, Fernandez-Hernandez A, Perez-Criado S, Rivas F, Martinez A, Garcia-Granados A (2017) Microwave-assisted extraction versus soxhlet extraction to determine triterpene acids in olive skins. J Sep Sci 40:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Fowler SD, Brown WJ, Warfel J, Greenspan P (1987) Use of nile red for the rapid in situ quantitation of lipids on thin-layer chromatograms. J Lipid Res 28:1225–1232

    CAS  PubMed  Google Scholar 

  • Giroud C, Eichenberger W (2017) Lipids of chlamydomonas reinhardtii: incorporation of 14c-acetate, palmitate and oleate into different lipids and evidence for lipid-linked desaturation of fatty acids. Plant Cell Physiol 30:121–128

    Article  Google Scholar 

  • Hasan H, Abd-Rahim MH, Campbell L, Carter D, Abbas A, Montoya A (2018) Overexpression of acetyl-coa carboxylase in, aspergillus terreus, to increase lovastatin production. New Biotechnol 44:64

    Article  CAS  Google Scholar 

  • Hippler M, Redding K, Rochaix JD (2015) Chlamydomonas genetics, a tool for the study of bioenergetic pathways. BBA-Bioenerg 1367:56–62

    Google Scholar 

  • Huang F, Huang Q, Huang M, Yi XL, Zheng HB, Qiao DR, Cao Y (2018) Construction of a convenient method for Chlamydomonas reinhardtii glass-bead transformation assay. J Sichuan Univ 45:694–699

    Google Scholar 

  • Jia B, Xie XF, Wu M, Lin ZJ, Yin JB, Lou SL (2019) Understanding the functions of endogenous dof transcript factor in chlamydomonas reinhardtii. Biotechnol Biofuels 12:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232

    Article  CAS  PubMed  Google Scholar 

  • Klaus D, Ohlrogge JB, Neuhaus HE, Dormann P (2004) Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase. Planta 219:389–396

    Article  CAS  PubMed  Google Scholar 

  • Kumar EM, Enamala S, Chavali M, Donepudi J, Yadavalli R, Kolapalli B (2018) Production of biofuels from microalgae-a review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renew Sustain Energy Rev 94:49–68

    Article  CAS  Google Scholar 

  • Laing L, Utting SD (1980) The influence of salinity on the production of two commercially important unicellular marine algae. Aquaculture 21:79–86

    Article  Google Scholar 

  • Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12:387–391

    Article  CAS  PubMed  Google Scholar 

  • Li NN, Zhang Y, Meng HJ, Li ST, Wu SF, Xu ZC (2019) Characterization of fatty acid exporters involved in fatty acid transport for oil accumulation in the green alga chlamydomonas reinhardtii. Biotechnol Biofuels 12:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Chen J, Lim PE, Wei D (2018) Enhanced single cell oil production by mixed culture of chlorella pyrenoidosa and rhodotorula glutinis using cassava bagasse hydrolysate as carbon source. Bioresour Technol 255:140–148

    Article  CAS  PubMed  Google Scholar 

  • Lumbreras V, Stevens DR, Purton S (2010) Efficient foreign gene expression in chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447

    Article  Google Scholar 

  • Mutsumi T, Karseno M, Toshiomi Y (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    Article  CAS  Google Scholar 

  • Nagy V, Vidal-Meireles A, Podmaniczki A, Szentmihályi K, Tóth SZ (2018) The mechanism of photosystem ii inactivation during sulphur deprivation-induced h 2 production in chlamydomonas reinhardtii. Plant J 94:548

    Article  CAS  PubMed  Google Scholar 

  • Nodooshan KG, Moraga RJ, Shi-Jie GC, Nguyen C, Wang Z, Mohseni S (2018) Environmental and economic optimization of algal biofuel supply chain with multiple technological pathways. Eng Chem Res 57:6910–6925

    Article  CAS  Google Scholar 

  • Page RA, Okada S, Harwood JL (1994) Acetyl-CoA carboxylase exerts strong flux control over lipid synthesis in plants. BBA-Bioenerg 1210:369–372

    CAS  Google Scholar 

  • Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol 113:75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salas JJ, Ohlrogge JB (2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 403:25–34

    Article  CAS  PubMed  Google Scholar 

  • Salas-Montantes CJ, González-Ortega O, Ochoa-Alfaro AE, Camarena-Rangel R, Paz-Maldonado LMT, Rosales-Mendoza S (2018) Lipid accumulation during nitrogen and sulfur starvation in chlamydomonas reinhardtii overexpressing a transcription factor. J Appl Phycol 30:1721–1733

    Article  CAS  Google Scholar 

  • Sandoval-Vargas JM, Jiménez-Clemente LA, Macedo-Osorio KS, Oliver-Salvador MC, Fernández-Linares LC, Durán-Figueroa NV (2019) Use of the ptxd gene as a portable selectable marker for chloroplast transformation in chlamydomonas reinhardtii. Mol Biotechnol 3:1–8

    Google Scholar 

  • Shu Q, Qin L, Yuan ZH, Zhu SN, Xu J, Xu ZB (2018) Comparison of dairy wastewater and synthetic medium for biofuels production by microalgae cultivation. Energy Sour Part A 40:751–758

    Article  CAS  Google Scholar 

  • Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:11–17

    Article  CAS  Google Scholar 

  • Sierra LS, Dixon CK, Wilken LR (2017) Enzymatic cell disruption of the microalgae, chlamydomonas reinhardtii, for lipid and protein extraction. Algal Res 25:149–159

    Article  Google Scholar 

  • Su Y, Song KH, Zhang PD, Su YQ, Cheng J, Chen X (2017) Progress of microalgae biofuel’s commercialization. Renew Sustain Energy Rev 74:402–411

    Article  Google Scholar 

  • Traller JC, Cokus SJ, David A (2016) Genome and methylome of the oleaginous diatom cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype. Biotechnol Biofuels 9:258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voelker T, Kinney AT (2001) Variations in the biosynthesis of seed-storage lipids. Annu Rev Plant Biol 52:335–361

    Article  CAS  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yu J, Wang P, Deng S, Chang J, Ran Z (2017) Response of energy microalgae chlamydomonas reinhardtii, to nitrogen and phosphorus stress. Environ Sci Pollut R 25:1–9

    Google Scholar 

  • Wang C, Li Y, Lu J, Deng X, Li H, Hu Z (2018) Effect of overexpression of lpaat and gpd1 on lipid synthesis and composition in green microalga chlamydomonas reinhardtii. J Appl Phycol 30:1711–1719

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Hu Z, Wang C, Li S, Lei A (2008) Efficient expression of green fluorescent protein (gfp) mediated by a chimeric promoter in chlamydomonas reinhardtii. Chin J Oceanol Limnol 26:242–247

    Article  CAS  Google Scholar 

  • Xu D, Gao Z, Li F, Fan X, Zhang X, Ye N (2013) Detection and quantitation of lipid in the microalga Tetraselmis subcordiformis (wille) butcher with BODIPY 505/515 staining. Bioresour Technol 27:386–390

    Article  CAS  Google Scholar 

  • Yang L, Chen J, Qin S, Zeng M, Wang JX (2018) Growth and lipid accumulation by different nutrients in the microalga chlamydomonas reinhardtii. Biotechnol Biofuels 11:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalutskaya Z, Ostroukhova M, Filina V, Ermilova E (2017) Nitric oxide upregulates expression of alternative oxidase 1 in chlamydomonas reinhardtii. J Plant Physiol 219:123–127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the native English speaking scientists of Elixigen Company (Huntington Beach, California) for editing our manuscript. This work was supported by the Natural Science Foundation of Fujian Province, China (Grant Number 2017J01622) and the Sugar Crop Research System (Grant Number CARS-170501).

Supporting information

Supplementary Fig. 1—Characterization of the PHKA overexpression construct by PCR detection of Acca and mCherry and restriction analysis. (A) Acca amplification from three independent PHKA clones confirms insertion of Acca coding sequence (lane M, molecular weight marker; lanes 1-3, Acca). (B) Restriction validation of PHKA clones (lane M, molecular weight marker; lane 1, products of PHKA; lanes 2-3, EcoR I digestion; lanes 4-5, EcoR V and EcoR I digestion). (C) mCherry amplification from C. reinhardtii mutant genomic DNA (lane M, molecular weight marker; lanes 1-5, mCherry).

Supplementary Fig. 2−Protein spot hybridization using anti-mCherry and anti-GAPDH antibodies. (A) GAPDH (endogenous control) is detected in wild type (CW15) and ACCa-overexpressing transgenic clones (CW15-24, CW15-85). (B) mCherry is detected only in the ACCa-overexpressing (CW15-24, CW15-85) clones, suggesting successful transfection of the PHKA overexpression vector.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanding Zhang or Ting Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 268 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Yuan, X., Liang, L. et al. Overexpression of acetyl-CoA carboxylase increases fatty acid production in the green alga Chlamydomonas reinhardtii. Biotechnol Lett 41, 1133–1145 (2019). https://doi.org/10.1007/s10529-019-02715-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-019-02715-0

Keywords

Navigation