Skip to main content
Log in

Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The effect of arbuscular mycorrhizal (AM) fungus, Glomus etunicatum, on growth, water status, chlorophyll concentration and photosynthesis in maize (Zea mays L.) plants was investigated in pot culture under low temperature stress. The maize plants were placed in a sand and soil mixture at 25°C for 7 weeks, and then subjected to 5°C, 15°C and 25°C for 1 week. Low temperature stress decreased AM root colonization. AM symbiosis stimulated plant growth and had higher root dry weight at all temperature treatments. Mycorrhizal plants had better water status than corresponding non-mycorrhizal plants, and significant differences were found in water conservation (WC) and water use efficiency (WUE) regardless of temperature treatments. AM colonization increased the concentrations of chlorophyll a, chlorophyll b and chlorophyll a + b. The maximal fluorescence (Fm), maximum quantum efficiency of PSII primary photochemistry (Fv/Fm) and potential photochemical efficiency (Fv/Fo) were higher, but primary fluorescence (Fo) was lower in AM plants compared with non-AM plants. AM inoculation notably increased net photosynthetic rate (Pn) and transpiration rate (E) of maize plants. Mycorrhizal plants had higher stomatal conductance (gs) than non-mycorrhizal plants with significant difference only at 5°C. Intercellular CO2 concentration (Ci) was lower in mycorrhizal than that in non-mycorrhizal plants, especially under low temperature stress. The results indicated that AM symbiosis protect maize plants against low temperature stress through improving the water status and photosynthetic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AM:

arbuscular mycorrhiza

Ci:

intercellular CO2 concentration

E :

transpiration rate

Fm:

maximal fluorescence

Fo:

primary fluorescence

Fv/Fm:

maximum quantum efficiency of PSII primary photochemistry

Fv/Fo:

potential photochemical efficiency

gs :

stomatal conductance

Pn:

net photosynthetic rate

PSII:

photosystem II

RWC:

relative water content

WC:

water conservation

WSD:

water saturation deficit

WUE:

water use efficiency

References

  • Anderson CP, Sucoff EI, Dixon RK (1987) The influence of low soil temperature on the growth of vesicular-arbuscular mycorrhizal Fraxinus pennsylvanica. Can J For Res 17:951–956

    Article  Google Scholar 

  • Aroca R, Vernieri P, Irigoyen JJ, Sancher-Diaz M, Tognoni F, Pardosso A (2003) Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci 165:671–679

    Article  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Augé RM, Stodola JW (1990) An apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of droughted Rosa plants. New Phytol 115:285–295

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–958

    Article  CAS  PubMed  Google Scholar 

  • Bai XF, Han H, Zhou FY, Yang SJ, Liu BC, Lei ZY, Jin Z (2008) Analysis on Dynamic change of relative water content and needle water conservation of Pinus sylvestris var. mongolica on sandy land. Prot For Sci Technol 3:51–54

    Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Charest C, Dalpé Y, Brown A (1993) The effect of vesicular-arbuscular mycorrhizae and chilling on two hybrids of Zea mays L. Mycorrhiza 4:89–92

    Article  Google Scholar 

  • Druge U, Schonbeck F (1993) Effect of vesicular-arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L.) in relation to cytokinin levels. J Plant Physiol 141:40–48

    Google Scholar 

  • EI-Tohamy W, Schnitzler WH, EI-Behairy U, EI-Beltagy MS (1999) Effect of VA mycorrhiza on improving drought and chilling tolerance of bean plants (Phaseolus vulgaris). J Appl Bot 73:178–183

    Google Scholar 

  • Faber BA, Zasoski RJ, Munns DN, Shackel K (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69:87–94

    Google Scholar 

  • Farooq M, Aziz T, Wahid A, Lee DJ, Siddique KHM (2009) Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci 60:501–516

    Article  Google Scholar 

  • Fracheboud Y, Haldimann P, Leipner J, Stamp P (1999) Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 50:1533–1540

    Article  CAS  Google Scholar 

  • Gavito ME, Schweiger P, Jakobsen I (2003) P uptake by arbuscular mycorrhizal hyphae: effect of soil temperature and atmospheric CO2 enrichment. Global Change Biol 9:106–116

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Hawkes CV, Hartley IP, Ineson P, Fitter AH (2008) Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biol 14:1181–1190

    Article  Google Scholar 

  • Hayman S (1974) Plant growth responses to vesicular-arbuscular mycorrhiza. IV. Effect of light and temperature. New Phytol 73:71–80

    Article  Google Scholar 

  • Heinemeyer A, Fitter AH (2004) Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner. J Exp Bot 396:525–534

    Article  Google Scholar 

  • Hetrick BAD, Bloom J (1984) The influence of temperature on colonization of winter wheat by vesicular-arbuscular mycorrhizal fungi. Mycologia 76:953–956

    Article  Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rate of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Kormanik PP, Bryan WC, Schultz RC (1980) Procedure and equipment for staining large number of plant roots for endomycorrhizal assay. Can J Microbiol 26:536–538

    Article  CAS  PubMed  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Liu A, Wang B, Hamel C (2004) Arbuscular mycorrhiza colonization and development at suboptimal root zone temperature. Mycorrhiza 14:93–101

    Article  CAS  PubMed  Google Scholar 

  • Martin P (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence- a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Mortimer PE, Pérez-Fernández MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40:1019–1027

    Article  CAS  Google Scholar 

  • Nelsen CE, Safir GR (1982) The water relations of well-watered, mycorrhizal and non-mycorrhizal onion plants. J Am Soc Hort Sci 107:271–274

    Google Scholar 

  • Paradis R, Dalpé Y, Charest C (1995) The combined effect of arbuscular mycorrhizas and short-term cold exposure on wheat. New Phytol 129:637–642

    Article  Google Scholar 

  • Sánchez-Díaz M, Pardo M, Antolin M, Peña J, Aguirreolea J (1990) Effect of water stress on photosynthetic activity in the Medicago-Rhizobium-Glomus symbiosis. Plant Sci 71:215–221

    Article  Google Scholar 

  • Sawers RJH, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13(2):93–97

    CAS  PubMed  Google Scholar 

  • Schüssler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Volkmar KM, Woodbury W (1989) Effects of soil temperatures and depth on colonization and root and shoot growth of barley inoculated with vesicular-arbuscular mycorrhizae indigenous to Canadian prairie soil. Can J Bot 67:1702–1707

    Article  Google Scholar 

  • Wang B, Funakoshi DM, Dalpé Y, Hamel C (2002) 32P absorption and translocation to host plants by AM fungi at low root zone temperature. Mycorrhiza 12:93–96

    Article  PubMed  CAS  Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZA, Zhang MS (2006) Experimental guide for plant physiology. High education, Beijing

    Google Scholar 

  • Zhang F, Hamel C, Kianmehr H, Smith DL (1995) Root-zone temperature and soybean [Glycine max (L.) Merr.] vesicular-arbuscular mycorrhizae: development and interactions with the nitrogen fixing symbiosis. Environ Exp Bot 35:287–298

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially in part supported by the National Basic Research Program of the People’s Republic of China (2009CB118601). We thank Dr. Xiao-Bin Liu for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Bin Song.

Additional information

Responsible Editor: Katharina Pawlowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, XC., Song, FB. & Xu, HW. Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331, 129–137 (2010). https://doi.org/10.1007/s11104-009-0239-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0239-z

Keywords

Navigation