Skip to main content

The Role of Soil Microbes in Crop Biofortification

  • Chapter
  • First Online:
Agriculturally Important Microbes for Sustainable Agriculture

Abstract

Agronomic practices across the planet are becoming largely unsustainable in their current forms. With a growing population expected to reach ~9 billion by the year 2050, more sustainable ways to produce the world’s main crops are needed. The main focus of current agronomic practices, especially in the case of cereal crops, is increased grain number and weight sometimes at the expense of nutritional content leading, in some instances, to micronutrient deficiencies. Micronutrient deficiencies are often termed hidden hunger, giving the false appearance that an individual is consuming sufficient amounts of nutrients. To counteract this problem, it is crucial that a sustainable solution to increase micronutrient concentration in a diverse range of crops is found. Plant growth-promoting microbes (PGPM) represents a sustainable solution to this problem. These PGPM can be divided into two main groups: plant growth-promoting rhizobacteria (PGPR) and plant growth-promoting fungi (PGPF). These microbes are capable of increasing micronutrient concentrations in many crops worldwide. This chapter will focus on the use of these microbes to increase micronutrient content, in particular selenium, iron and zinc, using studies conducted over the last two decades right up to the present day, revealing how plant-microbe interactions and our ever-growing knowledge of these interactions can aid in the micronutrient biofortification of crops in a sustainable and environmentally friendly way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuña JJ, Jorquera MA, Barra PJ, Crowley DE, de la Luz MM (2013) Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biol Fertil Soils 49:175–185. doi:10.1007/s00374-012-0705-2

    Article  CAS  Google Scholar 

  • Adak A, Prasanna R, Babu S, Bidyarani N, Verma S, Pal M, Shivay YS, Nain L (2016) Micronutrient enrichment mediated by plant-microbe interactions and rice cultivation practices. J Plant Nutr 39:1216–1232. http://dx.doi.org/10.1080/01904167.2016.1148723

    Article  CAS  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 293–313. doi:10.1007/978-81-322-2776-2_21

    Chapter  Google Scholar 

  • Amanullah SA, Iqbal A, Fahad S (2016) Foliar phosphorus and zinc application improve growth and productivity of maize (Zea mays L.) under moisture stress conditions in semi-arid climates. J Microb Biochem Technol 8:433–439. doi:10.4172/1948-5948.1000321

    Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 225–266. doi:10.1007/978-81-322-2776-2_18

    Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. doi:10.1080/01490451.2016.1219431

  • Baliga MS, Diwadkar-Navsariwala V, Koh T, Fayad R, Fantuzzi G, Diamond AM (2008) Selenoprotein deficiency enhances radiation-induced micronuclei formation. Mol Nutr Food Res 52(11):1300–1304. doi:10.1002/mnfr.200800020

    Article  CAS  PubMed  Google Scholar 

  • Beard JL (2008) Why iron deficiency is important in infant development. J Nutr 138:2534–2536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bell PF, Parker DR, Page AL (1992) Contrasting selenite sulfate interactions in se accumulating and nonaccumulating plant species. Soil Sci Soc Am 56:1818–1824. doi:10.1236/sssaj1992.03615995005600060028x

    Article  CAS  Google Scholar 

  • Berutti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559. doi:10.3389/fmicb.2015.01559

    Google Scholar 

  • Bhutta ZA (2008) Micronutrient needs of malnourished children. Curr Opin Clin Nutr Metab Care 11:309–314

    Article  PubMed  Google Scholar 

  • Black RE, Lindsay HA, Bhutta ZA, Caulfield LE, De Onnis M, Ezzati M, Mathers C, Rivera J (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371:243–260

    Article  PubMed  Google Scholar 

  • Boukhalfa H, Lack JG, Reilly SD, Hersman L, Neu MP (2003) Siderophore production and facilitated uptake of iron and plutonium in P. putida. No. LA-UR-03-0913. Los Alamos National Laboratory

    Google Scholar 

  • Boyer LR, Brain P, Xu XM, Jeffries P (2015) Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza 25(3):215–227. doi:10.1007/s00572-014-0603-6

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE, Hawkesford MJ, McGrath SP, Zhao F-J, Breward N, Harriman M, Tucker M (2006) Biofortification of UK food crops with selenium. Proc Nutr Soc 65:169–181

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. doi:10.1146/annurev-arplant- 050312-120106

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic bio-fortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Carlson BA, Yoo MH, Tobe R, Mueller C, Naranjo-Suarez S, Hoffmann VJ, Gladyshev VN, Hatfield DL (2012) Thioredoxin reductase 1 protects against chemically induced hepatocarcinogenesis via control of cellular redox homeostasis. Ox J Carcin 33(9):1806–1803. doi:10.1093/carcin/bgs230

    Article  CAS  Google Scholar 

  • Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol 154:810–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23(7):867–902. doi:10.1080/01904160009382068

    Article  CAS  Google Scholar 

  • Crowley DA (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Netherlands, pp 169–189

    Chapter  Google Scholar 

  • Cruz AF, Ishii T (2011) Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens. Biol Open 1(1):52–57. doi:10.1242/bio.2011014

    Article  PubMed  PubMed Central  Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 281–291. doi:10.1007/978-81-322-2776-2_20

    Chapter  Google Scholar 

  • De Souza M, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–573

    Article  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 77–98. doi:10.1007/978-81-322-2776-2_6

    Chapter  Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 267–280. doi:10.1007/978-81-322-2776-2_19

    Chapter  Google Scholar 

  • Durán P, Acuña JJ, Jorquera MA, AzcĂłn R, Borie F, Cornejo P, Mora ML (2013) Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: a preliminary study as a potential Se biofortification strategy. J Cereal Sci 57(3):275–280. doi: http://dx.doi.org/10.1016/j.jcs.2012.11.012

    Article  CAS  Google Scholar 

  • Durán P, Acuña JJ, Jorquera MA, AzcĂłn R, Paredes C, Rengel Z, de la Luz MM (2014) Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol Fertil Soils 50:983–990

    Article  CAS  Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279. doi:10.1016/S1369-5266(03)00030-X

    Article  CAS  PubMed  Google Scholar 

  • FAO (2016) The state of food and agriculture. http://www.fao.org/publications/sofa/sofa2016/en/

  • Gallou A, Lucero Mosquera HP, Cranenbrouck S, Suárez JP, Declerck S (2011) Mycorrhiza induced resistance in potato plantlets challenged by Phytophthora infestans. Physiol Mol Plant Pathol 76(1):20–26. doi:http://dx.doi.org/10.1016/j.pmpp.2011.06.005

    Google Scholar 

  • Gamalero E, Glick B (2011) Mechanisms used by plant growth-promoting bacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 17–46

    Chapter  Google Scholar 

  • Ganther HE, Levander OA, Saumann CA (1966) Dietary control of selenium volatilisation in the rat. J Nutr 88:55–60

    CAS  PubMed  Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30(5):250–258. doi:10.1016/j.tibtech.2012.01.003

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15

    Article  CAS  Google Scholar 

  • Golden Rice (2016). www.goldenrice.org

  • Gopalakrishnan S, Vadlamundi S, Samineni S, Sameer Kumar CV (2016) Plant growth-promotion of chickpea and pigeon pea through inoculation of biocontrol potential bacteria, isolated from organic soils. Springer Plus 5:1882. doi:10.1186/s40064-016-3590-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Hafeez FY, Hameed S, Zaidi AH, Malik KA (2002) Biofertiliser for sustainable agriculture. In: Azam F, Iqbal MM, Inayatullah C, Malik KA (eds) Technologies for sustainable agriculture. NIAB, Faisalabad, pp 67–74

    Google Scholar 

  • Harvest Plus (2016). http://www.harvestplus.org/biofortification-nutrition-revolution-now

  • Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health and development. Trends Biochem Sci 39:112–120. doi:10.1016/j. tibs.2013.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkesford MJ, Zhao F-J (2007) Strategies for increasing the selenium content of wheat. J Cereal Sci 46:282–292

    Article  CAS  Google Scholar 

  • He X, Nara K (2007) Element biofortification: can mycorrhizas potentially offer a more effective and sustainable pathway to curb human malnutrition? Trends Plant Sci 12(8):331–333. doi:10.1016/j.tplants.2007.06.008

    Article  CAS  PubMed  Google Scholar 

  • He CQ, Tan G, Liang X, Du W, Chen YL, Zhi GY, Zhu Y (2010) Effect of Zn-tolerant bacterial strain on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5

    Article  Google Scholar 

  • International Rice Research Institute (2016). http://irri.org/golden-rice/faqs

  • ISAAA (2016). http://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=14884

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 21–29. doi:10.1007/978-81-322-2776-2_2

    Chapter  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 149–162. doi:10.1007/978-81-322-2776-2_11

    Chapter  Google Scholar 

  • Jin CW, He YF, Tang CX, Wu P, Zheng SJ (2006) Mechanisms of microbially enhanced iron uptake in red clover. Plant Cell Environ 29:888–897

    Article  PubMed  Google Scholar 

  • Jin CW, You GY, Zheng SJ (2008) The iron-deficiency induced phenolics secretion plays multiple important roles in plant iron acquisition underground. Plant Signal Behav 3:60–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2016) Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci 20(4):206–211. doi:10.1016/j.tplants.2015.01.004

    Article  CAS  Google Scholar 

  • Khush GS, Lee S, Cho J-I, Jeon J-S (2012) Biofortification of crops for reducing malnutrition. Plant Biotechnol Reports 6(3):195–202. doi:10.1007/s11816-012-0216-5

    Article  Google Scholar 

  • King JC (2006) Zinc. In: Shills ME, Shike M (eds) Modern nutrition in health and disease, 10th edn. Lippincott Williams and Wilkins, Philadelphia, pp 271–285

    Google Scholar 

  • King JC (2011) Zinc: an essential but elusive nutrient. Am J Clin Nutr 94(suppl):697S–684S

    Google Scholar 

  • Kloepper JW, Schroth MN, Miller TD (1980) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078–1082

    Article  Google Scholar 

  • Krishnakumar S, Balakrishnan N, Muthukrisnan R, Kumar SR (2013) Myth and mystery of soil mycorrhiza: a review. Af J Ag Res 8(38):4706–4717. doi:10.5897/AJAR2013.7490

    Google Scholar 

  • Kromann P, Valverde F, Alvardo S, VĂ©lez R, Pisuña J, PotosĂ­ B, Taipe A, Caballero D, Cabezas A, Devaux A (2016) Can Andean potatoes be agronomically biofortified with iron and zinc fertilisers? Plant Soil. doi:10.1007/s11104-016-3065-0

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure ApplMicrobiol 9:715–724

    Google Scholar 

  • Kumar A, Choudhary AK, Pooniya V, Suri VK, Singh U (2016a) Soil factors associated with micronutrient acquisition in crops- biofortification perspective. In: Singh U, Praharaj SC, Singh SS, Singh PN (eds) Biofortification of food crops. Springer, India, pp 159–176. doi:10.1007/978–81–322-2716-8_13

    Chapter  Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016b) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    Article  Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016c) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 61–75. doi:10.1007/978-81-322-2776-2_5

    Chapter  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul. doi:10.1007/s00344-016-9663-5

  • Kutman UB, Yildiz B, Ozturk L, Cakmak I (2010) Biofortification of durum wheat with zinc through soil and foliar application of nitrogen. Cereal Chem 87:1–9

    Article  CAS  Google Scholar 

  • Kutman UB, Yildiz B, Cakmak I (2011) Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J Cereal Sci 53:118–125

    Article  CAS  Google Scholar 

  • Lehmann A, Veresoglou SD, Leifheit EF, Rillig MC (2014) Arbuscular mycorrhizal influence on zinc nutrition in crop plants – a meta-analysis. Soil Biol Biochem 69:123–131. doi:http://dx.doi.org/10.1016/j.soilbio.2013.11.001

    Google Scholar 

  • Li SH, Xiao TF, Zheng BS (2012) Medical geology of arsenic, selenium and thallium in China. Sci Total Environ 421–422:31–40. doi:10.1016/j. scitotenv.201102.040

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A, Johri BN, Fried PM (2011) Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biol Biochem 43(3):609–619. doi:http://dx.doi.org/10.1016/j.soilbio.2010.11.031

    Google Scholar 

  • Manjunath M, Kanchan A, Ranjan K, Venkatachalam S, Prasanna R, Ramakrishnan B, Hossain F, Nain L, Shivay YS, Rai AB, Singh B (2016) Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of Okra. Heliyon http://dx.doi.org/10.1016/j.heliyon.2016.c00066

  • Masalha J, Kosegarten H, Elmaci Ă–, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439

    Article  CAS  Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 137–147. doi:10.1007/978-81-322-2776-2_10

    Chapter  Google Scholar 

  • Maurer B, Keller-Scheirlin W (1968) Ferribactin, a siderophore from Pseudomonas fluorescens Migula 61. Arch Mirobiol 60:326–339

    Article  CAS  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of inceptisol and alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187

    Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11(2):166–170. doi:http://dx.doi.org/10.1016/j.pbi.2008.01.007

    Google Scholar 

  • McConnell KP, Portman OW (1952) Toxicity of dimethyl selenide in the rat and mouse. Proc Soc Exp Biol Med 79:230–231

    Article  CAS  PubMed  Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8(3):931–935

    CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015c) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015d) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. doi:10.1016/j.jclepro.2015.04.044

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015e) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J Bot 44(1):143–146

    Article  Google Scholar 

  • Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. doi:10.1016/j.jclepro.2015.04.030

    Article  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4:806–811

    Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016b) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 1–20. doi:10.1007/978-81-322-2776-2_1

    Chapter  Google Scholar 

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016c) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    Article  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016d) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260

    Article  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016e) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75

    Google Scholar 

  • Meng L, Zhang A, Wang F, Han X, Wang D, Li S (2015) Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci 6:339. doi:10.3389/fpls.2015.00339

    PubMed  PubMed Central  Google Scholar 

  • Meplan C, Hesketh J (2012) The influence of selenium and selenoprotein gene variants on colorectal cancer risk. Mutagenesis 27:177–186

    Article  CAS  PubMed  Google Scholar 

  • Nakandalage N, Nicolas M, Norton RM, Hirotsu N, Milham PJ, Seneweera S (2016) Improving rice zinc biofortification success rates through genetic and crop management approaches in a changing environment. Front Plant Sci 7:764. doi:10.3389/fpls.2016.00764

    Article  PubMed  PubMed Central  Google Scholar 

  • Nuberger A, Okebe J, Yahav D, Paul M (2016) Oral iron supplements for children in malaria-endemic areas. Cochrane Database Syst Rev. (2) 1–129. doi:10.1002/14651858.CD006589.pub4

  • Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116

    Google Scholar 

  • Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: Biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem 68:429–439. doi:http://dx.doi.org/10.1016/j.soilbio.2013.09.030

    Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 327–331. doi:10.1007/978-81-322-2776-2_23

    Chapter  Google Scholar 

  • Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14(353):357

    Google Scholar 

  • Prasanna R, Joshi M, Rana A, Shivay YS, Nain L (2012) Influence of co-inoculation of bacteria-cyanobacteria on crop yield and C-N sequestration in soil under rice crop. World J Microbiol Biotechnol 28:1223–1235

    Article  CAS  PubMed  Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 111–125. doi:10.1007/978-81-322-2776-2_8

    Chapter  Google Scholar 

  • Qin H, Brookes PC, Xu J (2016) Arbuscular mycorrhizal fungal hyphae alter soil bacterial community and enhance polychlorinated biphenyls dissipation. Front Microbiol 7:939. doi:10.3389/fmicb.2016.00939

    PubMed  PubMed Central  Google Scholar 

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 43–59. doi:10.1007/978-81-322-2776-2_4

    Chapter  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Rana A, Kabi SR, Verma S, Adak A, Madan P, Shivay YS, Prasanna R and Nain L (2015) Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro- and micronutrients in grains in rice-wheat cropping sequence. Cogent Food Agric 1: 1037379. doi: http://dx.doi.org/10.1080/23311932.2015.1037379

    Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 235–253. doi:10.1007/978-81-322-2776-2_17

    Chapter  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016a) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016b) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999. doi:10.1007/s11356-015-4294-0

    Article  CAS  Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016c) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 127–136. doi:10.1007/978-81-322-2776-2_9

    Chapter  Google Scholar 

  • Sathya A, Vijayabharathi R, Srinivas V, Gopalakrishnan S (2016) Plant growth-promoting actinobacteria on chickpea seed mineral density: an upcoming complementary tool for sustainable biofortification strategy. 3 Biotech 6:138. doi:10.1007/s13205-016-0458-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Sazawal S, Black RE, Ramsan M, Chwaya HM, Stoltzfus RJ, Dutta A, Dhingra U, Kabole I, Deb S, Othman MK, Kabole FM (2006) Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet 367:133–143

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ, Guillon L (2013) Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol 15(6):1661–1673. doi:10.1111/1462-2920.12013

    Article  CAS  PubMed  Google Scholar 

  • Scheublin TR, Sanders IR, Keel C, van der Meer JR (2010) Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J 4(6):752–763. doi:10.1038/ismej.2010.5

    Article  PubMed  Google Scholar 

  • SenĂ©s-Guerrero C, Torres-CortĂ©s G, Pfeiffer S, Rojas M, SchĂĽĂźler A (2014) Potato-associated arbuscular mycorrhizal fungal communities in the Peruvian Andes. Mycorrhiza 24(6):405–417. doi:10.1007/s00572-013-0549-0

    Article  PubMed  CAS  Google Scholar 

  • Shakeel M, Afroz R, Hssan MN, Hafeez FY (2015) Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Front Microbiol 6:1286. doi:10.3389/fmicb.2015.01286

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 203–219. doi:10.1007/978-81-322-2776-2_15

    Chapter  Google Scholar 

  • Shi Z, Mickan B, Feng G, Chen Y (2015) Arbuscular mycorrhizal fungi improved plant growth and nutrient acquisition of desert ephemeral Plantago minuta under variable soil water conditions. J Arid Land 7(3):414–420. doi:10.1007/s40333-014-0046-0

    Article  Google Scholar 

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 221–234. doi:10.1007/978-81-322-2776-2_16

    Chapter  Google Scholar 

  • Siddiqui ZA (2006) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biocontrol. Springer, Dordrecht, pp 112–142

    Chapter  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 171–185. doi:10.1007/978-81-322-2776-2_13

    Chapter  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. doi:10.5958/2229-4473.2015.00012.9

    Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134. doi:10.1007/978-981-10-2558-7_4

    Chapter  Google Scholar 

  • Smith MJ, Neilands JB (1984) Rhizobactin, a siderophore from Rhizobium meliloti. J Plant Nutr 7:449–458

    Article  CAS  Google Scholar 

  • Song Y, Chen D, Lu K, Sun Z, Zeng R (2015) Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front Plant Sci 6:786. doi:10.3389/fpls.2015.00786

    PubMed  PubMed Central  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    Article  CAS  PubMed  Google Scholar 

  • Srivastava RP (2016) Antinutrients restraining biofortification. In: Singh U, Praharaj CS, Singh SS, Singh NP (eds) Biofortification of food crops. Springer, India, pp 333–348

    Chapter  Google Scholar 

  • Sunde RA (2012) Selenium. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR (eds) Modern nutrition in health and disease, 11th edn. Lippincott Williams and Wilkins, Philadelphia, pp 225–237

    Google Scholar 

  • Sundström JF, Albihn A, Boqvist S, Ljungvall K, Marstrop H, Martiin C, Nyberg K, VĂĄgsholm I, Yuen J, Magnusson U (2014) Future threats to agricultural food production posed by environmental degradation, climate change, and animal and plant diseases – a risk analysis in three economic and climate settings. Food Sec 6:201. doi:10.1007/s12571-014-0331-y

    Article  Google Scholar 

  • Support Precision Agriculture (2016). http://supportprecisionagriculture.org/

  • Sura-de Jong M, Reynolds RJB, Richterova K, Musilova L, Staicu LC, Chocholata I, Cappa JJ, Taghavi S, van der Lelie D, Frantik T, Dolinova I, Strejcek M, Cochran AT, Lovecka P, Pilon-Smits EAH (2015) Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Front Plant Sci 6:113. doi:10.3389/fpls.2015.00113

    Article  PubMed  PubMed Central  Google Scholar 

  • Tai APK, Martin MV, Heald CL (2014) Threat to future global food security from climate and ozone air pollution. Nat Clim Chang 4:817–821. doi:10.1038/nclimate2317

    Article  CAS  Google Scholar 

  • Tariq M, Hameed S, Malik KA, Hafeez FY (2007) Plant root associated bacteria for zinc mobilisation in rice. Pak J Bot 39(1):245–253

    Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 315–325. doi:10.1007/978-81-322-2776-2_22

    Chapter  Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432. doi:10.1146/annurev.arplant.51.1.401

    Article  CAS  PubMed  Google Scholar 

  • Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Balindong J, Oliva N, Sapasap MV, Borrero J, Rey J, Francisco P, Nelson A, Nakanishi H, Lombi E, Tako E, Glahn RP, Stangoulis J, Chadha-Mohanty P, Johnson AAT, Tohme J, Barry G, Slamet-Lohdin IH (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6:19792. doi:10.1038/srep19792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • UN (2015) Sustainable development knowledge platform. https://sustainabledevelopment.un.org/about

  • Urbano G, Lopez-Jurado M, Aranda P, Vidal-Valverde C, Tenorio E, Porres J (2000) The role of phytic acid in legumes: antinutrient or beneficial function. J Physiol Biochem 56:283–229

    Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact J 20:441–447

    Article  CAS  Google Scholar 

  • Velazquez E, Silva LR, RamĂ­rez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 99–110. doi:10.1007/978-81-322-2776-2_7

    Chapter  Google Scholar 

  • Velivelli SLS, Sessitch A, Doyle Prestwich B (2014) The role of microbial inoculants in integrated crop management systems. Potato Res 57(3):291–309. doi:10.1007/s11540-014-9278-9

    Article  Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919

    CAS  Google Scholar 

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Wang U, Yang X, Zhang X, Dong L, Zhang J, Wei Y, Feng Y, Lu L (2014) Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn hyperaccumulator, Sedum alfredii H. J Agric Food Chem 62(8):1783–1791. doi:10.1021/jf404152u

    Article  CAS  PubMed  Google Scholar 

  • Weinberg ED (1999) The role of iron in fungal and protozoan infectious diseases. J Eukaryot Microbiol 46:231–238

    Article  CAS  PubMed  Google Scholar 

  • Welch RM (2001) Impact of mineral nutrients in plants on human nutrition on a worldwide scale. In: Horst WJ, Schenk MK, BĂĽrkert A (eds) Plant nutrition-food security and sustainability of agro-ecosystems. Kluwer, Dordrecht, pp 284–285

    Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets: iron zinc copper calcium magnesium selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interaction between selenium and sulfur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR, Bowen HC, Johnson SE (2007) Selenium and its relationship with sulfur. In: Hawkesford MJ, de Kok LJ (eds) Sulfur in plants – an ecological perspective. Springer, London, pp 225–252

    Chapter  Google Scholar 

  • WHO (2006) Guidelines of food fortification with micronutrients. http://www.who.int/nutrition/publications/guide_food_fortification_micronutrients.pdf

  • WHO (2016a) Biofortification of staple crops. http://www.who.int/elena/titles/biofortification/en/

  • WHO (2016b) Micronutrient deficiencies: iron deficiency anaemia. http://www.who.int/nutrition/topics/ida/en/

  • Wilber CG (1980) Toxicology of selenium: a review. Clin Toxicol 17:171–230

    Article  CAS  PubMed  Google Scholar 

  • Wilson K, Benton TG, Graham RI, Grzywacz D (2013) Pest control: biopesticides’ potential. Science 342(6160):799. doi:10.1126/science.342.6160.799-a

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Zhang HT, Wang Y, Jia WS, Xu XF, Zhang XZ, Han ZH (2012) Induction of root Fe (III) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis. J Exp Bot 63:859–870

    Article  CAS  PubMed  Google Scholar 

  • Wu Q-S, Srivastava AK, Zou Y-N (2013) AMF-induced tolerance to drought stress in citrus: a review. Scientia Hort 164:77–87. doi:http://dx.doi.org/10.1016/j.scienta.2013.09.010

    Google Scholar 

  • Wu Q-S, Cao M-Q, Zou Y-N, He X-h (2014) Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Sci Rep 4:5823. doi:10.1038/srep05823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Bañuelos GS, Lin ZQ, Liu Y, Yin X, Li M (2015) Biofortification and phytoremediation of selenium in China. Front Plant Sci 6:136. doi:10.3389/fpls.2015.00136

    PubMed  PubMed Central  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 187–201. doi:10.1007/978-81-322-2776-2_14

    Chapter  Google Scholar 

  • Yasin M, El-Medhawi AF, Jahn CE, Anwar A, Turner MFS, Faisal M, Pilon-Smits EAH (2015a) Seleniferous soils as a source for production of selenium-enriched foods and potential of bacteria to enhance plant selenium uptake. Plant Soil 386:385–394. doi:10.1007/s11104-014-2270-y

    Article  CAS  Google Scholar 

  • Yasin M, El-Medhawi AF, Pilon-Smits EAH, Faisal M (2015b) Selenium-fortified wheat: potential of microbes for biofortification of selenium and other essential nutrients. Int J Phytoremediation 17:777–786. doi:10.1080/15226514.2014.987372

    Article  CAS  PubMed  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 163–170. doi:10.1007/978-81-322-2776-2_12

    Chapter  Google Scholar 

  • Yasmin S (2011) Characterization of growth promoting and bioantagonistic bacteria associated with rhizosphere of cotton and rice. NIBGE, Faisalabad

    Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 31–42. doi:10.1007/978-81-322-2776-2_3

    Chapter  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, ParĂ© PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577. doi:10.1111/j.1365-313X.2009.03803.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Song Q, Yan J, Tang J, Zhao R, Zhang Y, He Z, Zou C, Ortiz-Moasterio I (2010) Mineral element concentrations in grains of Chinese wheat cultivars. Euphytica 174:303–313

    Article  Google Scholar 

  • Zhang Z-Z, Lou Y-G, Deng D-J, Rahman MM, Wu Q-S (2015) Effects of common mycorrhizal network on plant carbohydrates and soil properties in trifoliate orange–white clover association. PLoS One 10(11):e0142371. doi:10.1371/journal.pone.0142371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contribution of the Crawford-Hayes fund at the University College Cork, Ireland, for its contribution to the writing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Doyle Prestwich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Daly, D.H., Velivelli, S.L.S., Prestwich, B.D. (2017). The Role of Soil Microbes in Crop Biofortification. In: Meena, V., Mishra, P., Bisht, J., Pattanayak, A. (eds) Agriculturally Important Microbes for Sustainable Agriculture . Springer, Singapore. https://doi.org/10.1007/978-981-10-5589-8_16

Download citation

Publish with us

Policies and ethics