Skip to main content

Role of Microorganisms in Plant Nutrition and Health

  • Chapter
  • First Online:
Nutrient Use Efficiency: from Basics to Advances

Abstract

Microbes are the key components of soil nutrient cycling. Status of soil health and richness of soil nutrient pool depend on structure and functions of soil microbial community. Microbes play an important role in nutrient mobilisation and uptake. They promote plant growth and suppress disease by their various activities. Phosphate and sulphate solubilisation, plant growth promotion, siderophore production, nitrogen fixation, denitrification, immune modulation, signal transduction and pathogen control are some of the well-recognised microbial mediated processes which promote the plant growth and protect them from pests. Current chapter starts with a brief introduction of plant nutrients and their classification and mechanisms of nutrient uptake by the plants. After that we discussed the importance of microbes in plant nutrient uptake and mobilisation. In addition, importance of different classes of microorganisms (fungi, bacteria, cyanobacteria) in plant nutrition and health has been discussed in detail under different sections. In the end we conclude the role of microorganisms in sustainable agriculture and environment and suggested for the promotion and use of microbial-based formulations instead of chemical fertilisers. We also emphasised on cultivation and preservation of agriculturally and environmentally important but not yet cultured organisms for sustainable development in agriculture and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abiala MA, Popoola OO, Olawuyi OJ, Oyelude JO, Akanmu AO, Killani AS, Osonubi O, Odebode AC (2013) Harnessing the potentials of Vesicular Arbuscular Mycorrhizal (VAM) fungi to plant growth – a review. Int J Pure Appl Sci Technol 14(2):61–79

    CAS  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 54:921–929

    Article  CAS  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Al-khiat SHA (2006) Effect of Cyanobacteria as a soil conditioner and biofertilizer on growth and some biochemical characteristics of tomato (Lycopersicon esculentum L.) Seedlings. Dissertation, King Saud University

    Google Scholar 

  • Al-Niemi TS, Summers ML, Elkins JG, Kahn ML, Mcdermott TR (1997) Regulation of the phosphate stress response in Rhizobium meliloti by PhoB. Appl Environ Microbiol 63:4978–4981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alikhani HA, Saleh-Rastin N, Antoun H (2006) Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil 287:35–41

    Article  CAS  Google Scholar 

  • Alizadeh O (2012) A critical review on the nutrition role of arbuscular mycorrhizal fungi. ELBA Bioflux 4:1–7

    Google Scholar 

  • Allen MF, Swenson W, Ouerejeta JI, Egerton-Warburton LM, Treseder KK (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Ann Rev Phytopathol 41:271–303

    Article  CAS  Google Scholar 

  • Alvarez M, Huygens D, Olivares E, Saavedra I, Alberdi M, Valenzuela E (2009) Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities. Physiol Plant 136(4):426–36. doi:10.1111/j.1399-3054.2009.01237.x

    Article  CAS  PubMed  Google Scholar 

  • Andrade SA, Silveira AP, Mazzafera P (2010) Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil. Sci Total Environ 408(22):5381–5391. doi:10.1016/j.scitotenv.2010.07.064

    Article  CAS  PubMed  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. PNAS 100:15649–15654. doi:10.1073/pnas.2533483100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Aseri GK, Jain N, Panwar J, Rao AV, Meghwal PR (2008) Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of Pomegranate (Punica granatum L.) in Indian Thar desert. Sci Hortic 117:130–135

    Article  Google Scholar 

  • Awasthi A, Bharti N, Nair P, Singh R, Shukla AK, Gupta MM, Darokar MP, Kalra A (2011) Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130

    Article  Google Scholar 

  • Baakza A, Vala AK, Dave BP, Dube HC (2004) A comparative study of siderophore production by fungi from marine and terrestrial habitats. J Exp Mar Biol Ecol 311:1–9

    Article  CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agriculture importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim S-H, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295. doi:10.1093/jxb/erp165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Samuels GJ, Choi I-Y, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Banchio E, Bogino PC, Santoro M, Torres L, Zygadlo J, Giordano W (2010) Systemic induction of monoterpene biosynthesis in Origanumxmajoricum by soil bacteria. J Agric Food Chem 58:650–654

    Article  CAS  PubMed  Google Scholar 

  • Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347–359. doi:10.1007/s00572-011-0408-9

    Article  CAS  PubMed  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2011a) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem 59:5504–5515. doi:10.1021/jf200501c

    Article  CAS  PubMed  Google Scholar 

  • Baslam M, Pascual I, Sanchez-Díaz M, Erro J, García-Mina JM, Goicoechea N (2011b) Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi is conditioned by the source of Phosphorus nutrition. J Agric Food Chem 59:11129–11140. doi:10.1021/jf202445y

    Article  CAS  PubMed  Google Scholar 

  • Baslam M, Esteban R, García-Plazaola JI, Goicoechea N (2013a) Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl Microbiol Biotechnol 97:3119–3128. doi:10.1007/s00253-012-4526-x

    Article  CAS  PubMed  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2013b) Enhanced accumulation of vitamins, nutraceuticals and minerals in lettuces associated with arbuscular mycorrhizal fungi (AMF): a question of interest for both vegetables and humans. Agriculture 3:188–209. doi:10.3390/agriculture3010188

    Article  CAS  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2013c) The arbuscular mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Sci Hortic 164:145–154

    Article  CAS  Google Scholar 

  • Baya MA, Boehhing RS, Ramos-Cormenzana A (1981) Vitamin production in relation to phosphate solubilization by bacteria. Soil Biol Biochem 13:527–531

    Article  CAS  Google Scholar 

  • Becking JH (1979) Environmental requirements of Azolla for use in tropical rice production. Nitrogen and Rice, IRRI, Manila, pp 354–374

    Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2005) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254(2):173–181. doi:10.1111/j.1574-6968.2005.00044.x

    Article  CAS  Google Scholar 

  • Bennett PC, Choi WJ, Rogers JR (1998) Microbial destruction of feldspars. Miner Manag 8:149–150

    Article  Google Scholar 

  • Berlec A (2012) Novel techniques and findings in the study of plant microbiota: search for plant probiotics. Plant Sci 2(193):96–102

    Article  CAS  Google Scholar 

  • Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialized niche for rhizospheric and endocellular bacteria. Anton van Leeuwenhoek 81:365–371

    Article  CAS  Google Scholar 

  • Bittleston LS, Brockmann F, Wcislo W, van Bael SA (2011) Endophytic fungi reduce leaf-cutting ant damage to seedlings. Biol Lett 7(1):30–32. doi:10.1098/rsbl.2010.0456

    Article  CAS  PubMed  Google Scholar 

  • Blanke V, Renke C, Wagner M, Fuller K, Held M, Kuhn AJ, Bruscot F (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate polluted field sites. New Phytol 166:981–992

    Article  CAS  PubMed  Google Scholar 

  • Bomke C, Rojas MC, Gong F, Hedden P, Tudzynski B (2008) Isolation and characterization of the gibberellin biosynthetic gene cluster in Sphaceloma manihoticola. Appl Environ Microbiol 74:5325–5339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonfante P (2001) At the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton. In: Hock B (ed) Mycota, IX: fungal associations. Springer, Berlin

    Google Scholar 

  • Bonfante P (2003) Plants, mycorrhizal fungi and endobacteria: a dialog among cells and genomes. Biol Bull 204:215–220

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. doi:10.1038/ncomms1046

    Article  PubMed  CAS  Google Scholar 

  • Bonos SA, Wilson MM, Meyer WA, Funk CR (2005) Suppression of red thread in fine fescues through endophyte-mediated resistance. Appl Turfgrass Sci 10:1094

    Google Scholar 

  • Bordallo JJ, López Llorca LV, Jannson HB, Salinas J, Persmark L, Asensio L (2002) Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytol 154:491–499

    Article  Google Scholar 

  • Borowicz VA (2009) Organic farm soil improves strawberry growth but does not diminish spittlebug damage. J Sustain Agric 33:177–188

    Article  Google Scholar 

  • Brandle JE, Telmer PG (2007) Steviol glycoside biosynthesis. Phytochemistry 68:1855–1863

    Article  CAS  PubMed  Google Scholar 

  • Briones AM, Okabe S, Umemiya Y, Ramsing N, Reichardt W, Okuyama H (2003) Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars. Plant Soil 250:335–348

    Article  CAS  Google Scholar 

  • Bücking H, Heyser W (2003) Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition. Mycorrhiza 13:59–68. doi:10.1007/s00572-002-0196-3

    Article  PubMed  CAS  Google Scholar 

  • Cairney JWG (2005) Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycol Res 109(1):7–20

    Article  PubMed  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Cavagnaro TR, Martin AW (2010) The role of mycorrhizas in plant nutrition: field and mutant based approaches. In: 19th world congress of soil science, soil solutions for a changing world, Brisbane, Australia, 1–6 August 2010

    Google Scholar 

  • Cavagnaro TR, Smith FA, Ayling SM, Smith SE (2003) Growth and phosphorus nutrition of a Paris-type arbuscular mycorrhizal symbiosis. New Phytol 157:127–134

    Article  Google Scholar 

  • Cavagnaro TR, Langley AJ, Jackson LE, Smukler SM, Koch GW (2008) Growth, nutrition, and soil respiration of a mycorrhiza-defective tomato mutant and its mycorrhizal wild-type progenitor. Funct Plant Biol 35:228–235

    Article  CAS  Google Scholar 

  • Chandler D, Davidson G, Grant W, Greaves J, Tatchell MG (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Technol 19:275–283. ISSN 0924-2244

    Article  CAS  Google Scholar 

  • Chaw S, Chang C, Chen H, Li W (2004) Dating the monocot–dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol 58:424–441

    Article  CAS  PubMed  Google Scholar 

  • Choi WY, Rim SO, Lee JH, Lee JM, Lee IJ, Cho KJ, Rhee IK, Kwon JB, Kim JG (2005) Isolation of gibberellins producing fungi from the root of several Sesamum indicum plants. J Microbiol Biotechnol 15:22–28

    CAS  Google Scholar 

  • Clark MM, Gwinn KD, Ownley BH (2006) Biological control of Pythium myriotylum. Phytopathology 96:S25

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Climent C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanism of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szanislo PJ (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. In: Chen Y, Hadar Y (eds) Iron nutrition and interactions in plants. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • da Silva GA, de Almeida EA (2006) Production of yellow-green fluorescent pigment by Pseudomonas fluorescens. Braz Arch Biol Technol 49:411–419

    Article  Google Scholar 

  • Dadhich KS, Varma AK, Venkataraman GS (1969) The effect of Calothrix inoculation on vegetable crops. Plant Soil 31:377–379

    Article  Google Scholar 

  • Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741

    Article  CAS  PubMed  Google Scholar 

  • Danell E, Alstrom A, Ternstrom A (1993) Pseudomonas fluorescens in association with fruit bodies of the ectomycorrhizal mushroom Cantharellus cibarius. Mycol Res 97:1148–1152

    Article  Google Scholar 

  • Das K, Dang R, Shivananda T, Sekeroglu N (2007) Influence of bio-fertilizers on the biomass yield and nutrient content in Stevia rebaudiana Bert. grown in Indian subtropics. J Med Plant Res 1:005–008

    Google Scholar 

  • Deng SP, Summers M, Kahn ML, McDermott TR (1998) Cloning and characterization of a Rhizobium meliloti non-specific acid phosphatase. Arch Microbiol 170:18–26

    Article  CAS  PubMed  Google Scholar 

  • Derylo M, Skorupska A (1992) Rhizobial siderophore as an iron source for clover. Physiol Plant 85:549–553

    Article  CAS  Google Scholar 

  • Duponois R, Kisa M, Plenchette C (2006) Phosphate-solubilizing potential of the nematophagous fungus Arthrobotrys oligospora. J Plant Nutr Soil Sci 169:280–282

    Article  CAS  Google Scholar 

  • Elena GJ, Beatriz PJ, Alejandro P, Roberto L (2011) Metarhizium anisopliae (Metschnikoff) sorokin promotes growth and has endophytic activity in tomato plants. Adv Biol Res 5:22–27

    Google Scholar 

  • Estrada C, Wcislo WT, van Bael SA (2013) Symbiotic fungi alter plant chemistry that discourages leaf-cutting ants. New Phytol 198(1):241–251. doi:10.1111/nph.12140

    Article  PubMed  Google Scholar 

  • Faeth SH, Gardner DR, Hayes CJ, Jani A, Wittlinger SK, Jones TA (2006) Temporal and spatial variation in alkaloid levels in Achnatherum robustum, a native grass infected with the endophyte Neotyphodium. J Chem Ecol 32:307–324

    Article  CAS  PubMed  Google Scholar 

  • Fernández LA, Zalba P, Gomez MA, Sagardoy MA (2007) Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol Fertil Soils 43:805–809

    Article  CAS  Google Scholar 

  • Finlay RD (2004) Mycorrhizal fungi and their multifunctional role. Mycologist 18(2):91–96

    Article  Google Scholar 

  • Fiorilli V, Catoni M, Francia D, Cardinale F, Lanfranco L (2011) The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infected by Botrytis cinerea. J Plant Pathol 93(1):237–242

    Google Scholar 

  • Friedrich S, Platonova NP, Karavaiko GI, Stichel E, Glombitza F (1991) Chemical and microbiological solubilization of silicates. Acta Biotechnol 11(3):187–196

    Article  CAS  Google Scholar 

  • Fritz M, Jakobsen I, Langkjaer MF, Thordal-Christensen H, Pons-Kühnemann J (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413–419

    Article  PubMed  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  • Gange AC, Brown VK, Sinclair GS (1994) Reduction of black vine weevil larval growth by vesicular–arbuscular mycorrhizal infection. Entomol Exp Appl 70:115–119

    Article  Google Scholar 

  • Gaur AC (2006) Azolla act as green manure and production. Biofertilizers in sustainable agriculture. ICAR, New Delhi

    Google Scholar 

  • Gehring C, Bennett A (2009) Mycorrhizal fungal-plant-insect interactions: the importance of a community approach. Environ Entomol 38:93–102

    Article  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Goettel MS, Koike M, Kim JJ, Aiuchi D, Shinya R, Brodeur J (2008) Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J Invertebr Pathol 98:256–261

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AH, Krishnaraj PU (2007) Phosphate solubilizing microorganisms vs. phosphate mobilizing microorganisms: what separates a phenotype from a trait? In: Velázquez E, Rodríguez-Barrueco C (eds) Proceedings of 1st international meeting on microbial phosphate solubilization, vol 102. Springer, Dordrecht

    Google Scholar 

  • Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnology 5:72–74

    Article  CAS  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Goyal SK (1993) Algal biofertilizer for vital soil and free nitrogen. Proc Indian Natl Sci Acad 59:295–301

    Google Scholar 

  • Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol 56:73–79

    Article  CAS  PubMed  Google Scholar 

  • Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth promoting and rhizosphere competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of Himalayas. Curr Microbiol 58:371–377

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Manero FJ, Ramos-Solano B, Robanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Hamayun M, Khan SA, Iqbal I, Hwang YH, Shin DH, Sohn EY, Lee BH, Na CI, Lee IJ (2009a) Chrysosporium pseudomerdarium produces gibberellins and promotes plant growth. J Microbiol 47:425–430

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Khan SA, Kim HY, Chaudhary MF, Hwang YH, Shin DH, Kim IK, Lee BH, Lee IJ (2009b) Gibberellins production and plant growth enhancement by newly isolated strain of Scolecobasidium tshawytschae. J Microb Biotechnol 19:560–565

    CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan MA, Khan AL, Kang S-M, Kim S-K, Joo G-J, Lee I-J (2009c) Gibberellin production by pure cultures of a new strain of Aspergillus fumigatus. World J Microbiol Biotechnol 25:1785–1792

    Article  CAS  Google Scholar 

  • Hardy RWF, Burns RC, Holsten RD (1973) Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5:47–81

    Article  CAS  Google Scholar 

  • Hariprasad P, Niranjana SR (2009) Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 316:13–24

    Article  CAS  Google Scholar 

  • Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342

    Article  CAS  PubMed  Google Scholar 

  • Haselwandter K, Winkelmann G (2007) Siderophores of symbiotic fungi. In: Varma A, Chincholkar SB (eds) Microbial siderophores, vol 12, Soil biology. Springer, Berlin/Heidelberg

    Chapter  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • He X, Critchley C, Ng H, Bledsoe C (2005) Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2 -fixing Eucalyptus maculate via an ectomycorrhizal fungus Pisolithus sp. using 15NH4+ or 15NO3 supplied as ammonium nitrate. New Phytol 167:897–912. doi:10.1111/j.1469-8137.2005.01437.x

    Article  CAS  PubMed  Google Scholar 

  • Hemavathi VN, Sivakumar BS, Suresh CK, Earanna N (2006) Effect of Glomus fasciculatum and plant growth promoting rhizobacteria on growth and yield of Ocimum basilicum. Karnataka J Agric Sci 19:17–20

    Google Scholar 

  • Hodge A (2003) Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization. New Phytol 157(2):303–314

    Article  Google Scholar 

  • Hodges SC (2010) Soil fertility basics. Soil science extension. North Carolina State University, Raleigh, pp 4927–4932

    Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velázquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568

    Article  Google Scholar 

  • Jentschkea G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    Article  Google Scholar 

  • Jetten MSM (2008) The microbial nitrogen cycle. Environ Microbiol 10(11):2903–2909

    Article  CAS  PubMed  Google Scholar 

  • Jin CW, He YF, Tang CX, Wu P, Zheng SJ (2006) Mechanisms of microbial enhanced iron uptake in red clover. Plant Cell Environ 29:888–897

    Article  PubMed  Google Scholar 

  • Jin CW, Li GX, Yu XH, Zheng SJ (2010) Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Ann Bot 105:835–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing YD, He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabli SA, Al-Garni SM, Al-Fassi FA (1997) Efficiency of cyanobacteria from soil of western region in the Kingdom of Saudi Arabia as biofertilizer for wheat. Arab Gulf J Sci Res 15:481–503

    Google Scholar 

  • Kannaiyan S (1985) Studies on the algal application for lowland rice crop. Tamil Nadu Agric Univ Bull, Coimbatore

    Google Scholar 

  • Karandashov V, Nagy R, Wegmüller S, Amrhein N, Bucher M (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 101:6285–6290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthikeyan N (2006) Characterization of cyanobacteria from the rhizosphere of wheat. Dissertation, Indian Agricultural Research Institute

    Google Scholar 

  • Karthikeyan N, Prasanna R, Lata KBD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30

    Article  CAS  Google Scholar 

  • Karthikeyan N, Prasanna R, Sood A, Jaiswal P, Nayak S, Kaushik BD (2009) Physiological characterization and electron microscopic investigations of cyanobacteria associated with wheat rhizosphere. Folia Microbiol 54:43–51

    Article  CAS  Google Scholar 

  • Kaushik BD (1994) Algalization of rice fields in salt affected soils. Ann Agric Res 15:105–106

    Google Scholar 

  • Kaushik BD, Venkataraman GS (1979) Effect of algal inoculation on the yield and vitamin C content of two varieties of tomato. Plant Soil 52:135–137

    Article  CAS  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009a) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Khan SA, Hamayun M, Kim HY, Yoon HJ, Seo JC, Choo YS, Lee IJ, Kim SD, Rhee IK, Kim JG (2009b) A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production. Biotechnol Lett 31:283–287

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HY, Choi GJ, Lee HB, Lee SW, Kim HK, Jang KS, Son SW, Lee SO, Cho KY, Sung ND, Kim JC (2007) Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight. Lett Appl Microbiol 44:332–337

    Article  PubMed  Google Scholar 

  • Kleiner KT, Harper KT (1977) Soil properties in relation to cryptogamic ground cover in Canyon-lands National park. J Range Manag 30:202–205

    Article  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Article  Google Scholar 

  • Kluber LA, Smith JE, Myrolda DD (2011) Distinctive fungal and bacterial communities are associated with mats formed by ectomycorrhizal fungi. Soil Biol Biochem 43:1042–1050

    Article  CAS  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldan A (2007) Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl Soil Ecol 35:480–487

    Article  Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    Article  PubMed  Google Scholar 

  • Kozdrój J, Piotrowska-Seget Z, Krupa P (2007) Mycorrhizal fungi and ectomycorrhiza associated bacteria isolated from an industrial desert soil protect pine seedlings against Cd (II) impact. Ecotoxicology 16(6):449–456

    Article  PubMed  CAS  Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174(3):648–657

    Article  PubMed  Google Scholar 

  • Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control 46:57–71

    Article  Google Scholar 

  • Kumar M, Prasanna R, Bidyarani N, Babu S, Mishra BK, Kumar A, Adaka A, Jauharia S, Yadav K, Singh R, Saxena AK (2013) Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Sci Hortic 164:94–101

    Article  CAS  Google Scholar 

  • Lacava PT, Silva-Stenico ME, Araújo WL, Simionato AVC, Carrilho E, Tsai SM, Azevedo JL (2008) Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca. Pesq Agrop Brasileira 43:521–528

    Article  Google Scholar 

  • Lacey LA, Horton DR, Jones DC, Headrick HL, Neven LG (2009) Efficacy of biofumigant fungus Muscodor albus (Ascomycota: Xylariales) for control of codling moth (Lepidoptera: Tortricidae) in stimulated storage conditions. J Econ Entomol 102:43–49

    Article  CAS  PubMed  Google Scholar 

  • Ladha JK, Pareek RP, Beeker N (1992) Stem-nodulating legume-Rhizobium symbiosis and its agronomic use in lowland rice. In: Stewart BA (ed) Advances in soil science, vol 20. Springer, New York

    Chapter  Google Scholar 

  • Leake JR, Johnson D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82(8):1016–1045

    Article  Google Scholar 

  • Lehtonen PT, Helander M, Siddiqui SA, Lehto K, Saikkonen K (2006) Endophytic fungus decreases plant virus infections in meadow ryegrass (Lolium pratense). Biol Lett 2:620–623

    Article  PubMed  PubMed Central  Google Scholar 

  • Li CJ, Nan ZB, Paul VH, Dapprich PD, Liu Y (2004) A new Neotyphodium species symbiotic with drunken horse grass (Achnatherum inebrians) in China. Mycotaxon 90:141–147

    Google Scholar 

  • Linu MS, Stephen J, Jisha MS (2009) Phosphate solubilizing Gluconacetobacter sp., Burkholderia sp. and their potential interaction with cowpea (Vigna unguiculata (L.) Walp.). Int J Agric Res 4:79–87

    Article  CAS  Google Scholar 

  • Lioussanne L (2010) The role of the arbuscular mycorrhiza-associated rhizobacteria in the biocontrol of soilborne phytopathogens. Span J Agric Res 8(S1):S51–S61

    Article  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loria ER, Sawyer JE (2005) Extractable soil phosphorus and inorganic nitrogen following application of raw and anaerobically digested swine manure. Agron J 97:879–885

    Article  Google Scholar 

  • Lou DI, Hussmann JA, McBee RM, Acevedo A, Andino R, Press WH, Sawyer SL (2013) High-throughput DNA sequencing errors are reduced by orders of magnitude using circle sequencing. Proc Nat Acad Sci U S A 110:19872–19877

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth-promoting rhizobacteria. Ann Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • MacDermott TR (1999) Phosphorus assimilation and regulation in rhizobia. In: Triplett EW (ed) Nitrogen fixation in prokaryotes: molecular and cellular biology. Horizon Scientific Press, Norfolk

    Google Scholar 

  • Mahmoud ALE, Abd-Alla MH (2001) Siderophores production by some microorganisms and their effect on Bradyrhizobium-mung bean symbiosis. Int J Agric Biol 3:157–162

    CAS  Google Scholar 

  • Mallarino AP, Stewart BM, Baker JL, Downing JD, Sawyer JE (2002) Phosphorus indexing for cropland: overview and basic concepts of the Iowa phosphorus index. J Soil Water Conserv 57:440–447

    Google Scholar 

  • Manjunath M, Prasanna R, Sharma P, Nain L, Singh R (2011) Developing PGPR consortia using novel genera Providencia and Alcaligenes along with cyanobacteria for wheat. Arch Agron Soil Sci 57:873–887

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 889

    Google Scholar 

  • Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological insights. Curr Opin Plant Biol 12:508–515

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Plassard C (2001) Nitrogen assimilation by ectomycorrhizal symbiosis. In: Morot-Gaudry JF (ed) Nitrogen assimilation by plants: physiological, biochemical and molecular aspects. Science Publishers, Enfield

    Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  PubMed  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439

    Article  CAS  Google Scholar 

  • Matzanke BF (1991) Structures, coordination chemistry and functions of microbial iron chelates. In: Winkelmann G (ed) CRC handbook of microbial iron chelates. CRC Press, Boca Raton

    Google Scholar 

  • McAfee J (2008) Potassium, a key nutrient for plant growth. Department of Soil and Crop Sciences, http://jimmcafee.tamu.edu/files/potassium

  • Mehta CM, Palni U, Franke-Whittle IH, Sharma AK (2013) Compost: its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag 34:607–622

    Article  PubMed  Google Scholar 

  • Menkis A, Bakys R, Lygis V, Vasaitis R (2011) Mycorrhization, establishment and growth of outplanted Picea abies seedlings produced under different cultivation systems. Silv Fenn 45(2):283–289

    Google Scholar 

  • Microbes S (2010) Understanding soil microbes and nutrient recycling. Actinomycetes 107:40–50

    Google Scholar 

  • Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Kaushik BD (1989) Growth promoting substances of cyanobacteria. I. Vitamins and their influence on rice plant. Proc Indian Nat Sci Acad B55:295–300

    Google Scholar 

  • Mohammadi K, Khalesro S, Sohrabi Y, Heidari G (2011) Beneficial effects of the mycorrhizal fungi for plant growth. J Appl Environ Biol Sci 1(9):310–319

    Google Scholar 

  • Morgan JB, Connolly EL (2013) Plant-soil interactions: nutrient uptake. Nat Educ Knowl 4(8):2

    Google Scholar 

  • Mortimer PE, Pérez-Fernández MA, Valentine AJ (2009) Arbuscular mycorrhiza affects the N and C economy of nodulated Phaseolus vulgaris (L.) during NH4 nutrition. Soil Biol Biochem 41:2115–2121

    Article  CAS  Google Scholar 

  • Mukerji KG, Ciancio A (2007) Mycorrhizae in the integrated pest and disease, section-2. In: Ciancio A, Mukerji KG (eds) Management general concepts in integrated pest and disease management. Springer, Dordrecht

    Google Scholar 

  • Naik PR, Sahoo N, Goswami D, Ayyadurai N, Sakthivel N (2008) Genetic and functional diversity among fluorescent pseudomonads isolated from the rhizosphere of banana. Microb Ecol 56:492–504

    Article  CAS  PubMed  Google Scholar 

  • Nain L, Rana A, Joshi M, Shrikrishna JD, Kumar D, Shivay YS, Paul S, Prasanna R (2010) Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant Soil 331:217–230

    Article  CAS  Google Scholar 

  • Natesan R, Shanmugasundaram S (1989) Extracellular phosphate solubilization by the cyanobacterium Anabaena ARM 310. J Biosci 14:203–208

    Article  CAS  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS, Chauhan PS, DasGupta SM, Seem K, Varma A, Staddon WJ (2010) Tripartite interactions among Paenibacillus lentimorbus NRRLB-30488, Piriformospora indica DSM 11827 and Cicer arietinum L. World J Microbiol Biotechnol 26:1393–1399. doi:10.1007/s11274-010-0312-z

    Article  Google Scholar 

  • Nisha MC, Rajeshkumar S (2010) Effect of arbuscular mycorrhizal fungi on growth and nutrition of Wedelia chinensis (Osbeck) Merril. Indian J Sci Technol 3(6):676–678

    Google Scholar 

  • Ogunseitan O (2005) Microbial diversity: form and function in prokaryotes. Blackwell, Malden

    Google Scholar 

  • Ortega U, Dunabeitia M, Menendez S, Gonzalez-Murua C, Majada J (2004) Effectiveness of mycorrhizal inoculation in the nursery on growth and water relations of Pinus radiata in different water regimes. Tree Physiol 24:65–73

    Article  CAS  PubMed  Google Scholar 

  • Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270

    Article  CAS  PubMed  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instr. doi:10.1094/PHI-A-2006-1117-02

    Google Scholar 

  • Panaccione DG, Cipoletti JR, Sedlock AB, Blemings KP, Schardl CL, Machado C, Seidel G (2006) Effects of ergot alkaloids on food preference and satiety in rabbits as assessed with gene-knockout endophytes in perennial ryegrass (Lolium perenne). J Agri Food Chem 54:4582–4587

    Article  CAS  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53:102–107

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Choi GJ, Lee HB, Kim KM, Jung HS, Lee SW, Jang KS, Cho KY (2005a) Griseofulvin from Xylaria sp. strain F0010, and endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15(1):112–117

    CAS  Google Scholar 

  • Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005b) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133

    Article  CAS  PubMed  Google Scholar 

  • Park KH, Lee CY, Son HJ (2009) Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Lett Appl Microbiol 49:222–228

    Article  PubMed  Google Scholar 

  • Patel HN, Chakraborty RN, Desai SB (1988) Isolation and partial characterization of phenolate siderophore from Rhizobium leguminosarum IARI 102. FEMS Microbiol Lett 56:131–134

    Article  CAS  Google Scholar 

  • Patel DK, Archana G, Kumar GN (2008) Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr Microbiol 56:168–174

    Article  CAS  PubMed  Google Scholar 

  • Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant Soil 174:3–28

    Article  CAS  Google Scholar 

  • Pérez E, Sulbarán M, Ball M, Yarzabal LA (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem 39:2905–2914

    Article  CAS  Google Scholar 

  • Persmark M, Pittman P, Buyer JS, Schwyn B, Gill PR, Neilands JB (1993) Isolation and structure of rhizobactin 1021, a siderophore from alfalfa symbiont Rhizobium meliloti 1021. J Am Chem Soc 115:3950–3956

    Article  CAS  Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. CABI Publishing/CAB International, Wallingford/Oxon

    Google Scholar 

  • Pineda A, Zheng S-J, van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514. doi:10.1016/j.tplants.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  • Plassard C, Bonafos B, Touraine B (2000) Differential effects of mineral and organic N sources, and of ectomycorrhizal infection by Hebeloma cylindrosporum, on growth and N utilization in Pinus pinaster. Plant Cell Environ 23:1195–1205

    Article  Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestrisLactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151(3):743–751

    Article  Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa T (2008) Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18:773–777

    CAS  PubMed  Google Scholar 

  • Pozo MJ, Verhage A, García-Andrade J, García JM, Azcón-Aguilar C (2008) Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Azcon-Aguilar C et al (eds) Mycorrhizas – functional processes and ecological impact. Springer, Berlin/Heidelberg

    Google Scholar 

  • Prakash O, Nimonkar Y, Shouche YS (2013a) Practice and prospects of microbial preservation. FEMS Microbiol Lett 339:1–9

    Article  CAS  PubMed  Google Scholar 

  • Prakash O, Shouche Y, Jangid K, Kostka JE (2013b) Microbial cultivation and the role of microbial resource centers in the omics era. Appl Microbiol Biotechnol 97:51–62

    Article  CAS  PubMed  Google Scholar 

  • Rahi P, Vyas P, Sharma S, Gulati A (2009) Plant growth promoting potential of the fungus Discosia sp. FIHB 571 from tea rhizosphere tested on chickpea, maize and pea. Indian J Microbiol 49:128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276–284

    Article  CAS  PubMed  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298:1581

    Article  CAS  PubMed  Google Scholar 

  • Rehm G, Schmitt M (2002) Potassium for crop production. Retrieved February 2, 2011, from Regents of the University of Minnesota website: http://www.extension.umn.edu/distribution/cropsystems/dc6794.html

  • Reyes I, Bernier L, Simard R, Antoun H (1999) Effect of nitrogen source on solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 28:281–290

    Article  CAS  Google Scholar 

  • Riga K, Lacey LA, Guerra N (2008) The potential of the endophytic fungus, Muscodor albus, as a biocontrol agent against economically important plant parasitic nematodes of vegetable crops in Washington State. Biol Control 45:380–385

    Article  Google Scholar 

  • Rippka R (1972) Photoheterotrophy and chemoheterotrophy among unicellular blue green algae. Arch Microbiol 87:94–98

    Google Scholar 

  • Rivas R, Peix A, Mateos PF, Trujillo ME, Martínez-Molina E, Velázquez E (2007) Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. In: Velazquez E, Rodriguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, Dordrecht

    Google Scholar 

  • Rivera Varas VV, Freeman TA, Gusmestad NC, Secor GA (2007) Mycoparasitism of Helminthosporium solani by Acremonium strictum. Phytopathology 9(97):1331–1337

    Article  Google Scholar 

  • Rizvi Z, Sharma VK (1994) Algae as biofertilizer for tomato plants. Rec Adv Phycol, conference paper Vol. NA:221–223

    Google Scholar 

  • Rodríguez H, Vessely S, Shah S, Glick BR (2008) Effect of a nickel-tolerant ACC deaminase-producing Pseudomonas strain on growth of nontransformed and transgenic canola plants. Curr Microbiol 57:170–174

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416. doi:10.1038/ismej.2007.106

    Article  PubMed  Google Scholar 

  • Roger PA, Kulasooriya SA (1980) Blue green algae and rice. International Rice Research Institute, Manila

    Google Scholar 

  • Roger A, Gétaz M, Rasmann S, Sanders IR (2013) Identity and combinations of arbuscular mycorrhizal fungal isolates influence plant resistance and insect preference. Ecol Entomol 38(4):330–338. doi:10.1111/een.12022

    Article  Google Scholar 

  • Roychoudhury P, Kaushik BD (1989) Solubilization of Mussorie rock phosphate by cyanobacteria. Curr Sci 58:569–570

    CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113

    Article  Google Scholar 

  • Sayyed RZ, Chincholkar SB (2009) Siderophore-producing Alcaligenes faecalis exhibited more biocontrol potential vis-à-vis chemical fungicide. Curr Microbiol 58:47–51

    Article  CAS  PubMed  Google Scholar 

  • Sayyed RZ, Naphade BS, Chincholkar SB (2007) Siderophore producing A. feacalis promoted the growth of Safed musali and Ashwagandha. J Med Arom Plant 29:1–5

    Google Scholar 

  • Schäfer P, Khatabi B, Kogel KH (2007) Root cell death and systemic effects of Piriformospora indica: a study on mutualism. FEMS Microbiol Lett 275:1–7

    Article  PubMed  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seed borne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology. Oxford University Press, Oxford/New York

    Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Rajak RC (2011) Ectomycorrhizal interaction between Cantharellus and Dendrocalamus. In: Rai M, Varma A (eds) Diversity and biotechnology of ectomycorrhizae, vol 25, Soil biology. Springer, Berlin/Heidelberg

    Chapter  Google Scholar 

  • Sharma R, Baghel RK, Pandey AK (2010) Dynamics of acid phosphatase production of the ectomycorrhizal mushroom Cantharellus tropicalis. Afr J Microbiol Res 4(20):2072–2078

    CAS  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sikes BA, Cottenie K, Klironomos JN (2009) Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J Ecol 97:1274–1280

    Article  Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance1. Can J Bot 82:1140–1165

    Article  CAS  Google Scholar 

  • Sinclair TR (1999) Limits to crop yield. In: Fedroeff NV, JE cohen (eds) Plants and population: is there time? Colloquium. National Academy of Sciences, Washington, DC

    Google Scholar 

  • Singh AV, Shah S, Prasad B (2010a) Effect of phosphate solubilizing bacteria on plant growth promotion and nodulation in soybean (Glycine max (L.) Merr.). J Hill Agric 1(1):35–39

    CAS  Google Scholar 

  • Singh G, Biswas DR, Marwaha TS (2010b) Mobilization of potassium from waste mica by plant growth promoting and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.): a hydroponics study under phytotron growth chamber. J Plant Nutr 33(8):1236–1251

    Article  CAS  Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6(2):175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Soni SK, Kalra A (2012) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23(1):35–44. doi:10.1007/ s00572-012-0447-x

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, New York. ISBN 978-0-12-370526-6

    Google Scholar 

  • Smith FA, Smith SE (2011a) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil 348:63–79. doi:10.1007/s11104-011-0865-0

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (2011b) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104(1):1–13. doi:10.3852/11-229

    Article  PubMed  Google Scholar 

  • Smith MJ, Schoolery JN, Schwyn B, Neilands JB (1985) Rhizobactin, a structurally novel siderophore from Rhizobium meliloti. J Am Chem Soc 107:1739–1743

    Article  CAS  Google Scholar 

  • Smith S, Smith A, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphorus supply to plant irrespective of growth response. Plant Physiol 133:16–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon D, Lehmann J, Martinez CE (2003) Sulphur K-edge XANES spectroscopy as a tool for understanding sulphur dynamics in soil organic matter. Soil Sci Soc Am J 67:1721–1731

    Article  CAS  Google Scholar 

  • Son SH, Khan Z, Kim SG, Kim YH (2009) Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and Fusarium wilt fungus. J Appl Microbiol 107:524–532

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31(4):425–448

    Article  CAS  PubMed  Google Scholar 

  • Sparling GP, Pankhurst C, Doube BM, Gupta VVSR (1997) Soil microbial biomass, activity and nutrient cycling as indicators of soil health. Biol Indic Soil Health :97–119

    Google Scholar 

  • Spiller H, Gunasekaran M (1990) Ammonia excreting mutant strain of the cyanobacterium Anabaena variabilis supported growth of wheat. Appl Microbiol Biotechnol 33:477–480

    Article  CAS  Google Scholar 

  • Spiller H, Gunasekaran M (1991) Simultaneous oxygen production and nitrogenase activity of an ammonia excreting mutant strain of the cyanobacterium Anabaena variabilis in a coculture with wheat. Appl Microbiol Biotechnol 35:798–804

    Article  CAS  Google Scholar 

  • Sprent JI, Sprent P (1990) Nitrogen fixing organisms: pure and applied aspects. Chapman and Hall, London

    Book  Google Scholar 

  • Srinivasan R, Govindasamy C (2014) Influence of native arbuscular mycorrhizal fungi on growth, nutrition and phytochemical constituents of Catharanthus roseus (L.) G. Don. J Coast Life Med 2(1):31–37

    Google Scholar 

  • Storey EP, Boghozian R, Little JL, Lowman DW, Chakraborty R (2006) Characterization of ‘Schizokinen’; a dihydroxamate-type siderophore produced by Rhizobium leguminosarum IARI 917. Biometals 19:637–649

    Article  CAS  PubMed  Google Scholar 

  • Strobel G (2006) Microbial gifts from rain forests. Curr Opin Microbiol 9:240–244. doi:10.1016/j.mib.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  • Sun YP, Unestam T, Lucas SD, Johanson KJ, Kenne L, Finlay R (1999) Exudation-reabsorption in a mycorrhizal fungus, the dynamic interface for interaction with soil and soil microorganisms. Mycorrhiza 9:137–144

    Article  CAS  Google Scholar 

  • Swarnalakshmi K, Dhar DW, Singh PK (2006) Blue green algae: a potential biofertilizer for sustainable rice cultivation. Proc Indian Natl Sci Acad 72:135–143

    Google Scholar 

  • Swarnalakshmi K, Prasanna R, Kumar A, Pattnaik S, Chakravarty K, Shivay YS, Singh R, Saxena AK (2013) Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant. Eur J Soil Biol 55:107–116

    Article  Google Scholar 

  • Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed nonribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050

    Article  CAS  PubMed  Google Scholar 

  • Tate RL (1995) Soil microbiology (symbiotic nitrogen fixation). Wiley, New York

    Google Scholar 

  • Thirumurugan R, Murugappan RM, Rekha S (2006) Characterization and quantification of siderophores produced by Aeromonas hydrophila isolated from Cyprinus carpio. Pak J Biol Sci 9:437–440

    Article  Google Scholar 

  • Tian F, Ding Y, Zhu H, Yao L, Jin F, Du B (2008) Screening, identification and antagonistic activity of a siderophore-producing bacteria G-229-21T from rhizosphere of tobacco. Wei Sheng Wu Xue Bao 48:631–637

    CAS  PubMed  Google Scholar 

  • Tian F, Ding Y, Zhu H, Yao L, Du B (2009) Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Braz J Microbiol 40:276–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Toussaint JP, ST-Arnaud M, Charest C (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schench and Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol 50:251–260

    Article  CAS  PubMed  Google Scholar 

  • Ullman WJ, Kirchman DL, Welch SA, Vandevivere P (1996) Laboratory evidence for microbially mediated silicate mineral dissolution in nature. Chem Geol 132(1):11–17

    Article  CAS  Google Scholar 

  • Vafadar F, Amooaghaie R, Otroshy M (2014) Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J Plant Interact 9(1):128–136. doi:10.1080/17429145.2013.779035

    Article  CAS  Google Scholar 

  • van Bael SA, Fernández-Marín H, Valencia M, Rojas E, Wcislo W, Herre EA (2009) Two fungal symbioses collide: endophytic fungi are not welcome in leaf-cutting ant gardens. Proc R Soc B 276:2419–2426. doi:10.1098/rspb.2009.0196

    Article  PubMed  PubMed Central  Google Scholar 

  • van Bael SA, Estrada C, Wcislo WT (2011) Fungal–fungal interactions in leaf cutting ant agriculture. Psyche. doi:10.1155/2011/ 617478

    Google Scholar 

  • van Bael SA, Seid MA, Wcislo WT (2012) Endophytic fungi increase the processing rate of leaves by leaf-cutting ants (Atta). Ecol Entomol 37:318–321

    Article  Google Scholar 

  • van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Rinaudo V, Verbruggen E, Scherrer C, Bàrberi P, Giovannetti M (2008) The significance of mycorrhizal fungi for crop productivity and ecosystem sustainability in organic farming systems. In: 16th IFOAM organic world congress, Modena, Italy, 16–20 June 2008

    Google Scholar 

  • van Tichelen KK, Colpaert JV, Vangronsveld J (2001) Ectomycorrhizal protection of Pinus sylvestris against copper toxicity. New Phytol 150(1):203–213

    Article  Google Scholar 

  • Vanette RL, Hunter MD (2011) Plant defence theory re-examined: nonlinear expectations based on the cost and benefits of resource mutualisms. J Ecol 99:36–45

    Article  CAS  Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 20:441–447

    Article  CAS  PubMed  Google Scholar 

  • Vasanthakumar SK (2003) Studies on beneficial endorhizosphere bacteria in solanaceous crop plants. M.Sc. (Agri) thesis, Dharwad, Karnataka, India: University of Agricultural Sciences

    Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  CAS  PubMed  Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Article  Google Scholar 

  • Venkataraman GS (1972) Algal biofertilizer and rice cultivation. Today and Tomorrow’s Printer and Publishers, New Delhi

    Google Scholar 

  • Venkataraman GS (1981) Blue green algae for rice production- a manual for its promotion. FAO Soil Bull No 46, Rome

    Google Scholar 

  • Venkataraman GS, Neelakantan S (1967) Effect of the cellular constituents of the nitrogen fixing bluegreen algae Cylindrospermum muscicola on the root growth of rice seedlings. J Gen Appl Microbiol 13:53–61

    Article  CAS  Google Scholar 

  • Ventura W, Ladha JK (1997) Sesbania phosphorus requirements when used as biofertilizers for long term rice cultivation. Soil Sci Soc Am J61:1240–1244

    Article  Google Scholar 

  • Vidal S (1996) Changes in suitability of tomato for whiteflies mediated by a non-pathogenic endophytic fungus. Entomol Exp Appl 80:272–274

    Article  Google Scholar 

  • Vigoa C, Normana JR, Hookerb JE (2000) Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49:509–514

    Article  Google Scholar 

  • Vik U, Logares R, Blaalid R, Halvorsen R, Carlsen T, Bakke I, Kolstø A-B, Økstad OA, Kauserud H (2013) Different bacterial communities in ectomycorrhizae and surrounding soil. Sci Rep 3:3471. doi:10.1038/srep03471

    Article  PubMed  PubMed Central  Google Scholar 

  • Vu T, Hauschild R, Sikora RA (2006) Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8:847–852

    Article  Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vyas P, Rahi P, Chauhan A, Gulati A (2007) Phosphate solubilization potential and stress tolerance of Eupenicillium parvum from tea soil. Mycol Res (Now Fungal Biol) 111:931–938

    CAS  Google Scholar 

  • Vyas P, Joshi R, Sharma KC, Rahi P, Gulati A, Gulati A (2010) Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential. J Microbiol Biotechnol 20(12):1724–1734

    CAS  PubMed  Google Scholar 

  • Wallander H, Ekblad A, Godbold DL, Johnson D, Bahr A, Baldrian P, Björk RG, Kieliszewska-Rokicka B, Kjøller R, Kraigher H, Plassard C, Rudawska M (2013) Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forest soils – a review. Soil Biol Biochem 57:1034–1042

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms 6 barley to salt-stress tolerance, disease resistance, and higher yield. Proc Nat Acad Sci U S A 102(7):13386–13391

    Article  CAS  Google Scholar 

  • Wang WX, Barak T, Vinocur B, Shoseyov O, Altman A (2000) Abiotic resistance and chaperones: possible physiological role of SP1, a stable and stabilizing protein from Populus. In: Vasil IK (ed) Plant biotechnology 2000 and beyond. Kluwer, Dordrecht

    Google Scholar 

  • Wang FW, Jiao RH, Cheng AB, Tan SH, Song YC (2007) Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J Microbiol Biotechnol 23:79–83

    Article  CAS  Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ (2012) Endophytic fungi produce gibberellins and indole acetic acid and promote host-plant growth during stress. Molecules 17:10754–10773

    Article  CAS  PubMed  Google Scholar 

  • Watanabe I, Roger PA (1984) Nitrogen fixation in wetland rice fields. In: Subba Rao NS (ed) Current developments in biological nitrogen fixation. Oxford IBH, New Delhi, pp 237–276

    Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wilberforce EM, Griffith GW, Boddy L, Griffiths R (2002) The widespread occurrence of dark septate endophyte fungi in grassland communities. In: The 7th international mycological congress, Oslo, 11–17 August 2002

    Google Scholar 

  • Wu Q, Zou Y (2010) Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Sci Hortic 125:289–29

    Article  CAS  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Yandigeri MS, Pabbi S (2005) Response of diazotrophic cyanobacteria to alternative sources of phosphorus. Indian J Microbiol 45:131–134

    CAS  Google Scholar 

  • Yandigeri MS, Kashyap S, Yadav AK, Srinavasan R, Pabbi S (2011) Studies on mineral phosphate solubilization by cyanobacteria Westiellopsis and Anabaena. Microbiology 80:552–559

    Article  PubMed  CAS  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yanni YG (1992) The effect of cyanobacteria and Azolla on the performance of rice under different levels of fertilizer nitrogen. World J Microbiol Biotechnol 8:132–136

    Article  CAS  PubMed  Google Scholar 

  • Yanni YG, Rizk RY, El-Fattah FKA, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Fores J, Ostrom P, VegaHernandez M, Hollingsworth RI, Martinez-Molina E, Mateos P, Velaquez E, Woperis J, Triplett E, Umali-Garcia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Nag PK, Dazzo FB (2001) The beneficial plant-growth promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870

    CAS  Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  • Younis M (2007) Responses of Lablab purpureus-Rhizobium symbiosis to heavy metals in pot and field experiments. World J Agri Sci 3(1):111–122

    Google Scholar 

  • Yuan ZL, Zhang CL, Lin FC (2010) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Reg 29:116–126

    Article  CAS  Google Scholar 

  • Zabihi HR, Savaghebi GR, Khavazi K, Ganjali A, Miransari M (2011) Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiol Plant 33:145–152

    Article  Google Scholar 

  • Zahran HH, Ahmad MS, Afkar EA (1995) Isolation and characterization of nitrogen-fixing moderate halophilic bacteria from saline soils of Egypt. J Basic Microbiol 35:269–275

    Article  Google Scholar 

  • Zawadzka AM, Vandecasteele FPJ, Crawford RL, Paszczynski AJ (2006) Identification of siderophores of Pseudomonas stutzeri. Can J Microbiol 52:1164–1176

    Article  CAS  PubMed  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biotechnology (DBT; Grant no. BT/PR/0054/NDB/52/94/2007), Govt. of India, under the project “Establishment of microbialculture collection.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Prakash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Prakash, O., Sharma, R., Rahi, P., Karthikeyan, N. (2015). Role of Microorganisms in Plant Nutrition and Health. In: Rakshit, A., Singh, H.B., Sen, A. (eds) Nutrient Use Efficiency: from Basics to Advances. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2169-2_9

Download citation

Publish with us

Policies and ethics