Skip to main content

Advertisement

Log in

Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Previous studies demonstrated that arbuscular mycorrhizal fungi (AMF) can induce the accumulation of carotenoids, phenolics, anthocyanins and some mineral nutrients in leaves of lettuce (Lactuca sativa L.) thus enhancing its nutritional quality. Our objectives were to know which carotenoids were the most accumulated in leaves of mycorrhizal lettuces and to assess the effect of AMF on tocopherols’ levels in leaves of lettuce plants. AMF always enhanced growth and, in most cases, increased the levels of all major carotenoids, chlorophylls and tocopherols in green and red leaf lettuces. Since these molecules are also important nutraceuticals, mycorrhization emerges as reliable technique to enhance the nutritional value of edible vegetables. These results are compared with other methods developed to improve nutritional quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347–359

    Article  CAS  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2011a) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse grown lettuce. J Agric Food Chem 59:5504–5515

    Article  CAS  Google Scholar 

  • Baslam M, Pascual I, Sánchez-Díaz M, Erro J, García-Mina JM, Goicoechea N (2011b) Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi is conditioned by the source of phosphorus nutrition. J Agric Food Chem 59:11129–11140

    Article  CAS  Google Scholar 

  • Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal infection and the morphology and function of root systems. Environ Exp Bot 33:159–173

    Article  Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker JE, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281–293

    Article  Google Scholar 

  • Borghi S (2003) Special: IV range (vegetables). Colture Protette 32:21–43

    Google Scholar 

  • Bramley PM, Elmadfa I, Kafatos A, Kelly FJ, Manios Y, Roxborough HE, Schuch W, Sheehy PJA, Wagner KH (2000) Review: vitamin E. J Sci Food Agr 80:913–938

    Article  CAS  Google Scholar 

  • Caldwell CR, Britz SJ (2006) Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of green house-grown leaf lettuce (Lactuca sativa L.) cultivars. J Food Compos Anal 19:637–644

    Article  CAS  Google Scholar 

  • Calvo MM (2005) Lutein: a valuable ingredient of fruit and vegetables. Crit Rev Food Sci 45:671–696

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) Chlorophyll and carotenoid composition in leaves of Euonymus kiautschovicus acclimated to different degrees of light stress in the field. Aust J Plant Physiol 23:649–659

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (2002) Antioxidants in photosynthesis and in human nutrition. Science 298:2149–2153

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  Google Scholar 

  • García-Plazaola JI, Becerril JM (1999) A rapid HPLC method to measure lipophilic antioxidants in stressed plants: simultaneous determination of carotenoids and tocopherols. Phytochem Anal 10:307–313

    Article  Google Scholar 

  • García-Plazaola JI, Becerril JM (2001) Seasonal changes in photosynthetic pigments and antioxidants in beech (Fagus sylvatica) in a Mediterranean climate: implications for tree decline diagnosis. Aust J Plant Physiol 28:225–232

    Google Scholar 

  • García-Plazaola JI, Esteban R (2011) http://prometheuswiki.publish.csiro.au/tiki-index.php?page=Determination+of+chlorophylls+and+carotenoids+by+HPLC

  • Garmendia I, Goicoechea N, Aguirreolea J (2004) Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against verticillium wilt. Biol Control 31:296–305

    Article  Google Scholar 

  • Geneva MP, Stancheva IV, Boychinova MM, Mincheva NH, Yonova PA (2010a) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agr 90:696–702

    CAS  Google Scholar 

  • Geneva M, Hristozkova M, Yonova P, Boychinova M, Stancheva I (2010b) Effect of endomycorrhizal colonization with Glomus intraradices on growth and antioxidant capacity of Sideritis scardica Griseb. Gen Appl Plant Physiol 36:47–56

    Google Scholar 

  • Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Lezzi A, Mignolli F, Picciarelli P, Pinto B, Reali D, Sbrana C, Scarpato R (2012) Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Brit J Nutr 107:242–251

    Article  CAS  Google Scholar 

  • Goicoechea N, Merino S, Sánchez-Díaz M (2004) Contribution of arbuscular mycorrhizal fungi (AMF) to the adaptations exhibited by the deciduous shrub Anthyllis cytisoides under water deficit. Physiol Plant 122:453–464

    Article  CAS  Google Scholar 

  • Hayman DS, Barea JM, Azcón R (1976) Vesicular-arbuscular mycorrhiza in southern Spain: its distribution in crops growing in soil of different fertility. Phytopathol Mediterr 15:1–6

    Google Scholar 

  • Jakobsen I, Joner EJ, Larsen J (1994) Hyphal Phosphorous Transport: A keystone to mycorrhizal enhancement of plant growth. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 133–146

    Chapter  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Li Q, Kubota C (2009) Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59–64

    Article  CAS  Google Scholar 

  • Lira FS, Rosa JC, Cunha CA, Ribeiro EB, Oller do Nascimento C, Oyama LM, Mota JF (2011) Supplementing alpha-tocopherol (vitamin E) and vitamin D3 in high fat diet decrease IL-6 production in murine epididymal adipose tissue and 3 T3-L1 adipocytes following LPS stimulation. Lipids Health Dis 10:37

    Article  CAS  Google Scholar 

  • Lizarazo K, Fernández-Marín B, Becerril JM, García-Plazaola JI (2010) Ageing and irradiance enhance vitamin E content in green edible tissues from crop plants. J Sci Food Agr 90:1994–1999

    CAS  Google Scholar 

  • Ma L, Lin XM (2010) Effects of lutein and zeaxanthin on aspects of eye health. J Sci Food Agr 90:2–12

    Article  CAS  Google Scholar 

  • Mou B (2005) Genetic variation of beta-carotene and lutein contents in lettuce. J Am Soc Hortic Sci 130:870–876

    CAS  Google Scholar 

  • Mou B (2009) Nutrient content of lettuce and its improvement. Curr Nutr Food Sci 5:242–248

    Article  CAS  Google Scholar 

  • Mulabagal V, Ngouajio M, Nair A, Zhang Y, Gottumukkala AL, Nair MG (2010) In vitro evaluation of red and green lettuce (Lactuca sativa) for functional food properties. Food Chem 118:300–306

    Google Scholar 

  • Munné-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748

    Article  Google Scholar 

  • Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31:203–216

    Article  Google Scholar 

  • Pantin F, Simonneau T, Muller B (2012) Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol 196:349–366

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Reis FS, Heleno SA, Barros L, Sousa MJ, Martins A, Santos-Buelga C, Ferreira ACFR (2011) Toward the antioxidant and chemical characterization of mycorrhizal mushrooms from Northeast Portugal. J Food Sci 76:C824–C830

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Tsormpatsidis E, Henbest RGC, Battey NH, Hadley P (2010) The influence of ultraviolet radiation on growth, photosynthesis and phenolic levels of green and red lettuce: potential for exploiting effects of ultraviolet radiation in a production system. Ann Appl Biol 156:357–366

    Article  CAS  Google Scholar 

  • Ulrichs C, Fischer G, Büttner C, Mewis I (2008) Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF). Agron Colomb 26:40–46

    Google Scholar 

  • Valladares F, García Plazaola JI, Morales F, Niinemets U (2012) Photosynthetic responses to radiation. In: Flexas J, Loreto F, Medrano H (eds) Terrestrial photosynthesis in a changing environment. A molecular, physiological, and ecological approach. Cambridge University Press, Cambridge, pp 239–256

    Chapter  Google Scholar 

Download references

Acknowledgments

Marouane Baslam is the recipient of a grant from Asociación de Amigos de la Universidad de Navarra (ADA). Raquel Esteban received a doctor specialized contract from the University of Basque Country. This study was partly supported by research projects UPV/EHU-GV IT-299-07 from the Basque Government and BFU2010-15021 from the Spanish Ministry of Education and Science. The authors are very grateful to Adriana Hernández, from Atens, Tarragona, Spain, for kindly providing the commercial inoculum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nieves Goicoechea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baslam, M., Esteban, R., García-Plazaola, J.I. et al. Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl Microbiol Biotechnol 97, 3119–3128 (2013). https://doi.org/10.1007/s00253-012-4526-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4526-x

Keywords

Navigation