Skip to main content

Advertisement

Log in

Interactions between arbuscular mycorrhizal fungi and soil bacteria

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The soil environment is interesting and complicated. There are so many interactions taking place in the soil, which determine the properties of soil as a medium for the growth and activities of plants and soil microorganisms. The soil fungi, arbuscular mycorrhiza (AM), are in mutual and beneficial symbiosis with most of the terrestrial plants. AM fungi are continuously interactive with a wide range of soil microorganisms including nonbacterial soil microorganisms, plant growth promoting rhizobacteria, mycorrhiza helper bacteria and deleterious bacteria. Their interactions can have important implications in agriculture. There are some interesting interactions between the AM fungi and soil bacteria including the binding of soil bacteria to the fungal spore, the injection of molecules by bacteria into the fungal spore, the production of volatiles by bacteria and the degradation of fungal cellular wall. Such mechanisms can affect the expression of genes in AM fungi and hence their performance and ecosystem productivity. Hence, consideration of such interactive behavior is of significance. In this review, some of the most important findings regarding the interactions between AM fungi and soil bacteria with some new insights for future research are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas-Zadeh P, Saleh-Rastin N, Asadi-Rahmani H, Khavazi K, Soltani A, Shoary-Nejati AR, Miransari M (2010) Plant growth promoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta Physiol Plant 32:281–288

    Google Scholar 

  • Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbiosis and parasitic weeds in plant roots. Ann Bot 97:925–931

    CAS  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    CAS  Google Scholar 

  • Ames R, Mihara K, Bayne H (1989) Chitin-decomposing Actinomycetes associated with a vesicular arbuscular mycorrhizal fungus from a calcareous soil. New Phytol 111:67–71

    Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular mycorrhizal fungi. Plant Soil 192:71–79

    CAS  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89–96

    CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041

    CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2005) Combined bromodeoxyuridine immunocapture and terminal restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environ Microbiol 7:1952–1966

    CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    CAS  Google Scholar 

  • Aryal UK, Xu HL, Fujita M (2003) Rhizobia and AM fungal inoculation improve growth and nutrient uptake of bean plants under organic fertilization. J Sustain Agric 21:27–39

    Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2010) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum spp. under drought stress. World J Microbiol Biotechnol, in press

  • Auge RM (2001) Water relations, drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Azcón-Aguilar C, Barea J (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Sci Hort 68:1–24

    Google Scholar 

  • Bamforth S (1985) The role of protozoa in litters and soil. J Protozool 32:404–409

    Google Scholar 

  • Bardgett RD, Wardle D, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30:1867–1878

    CAS  Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (1992) Vesicular–arbuscular mycorrhizal fungi in nitrogen-fixing systems. Methods Microbiol 24:391–416

    Google Scholar 

  • Barea J, Pozo M, Azcon R, Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    CAS  Google Scholar 

  • Berg G (2009) Plantmicrobe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    CAS  Google Scholar 

  • Besserer A, Bécard G, Roux C, Séjalon-Delmas N (2009) Role of mitochondria in the response of arbuscular mycorrhizal fungi to strigolactones. Plant Signal Behav 4:75–77

    CAS  Google Scholar 

  • Bharadwaj DP, Lundquist PO, Persson P, Alstrom S (2008) Evidence for specificity of cultivable bacteria associated with arbuscular mycorrhizal fungal spores (multitrophic interactions in the rhizosphere). FEMS Microbiol Ecol 65:310–322

    CAS  Google Scholar 

  • Bianciotto V, Minerdi D, Perotto S, Bonfante P (1996a) Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:123–131

    Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996b) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010

    CAS  Google Scholar 

  • Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001a) Mucoid mutants of the biocontrol strain Pseudomonus fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Mol Plant–Microb Interact 14:255–260

    CAS  Google Scholar 

  • Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001b) Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur J Histochem 45:39–49

    CAS  Google Scholar 

  • Bais H, Weir T, Perry L, Gilroy S, Vivanco J (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Google Scholar 

  • Bonfante P (2003) Mycorrhizal fungi and endobacteria: a dialog among cells and genomes. Biol Bull 204:215–220

    CAS  Google Scholar 

  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary–developmental perspective. Trends Plant Sci 13:492–498

    CAS  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    CAS  Google Scholar 

  • Bonkowski M, Cheng W, Griffiths B, Alpheid J, Scheu S (2000) Microbial–faunal interactions in the rhizosphere and effects on plant growth. Eur J Soil Biol 36:135–147

    Google Scholar 

  • Bridge P, Spooner B (2001) Soil fungi: diversity and detection. Plant Soil 232:147–154

    CAS  Google Scholar 

  • Carpenter-Boggs L, Loynachan TE, Stahl PD (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol Biochem 27:1445–1451

    CAS  Google Scholar 

  • Cheng XM, Baumgartner K (2006) Effects of mycorrhizal roots and extraradical hyphae on 15N uptake from vineyard cover crop litter and the soil microbial community. Soil Biol Biochem 38:2665–2675

    CAS  Google Scholar 

  • Christensen H, Jakobsen I (1993) Reduction of bacterial growth by a vesiculararbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L.). Biol Fertil Soils 15:253–258

    Google Scholar 

  • Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostino A, Sgorbati S, Berta G (2005) The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59:21–29

    CAS  Google Scholar 

  • Daei G, Ardakani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    CAS  Google Scholar 

  • Davies FT, Potter JR, Linderman RG (1993) Drought resistance of mycorrhizal pepper plants independent of leaf P concentration—response in gas exchange and water relations. Physiol Plant 87:45–53

    CAS  Google Scholar 

  • del Mar Alguacil M, Kohler J, Caravaca F, Roldán A (2009) Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought. Microb Ecol 58:942–951

    Google Scholar 

  • Dumbrell A, Nelson M, Helgason T, Dytham C, Fitter A (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345

    Google Scholar 

  • Estaun V, Camprubi A, Joner EJ (2002) Selecting arbuscular mycorrhizal fungi for field application. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture: From genes to bioproducts. Birkhauser Verlag, Basel, pp 249–259

    Google Scholar 

  • Feddermann N, Roger Finlay R, Boller T, Elfstrand M (2010) Functional diversity in arbuscular mycorrhiza—the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecol 3:1–8

    Google Scholar 

  • Feldman F, Grotkass C (2002) Directed inoculum production—shall we be able to design populations or arbuscular mycorrhizal fungi to achieve predictable symbiotic effectiveness? In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture: from genes to bioproducts. Birkhauser Verlag, Basel, pp 261–296

    Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    CAS  Google Scholar 

  • Finlay R (1985) Interactions between soil microarthropods and endomycorrhizal associations of higher plants. In: Fitter A, Atkinson D, Read D, Usher M (eds) Ecological interactions in soil. Blackwell, Oxford, pp 319–331

    Google Scholar 

  • Francis I, Holsters M, Vereecke D (2010) The Gram-positive side of plant–microbe interactions. Environ Microbiol 12:1–12

    CAS  Google Scholar 

  • Franzini V, Azcon R, Mendes F, Aroca R (2010) Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. J Plant Physiol 167:614–619

    CAS  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    CAS  Google Scholar 

  • Gange A (2000) Arbuscular mycorrhizal fungi, Collembola and plant growth. Trends Ecol Evol 15:369–372

    Google Scholar 

  • Garbaye J (1994) Helper bacteria—a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Google Scholar 

  • Genre A, Ortu G, Bertoldo C, Martino E, Bonfante P (2009) Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. Plant Physiol 149:1424–1434

    CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 252:1–7

    Google Scholar 

  • Gollotte A, Brechenmacher L, Weidmann S, Franken P, Gianinazzi-Pearson V (2002) Plant genes involved in arbuscular mycorrhiza formation and functioning. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture: From genes to bioproducts. Birkhauser Verlag, Basel, pp 87–102

    Google Scholar 

  • Goodman RM, Naylor R, Tefera H, Nelson R, Falcon W (2002) The rice genome and the minor grains. Science 296:1801–1804

    CAS  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Google Scholar 

  • Griffiths RI, Manefield M, Ostle N, McNamara N, O’Donnell AG, Bailey MJ, Whiteley A (2004) 13CO2 pulse labelling of plant in tandem with stable isotope probing: methodological considerations for examining microbial function in the rhizosphere. J Microbiol Methods 58:119–129

    CAS  Google Scholar 

  • Grunwald U, Guo W, Fischer K, Isayenkov S, Ludwig-Müller J, Hause B, Yan X, Küster H, Franken P (2009) Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta 229:1023–1034

    CAS  Google Scholar 

  • Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organisms. In: Kapulnik Y, Douds DDJ (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, Dordrecht, pp 239–262

    Google Scholar 

  • Gryndler M, Hrselova H, Striteska D (2000) Effect of soil bacteria on hyphael growth of the arbuscular mycorrhizal fungus Glomus claroideum. Folia Microbiol 45:545–551

    CAS  Google Scholar 

  • Guether M, Balestrini R, Hannah M, He J, Udvardi M, Bonfante P (2009) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212

    CAS  Google Scholar 

  • Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U (2008) Arbuscular mycorrhiza–specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20:2989–3005

    CAS  Google Scholar 

  • Harrison MJ (1999a) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Physiol Plant Mol Biol 50:361–389

    CAS  Google Scholar 

  • Harrison MJ (1999b) Biotrophic interfaces and nutrient transport in plant fungal symbioses. J Exp Bot 50:1013–1022

    CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    CAS  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    CAS  Google Scholar 

  • Hata S, Kobae Y, Banba M (2010) Interactions between plants and arbuscular mycorrhizal Fungi. Int Rev Cell Mol Biol 281:1–48

    CAS  Google Scholar 

  • Haung H, Zhang S, Wu N, Luo L, Christie P (2009) Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biol Biochem 41:726–734

    Google Scholar 

  • Hause B, Fester T (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184–196

    CAS  Google Scholar 

  • Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220

    CAS  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    CAS  Google Scholar 

  • Hijri M, Hosny M, van Tuinen D, Dulieu H (1999) Intraspecific ITS polymorphism in Scutellospora castanea (Glomales, Zygomycota) is structured within multinucleate spores. Fungal Genet Biol 26:141–151

    CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    CAS  Google Scholar 

  • Hosny M, van Tuinen D, Jacquin F, Fuller P, Zhao B, Gianiazzi-Pearson, Franken P (1999) Arbuscular mycorrhizal fungi and bacteria: how to construct prokaryotic DNA-free genomic libraries from the Glomales. FEMS Microbiol Lett 170:425–430

    CAS  Google Scholar 

  • Ingham R, Trofymow J, Ingham E, Coleman D (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55:119–140

    Google Scholar 

  • Isayenkov S, Mrosk C, Stenzel I, Strack D, Hause B (2005) Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices. Plant Physiol 139:1401–1410

    CAS  Google Scholar 

  • Jalili F, Khavazi K, Pazira E, Nejati A, Asadi Rahmani H, Rasuli Sadaghiani H, Miransari M (2009) Isolation and characterization of ACC deaminase producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    CAS  Google Scholar 

  • Jeffries P, Barea JM (2001) Arbuscular mycorrhiza: a key component of sustainable plant–soil ecosystems. In: Hock B (ed) The Mycota: fungal associations, vol IX. Springer, Berlin, pp 95–113

    Google Scholar 

  • Jentschke G, Bonkowski M, Godbold D, Scheu S (1995) Soil protozoa and plant growth: nonnutritional effects and interaction with mycorrhizas. Biol Fertil Soils 20:263–269

    Google Scholar 

  • Johnson D, Leake JR, Read DJ (2001) Novel in-growth core system enables functional studies of grassland mycorrhizal mycelial networks. New Phytol 152:555–562

    Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    CAS  Google Scholar 

  • Joner E, Leyval C (2009) Phytoremediation of organic pollutants using mycorrhizal plants: a new aspect of rhizosphere interactions. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture. Springer, The Netherlands, pp 885–894

    Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33

    CAS  Google Scholar 

  • Khan A (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Effect of phosphate-solubilizing bacteria and vesiculararbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    CAS  Google Scholar 

  • Kim K, Yim W, Trivedi P, Madhaiyan M, Deka Boruah H, Islam Md, Lee G, Sa T (2010) Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant Soil 327:429–440

    CAS  Google Scholar 

  • Kloepper JW (1996) Host specificity in microbemicrobe interactions. Bioscience 46:406–409

    Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) SA: Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    CAS  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldan A (2006) Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use Manage 22:298–304

    Google Scholar 

  • Kohler J, Caravaca F, Roldan A (2009) Effect of drought on the stability of rhizosphere soil aggregates of Lactuca sativa grown in a degraded soil inoculated with PGPR and AM fungi. Appl Soil Ecol 42:160–165

    Google Scholar 

  • Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G, Inglis TJJ (2003) Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl Environ Microbiol 69:6250–6256

    CAS  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora—the mycorrhizoshere effect. Phytopathology 78:366–371

    Google Scholar 

  • Linderman RG (1997) Vesiculararbuscular mycorrhizal (VAM) fungi. In: Caroll GC, Tudzynski P (eds) The Mycota. Springer-Verlag, Berlin, pp 117–128

    Google Scholar 

  • Linderman RG (2000) Effects of mycorrhizas on plant tolerance to diseases. In: Kapulnik Y, Douds DDJ (eds) Arbuscular mycorrhizas: Physiology and function. Kluwer Academic Publishers, Dordrecht, pp 345–365

    Google Scholar 

  • Lindstrom K, Terefework Z, Suominen L, Lortet G (2002) Signalling and developments of Rhizobium–legume symbiosis. Biol Environ 1:61–64

    Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town C, Harrison M (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    CAS  Google Scholar 

  • Ludwig-Muller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regul 32:219–230

    Google Scholar 

  • Maia LC, Kimbrough JW (1998) Ultrastructural studies of spores and hyphae of a Glomus species. Int J Plant Sci 159:581–589

    Google Scholar 

  • Marschener H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Google Scholar 

  • Marulanda A, Barea JM, Azcon R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678

    CAS  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    CAS  Google Scholar 

  • Meyer JR, Linderman RG (1986) Response of subterranean clover to dual inoculation with vesiculararbuscular fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol Biochem 18:185–190

    CAS  Google Scholar 

  • Miransari M (2010a) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. review article. Plant Biol 12:563–569

    CAS  Google Scholar 

  • Miransari M (2010b) Biological fertilization. In: Mendez-Villas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz, Spain, in press

  • Miransari M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean [Glycine max (L.) Merr.] nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr 30:1967–1992

    CAS  Google Scholar 

  • Miransari M, Smith DL (2008) Using signal molecule genistein to alleviate the stress of suboptimal root zone temperature on soybean Bradyrhizobium symbiosis under different soil textures. J Plant Interact 3:287–295

    Google Scholar 

  • Miransari M, Smith DL (2009) Alleviating salt stress on soybean (Glycine max (L.) Merr.) Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Eur J Soil Biol 45:146–152

    CAS  Google Scholar 

  • Miransari M, Mackenzie AF (2010a) Wheat (Triticum aestivum L.) grain N uptake as affected by soil total and mineral N, for the determination of optimum N fertilizer rates for wheat production. Commun Soil Sci Plant Anal 41:1644–1653

    CAS  Google Scholar 

  • Miransari M, Mackenzie AF (2010b) Development of a soil N-test for fertilizer requirements for corn (Zea mays L.) production in Quebec. Commun Soil Sci Plant Anal, in press

  • Miransari M, Mackenzie AF (2010c) Development of a soil N test for fertilizer requirements for wheat. J Plant Nutr, in press

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ, Torabi H (2007) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biol Biochem 39:2014–2026

    CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    CAS  Google Scholar 

  • Moran NA, Wernegreen JJ (2000) Lifestyle evolution in symbiotic bacteria: insights from genomics. Tree 15:321–326

    Google Scholar 

  • Mortimer PE, Perez-Fernandez MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbonand nitrogen economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40:1019–1027

    CAS  Google Scholar 

  • Mosse B (1970) Honey-coloured, sessile Endogone spores: II. Changes in fine structure during spore development. Arch Mikrobiol 74:129–145

    Google Scholar 

  • Mugnier J, Mosse B (1987) Spore germination and viability of a vesicular arbuscular mycorrhizal fungus, Glomus mosseae. Trans Br Mycol Soc 88:411–413

    Google Scholar 

  • Nazir R, Warmink J, Boersma H, van Elsas J (2010) Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol 71:169–185

    CAS  Google Scholar 

  • Nehl D, Allen S, Brown J (1997) Deleterious rhizosphere bacteria: an integrating perspective. Appl Soil Ecol 5:1–20

    Google Scholar 

  • Parniske M (2000) Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3:320–328

    CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    CAS  Google Scholar 

  • Paulitz T, Linderman R (1991) Mycorrhizal interactions with soil organisms. In: Arora B, Rai D, Mukerji K, Knudsen G (eds) Handbook of applied mycology, vol 1. Marcel Dekker, New York, pp 77–129

    Google Scholar 

  • Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90

    Google Scholar 

  • Pongrac P, Vogel-Mikus K, Kump P, Necemer M, Tolra R, Poschenrieder C, Barcelo J, Regvar M (2007) Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Chemosphere 69:1602–1609

    CAS  Google Scholar 

  • Pozo M, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    CAS  Google Scholar 

  • Richardson A, Barea J-M, McNeill A, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    CAS  Google Scholar 

  • Rillig MC, Lutgen ER, Ramsey PW, Klironomos JN, Gannon JE (2005) Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiology 49:251–259

    Google Scholar 

  • Ruiz-Lozano JM, Bonfante P (2000) Intracellular Burkholderia of the arbuscular mycorrhizal fungus Gigaspora margarita possesses the vacB gene, which is involved in host cell colonization by bacteria. Microb Ecol 39:137–144

    CAS  Google Scholar 

  • Salimpour S, Khavazi K, Nadian H, Besharati H, Miransari M (2010) Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Aust J Crop Sci, in press

  • Sanchez L, Weidmann S, Brechenmacher L, Batoux M, van Tuinen D, Lemanceau P, Gianinazzi S, Gianinazzi-Pearson V (2004) Common gene expression in Medicago truncatula roots in response to Pseudomonas fluorescens colonization, mycorrhiza development and nodulation. New Phytol 161:855–863

    CAS  Google Scholar 

  • Sanon A, Andrianjaka Z, Prin Y, Bally R, Thioulouse J, Comte G, Duponnois R (2009) Rhizosphere microbiota interfers with plant–plant interactions. Plant Soil 321:259–278

    CAS  Google Scholar 

  • Sawers R, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13:93–97

    CAS  Google Scholar 

  • Shimizu-Sato S, Tanaka M, Mori H (2009) Auxin–cytokinin interactions in the control of shoot branching. Plant Mol Biol 69:429–435

    CAS  Google Scholar 

  • Scheublin TR, Ridgway KP, Young PW, van der Heijden MGA (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246

    CAS  Google Scholar 

  • Schußler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota, phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Seneviratne G, Thilakaratne RMMS, Jayasekara APDA, Seneviratne KACN, Padmathilake KRE, De Silva MSDL (2009) Developing beneficial microbial biofilms on roots of non-legumes: a novel biofertilizing technique. In: Khan et al (eds) Microbial strategy for crop improvement. Springer-Verlag, Berlin, pp 5161

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    CAS  Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998b) Mycorrhizal fungal diversity determines plant diversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • Van Wees S, Van der Ent S, Pieterse C (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Google Scholar 

  • Von Alten H, Lindermann A, Schonbeck F (1993) Stimulation of vesiculararbuscular mycorrhiza by fungicides or rhizosphere bacteria. Mycorrhiza 2:167–173

    Google Scholar 

  • Von Alten H, Blal B, Dodd JC, Feldmann F, Vosatka M (2002) Quality control of arbuscular mycorrhizal fungi inoculum in Europe. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture: From genes to bioproducts. Birkhauser Verlag, Basel, pp 281–296

    Google Scholar 

  • Von der Weid I, Artursson V, Seldin L, Jansson JK (2005) Antifungal and root surface colonization properties of GFP-tagged Paenibacillus bransilensis PB177. World J Microbiol Biotechnol 21:1591–1597

    Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel K-H (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    CAS  Google Scholar 

  • Xavier L, Boyetchko S (2002) Arbuscular mycorrhizal fungi as biostimulants and bioprotectants of crops. Appl Mycol Biotechnol 2:311–340

    CAS  Google Scholar 

  • Zabihi HR, Savaghebi GR, Khavazi K, Ganjali A, Miransari M (2010) Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiol Plant, in press

  • Zaidi A, Khan MS, Amil MD (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Google Scholar 

  • Zhou D, Hyde KD (2001) Host-specificity, host-exclusivity, and host-recurrence in saprobic fungi. Mycol Res 105:1449–1457

    Google Scholar 

Download references

Acknowledgments

The author would also like to apologize to colleagues whose scientific contributions are not cited due to space limitations. The comments of the editors and anonymous reviewers are also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Miransari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miransari, M. Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89, 917–930 (2011). https://doi.org/10.1007/s00253-010-3004-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3004-6

Keywords

Navigation