Skip to main content

Biofertilizers: Microbes for Agricultural Productivity

  • Chapter
  • First Online:
Soil Microbiomes for Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 27))

Abstract

The world has witnessed explosive population growth, which requires an efficient food supply. To this end, various efforts have been performed in agriculture among which the applying chemicals with anti-pest and fertilizing activity was a strategy of choice. However, implementation of such compounds has shown to have serious drawbacks, from the reduction of naturally occurring organisms which control the pests to the concerns arisen from environmental pollution. Therefore, the discovery and development of biological strategies have attracted much attention. Accordingly, there are well-known plant growth-promoting microorganisms (GPMs) with great potentials in improving the growth of plants via providing nutrition and alleviating biotic and abiotic stresses. Herein, a comprehensive study was performed to gather together the most updated knowledge on these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla M (1994) Solubilization of rock phosphates by Rhizobium and Bradyrhizobium. Folia Microbiol 39:53–56

    Article  CAS  Google Scholar 

  • Abdel-Lateif KVV, Gherbi H, Verries C, Meudec E, Perrine-Walker F, Cheynier V, Svistoonoff S, Franche C, Bogusz D, Hocher V (2013) Silencing of the chalcone synthase gene in Casuarina glauca highlights the important role of flavonoids during nodulation. New Phytol 199:1012–1021

    Article  CAS  PubMed  Google Scholar 

  • Abiala MAPO, Olawuyi OJ, Oyelude JO, Akanmu AO, Killani AS, Osonubi O, Odebode AC (2013) Harnessing the potentials of Vesicular Arbuscular Mycorrhizal (VAM) fungi to plant growth-a review. Int J Pure Appl Sci Technol 14:61

    CAS  Google Scholar 

  • Adesemoye A, Torbert H, Kloepper J (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye A, Torbert H, Kloepper J (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye A, Torbert H, Kloepper J (2010) Increased plant uptake of nitrogen from 15 N-depleted fertilizer using plant growth-promoting rhizobacteria. Appl Soil Ecol 46:54–58

    Article  Google Scholar 

  • Agami RA, Medani RA, Abd El-Mola IA, Taha RS (2016) Exogenous application with plant growth promoting rhizobacteria (PGPR) or proline induces stress tolerance in basil plants (Ocimum basilicum L.) exposed to water stress. Int J Environ Agri Res 2:78

    Google Scholar 

  • Ahemad MKM (2010) Phosphate solubilizing Enterobacter asburiae strain PS2. Res J Microbiol 5:849–857

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011) Assessment of plant growth promoting activities of rhizobacterium Pseudomonas putida under insecticide-stress. Microbiol J 1:54–64

    Article  Google Scholar 

  • Ahemad M, Khan MS (2012b) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86:945–950

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2012a) Ecological assessment of biotoxicity of pesticides towards plant growthpromoting activities of pea (Pisum sativum)-specific rhizobium sp. strainmrp1. Emirates J Food Agric 334–343

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud University-Sci 26:1–20

    Article  Google Scholar 

  • Ahmad F, Ahmad I, Khan M (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176

    Article  CAS  PubMed  Google Scholar 

  • Ahmed AHS (2010) Auxin-producing Bacillus sp.: Auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl Chem 82:313–319

    Article  CAS  Google Scholar 

  • Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant Microbe Interact 15:334–340

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Matsuzaki K-i, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824

    Article  CAS  PubMed  Google Scholar 

  • Al Abboud MA, Alawlaqi MM (2014) Role of biofertilizers in agriculture: a brief review. Mycopath 11

    Google Scholar 

  • Alagawadi A, Gaur A (1988) Interaction between Azospirillum brasilense and ‘Phosphate Solubilizing Bacteria’ and their influence on yield and nutrient uptake of Sorghum (Sorghum bicolor L.). Zentralblatt für Mikrobiologie 143:637–643

    Article  Google Scholar 

  • Al-Askar AA, Rashad YM, Hafez EE, Abdulkhair WM, Baka ZA, Ghoneem KM (2015) Characterization of alkaline protease produced by Streptomyces griseorubens E44G and its possibility for controlling Rhizoctonia root rot disease of corn. Biotechnol Biotechnol Equip 29:457–462

    Article  CAS  Google Scholar 

  • Albareda M, Rodríguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779

    Article  CAS  Google Scholar 

  • Allen MF (2011) Linking water and nutrients through the vadose zone: a fungal interface between the soil and plant systems. J Arid Land 3:155–163

    Google Scholar 

  • Allito BB, Alemneh AA (2014) Rhizobia strain and host-legume interaction effects on nitrogen fixation and yield of grain legume: a review. Mol Soil Biol

    Google Scholar 

  • Altomare C, Norvell W, Björkman T, Harman G (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Evol Microbiol 47:996–1006

    CAS  Google Scholar 

  • Angus JF (2012) Fertilizer science and technology. Encyclopedia Sustain Sci Technol 3768–3786

    Google Scholar 

  • Antunes PM, Koch AM, Morton JB, Rillig MC, Klironomos JN (2011) Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol 189:507–514

    Article  PubMed  Google Scholar 

  • Arora NK, Mishra J (2016) Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Appl Soil Ecol 107:405–407

    Article  Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Plant growth and health promoting bacteria. Springer, pp 97–116

    Google Scholar 

  • Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24

    Article  PubMed  Google Scholar 

  • Babana AH, Antoun H (2006) Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil 287:51–58

    Google Scholar 

  • Baharlouei J, Pazira E, Solhi M (2011) Evaluation of inoculation of plant growth-promoting Rhizobacteria on cadmium uptake by canola and barley. In: International conference on environmental science and technology IPCBEE. Singapore

    Google Scholar 

  • Bailey KL, Carisse O, Leggett M, Holloway G, Leggett F, Wolf TM et al (2007) Effect of spraying adjuvants with the biocontrol fungus Microsphaeropsis ochracea at different water volumes on the colonization of apple leaves. Biocontrol Sci Tech 17:1021–1036

    Article  Google Scholar 

  • Balestrini R, Lumini E, Borriello R, Bianciotto V (2015) Plant-soil biota interactions. Soil Microbiol Ecol Biochem:311–338

    Google Scholar 

  • Barea J-M, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  CAS  PubMed  Google Scholar 

  • Barnawal DBN, Tripathi A, Pandey SS, Chanotiya CS, Kalra A (2016) ACC-deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates Chlorophytum salinity stress via altering phytohormone generation. J Plant Growth Regul 35:553–564

    Article  CAS  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, De-Bashan L (2005) Plant growth-promoting. Encyclopedia of soils in the environment 1:103–115

    Article  Google Scholar 

  • Bashan Y, De-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. In: Advances in agronomy, vol 108. Elsevier, pp 77–136

    Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu S, Hernandez J-P (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Google Scholar 

  • Bashan Y, Puente ME, Rodriguez-Mendoza MN, Holguin G, Toledo G, Ferrera-Cerrato R et al. (1995) Soil parameters which affect the survival of Azospirillum brasilense. In: Azospirillum VI and related microorganisms. Springer, pp 441–449

    Google Scholar 

  • Beattie GA (2007) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Plant-associated bacteria. Springer, pp 1–56

    Google Scholar 

  • Benson D, Clawson M (2000) Evolution of the actinorhizal plant symbiosis. Prokaryotic nitrogen fixation: a model system for the analysis of a biological process 207–224

    Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee R, Dey U (2014) Biofertilizer, a way towards organic agriculture: a review. Afr J Microbiol Res 8:2332–2343

    Article  Google Scholar 

  • Bhattacharjya S, Chandra R (2013) Effect of inoculation methods of Mesorhizobium ciceri and PGPR in chickpea (Cicer areietinum L.) on symbiotic traits, yields, nutrient uptake and soil properties. Legume Res 36:331–337

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bhat TA, Ahmad L, Ganai MA, Haq S, Khan O (2015) Nitrogen fixing biofertilizers; mechanism and growth promotion: a review. J Pure Appl Microbiol 9:1675–1690

    CAS  Google Scholar 

  • Broderick NA, Goodman RM, Raffa KF, Handelsman J (2000) Synergy between zwittermicin A and Bacillus thuringiensis subsp. kurstaki against gypsy moth (Lepidoptera: Lymantriidae). Environ Entomol 29:101–107

    Article  CAS  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Canfora L, Malusa E, Salvati L, Renzi G, Petrarulo M, Benedetti A (2015) Short-term impact of two liquid organic fertilizers on Solanum lycopersicum L. rhizosphere Eubacteria and Archaea diversity. Appl Soil Ecol 88:50–59

    Article  Google Scholar 

  • Cariello ME, Castañeda L, Riobo I, González J (2007) Inoculante de microorganismos endógenos para acelerar el proceso compostaje de residuos sólidos urbanos. J Soil Sc Plant Nutr 7:2007

    Google Scholar 

  • Carvalho TL, Balsemão-Pires E, Saraiva RM, Ferreira PC, Hemerly AS (2014) Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot 65:5631–5642

    Article  CAS  PubMed  Google Scholar 

  • Cassidy M, Lee H, Trevors J (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101

    Article  CAS  Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230:21–30

    Article  CAS  Google Scholar 

  • Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    Article  CAS  Google Scholar 

  • CH F (2018) Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot 154:134–142

    Article  CAS  Google Scholar 

  • Chaiharn M, Sujada N, Pathom-Aree W, Lumyong S (2018) The antagonistic activity of bioactive compound producing streptomyces of fusarium wilt disease and sheath blight disease in rice. Chiang Mai J Sci 45:1680–1698

    Google Scholar 

  • Chandramohan A, Sivasankar V, Ravichandran C, Sakthivel R (2013) A probe on the status of microorganisms in the air, soil and solid waste samples of Ariyamangalam dumping site at Tiruchirappalli District, South India. In: Microbiological research in agroecosystem management. Springer, pp 1–9

    Google Scholar 

  • Chen J-H (2006) The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In: International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use. Citeseer, p 20

    Google Scholar 

  • Cheng Y, Ishimoto K, Kuriyama Y, Osaki M, Ezawa T (2013) Ninety-year-, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities. Plant Soil 365:397–407

    Article  CAS  Google Scholar 

  • Chen WXYG, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Evol Microbiol 38:392–397

    Google Scholar 

  • Chiariello N, Hickman JC, Mooney HA (1982) Endomycorrhizal role for interspecific transfer of phosphorus in a community of annual plants. Science 217:941–943

    Article  CAS  PubMed  Google Scholar 

  • Chislock MF, Doster E, Zitomer RA, Wilson A (2013) Eutrophication: causes, consequences, and controls in aquatic ecosystems. Nat Educ Knowl 4:10

    Google Scholar 

  • Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP et al (2016) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 35:276–300

    Article  CAS  Google Scholar 

  • Conway G (2012) One billion hungry: can we feed the world? Cornell University Press

    Google Scholar 

  • Damam M, Kaloori K, Gaddam B, Kausar R (2016) Plant growth promoting substances (phytohormones) produced by rhizobacterial strains isolated from the rhizosphere of medicinal plants. Int J Pharmaceutical Sci Rev Res 37:130–136

    CAS  Google Scholar 

  • Das K, Prasanna R, Saxena AK (2017) Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiol 62:425–435

    Article  CAS  Google Scholar 

  • Date RA (2001) Advances in inoculant technology: a brief review. Aust J Exp Agric 41:321–325

    Article  CAS  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology: a review. Soil Biol Biochem 36:1275–1288

    Article  CAS  Google Scholar 

  • de Lajudie PWA, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M, Collins MD, Lindström K, Dreyfus B (1998) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Evol Microbiol 48:369–382

    Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  CAS  PubMed  Google Scholar 

  • De Roy K, Marzorati M, Van den Abbeele P, Van de Wiele T, Boon N (2014) Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. Environ Microbiol 16:1472–1481

    Article  PubMed  Google Scholar 

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbial Biosystems 5:21–47. https://doi.org/10.21608/mb.2020.32802.1016

    Article  Google Scholar 

  • Dodd IC, Ruiz-Lozano JM (2012) Microbial enhancement of crop resource use efficiency. Curr Opin Biotechnol 23:236–242

    Article  CAS  PubMed  Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280

    Google Scholar 

  • Downey J, Van Kessel C (1990) Dual inoculation of Pisum sativum with Rhizobium leguminosarum and Penicillium bilaji. Biol Fertil Soils 10:194–196

    Article  Google Scholar 

  • Dreyfus B, Garcia J-L, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Evol Microbiol 38:89–98

    CAS  Google Scholar 

  • Duan T, Shen Y, Facelli E, Smith SE, Nan Z (2010) New agricultural practices in the Loess Plateau of China do not reduce colonisation by arbuscular mycorrhizal or root invading fungi and do not carry a yield penalty. Plant Soil 331:265–275

    Article  CAS  Google Scholar 

  • Duchesne L, Peterson R, Ellis B (1989) The future of ectomycorrhizal fungi as biological control agents. Phytoprotection 70:51–57

    Google Scholar 

  • Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • Esperschütz J, Gattinger A, Mäder P, Schloter M, Fließbach A (2007) Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiol Ecol 61:26–37

    Article  PubMed  CAS  Google Scholar 

  • Fageria N, Dos Santos A, Moraes M (2010) Influence of urea and ammonium sulfate on soil acidity indices in lowland rice production. Commun Soil Sci Plant Anal 41:1565–1575

    Article  CAS  Google Scholar 

  • FAO (2010) The state of food insecurity in the world: addressing food insecurity in protracted crises. FAO

    Google Scholar 

  • FAO/WHO (2015) What is organic agriculture

    Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finlay R (1985) Interactions between soil micro-arthropods and endomycorrhizal associations of higher plants. Special publications series of the British Ecological Society

    Google Scholar 

  • Flury P, Vesga P, Péchy-Tarr M, Aellen N, Dennert F, Hofer N et al (2017) Antimicrobial and insecticidal: cyclic lipopeptides and hydrogen cyanide produced by plant-beneficial Pseudomonas strains CHA0, CMR12a, and PCL1391 contribute to insect killing. Front Microbiol 8:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontaine MS, Young PH, Torrey JG (1986) Effects of long-term preservation of Frankia strains on infectivity, effectivity, and in vitro nitrogenase activity. Appl Environ Microbiol 51:694–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Franco-Correa M, Quintana A, Duque C, Suarez C, Rodríguez MX, Barea J-M (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Article  Google Scholar 

  • Fricke K, Vogtmann H (1993) Quality of source separated compost. BioCycle (USA)

    Google Scholar 

  • Fujino A, Ose T, Yao M, Tokiwano T, Honma M, Watanabe N et al (2004) Structural and enzymatic properties of 1-aminocyclopropane-1-carboxylate deaminase homologue from Pyrococcus horikoshii. J Mol Biol 341:999–1013

    Article  CAS  PubMed  Google Scholar 

  • Gaiero JRMC, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  PubMed  Google Scholar 

  • Gallon J (2001) N2 fixation in phototrophs: adaptation to a specialized way of life. Plant Soil 230:39–48

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Marzachì C, Galetto L, Veratti F, Massa N, Bona E et al (2017) An 1-Aminocyclopropane-1-carboxylate (ACC) deaminase-expressing endophyte increases plant resistance to flavescence dorée phytoplasma infection. Plant Biosyst Int J Dealing Aspects Plant Biol 151:331–340

    Google Scholar 

  • Gaur V (2010) Biofertilizer–necessity for sustainability. J Adv Dev 1:7–8

    Google Scholar 

  • Gemell L, Hartley E, Herridge D (2005) Point-of-sale evaluation of preinoculated and custom-inoculated pasture legume seed. Aust J Exp Agric 45:161–169

    Article  Google Scholar 

  • Gera C, Srivastava S (2006) Quorum-sensing: the phenomenon of microbial communication. Curr Sci 90:666–676

    CAS  Google Scholar 

  • Gerdemann J (1968) Vesicular-arbuscular mycorrhiza and plant growth. Annu Rev Phytopathol 6:397–418

    Article  Google Scholar 

  • Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69:1800–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica, https://doi.org/10.6064/2012/963401

    Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2015) Beneficial plant-bacterial interactions. Springer, Cham

    Google Scholar 

  • Godschalx AL (2017) Symbiosis with nitrogen-fixing rhizobia influences plant defense strategy and plant-predator interactions. Portland State University

    Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Alternative Agric 1:51–57

    Article  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous mineral phosphates by Gram negative bacteria. Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF, Kharwar RN (2015) Effect of bacterial endophyte on expression of defense genes in Indian popcorn against Fusarium moniliforme. Symbiosis 66:133–140

    Article  CAS  Google Scholar 

  • Gonzalez AJ, Larraburu EE, Llorente BE (2015) Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting. Ind Crops Prod 76:41–48

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotech 5:355–377

    Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending G (2006) Arbuscular mycorrhizal fungi and organic farming. Agr Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Gowthaman M, Krishna C, Moo-Young M (2001) Fungal solid state fermentation—an overview. In: Applied mycology and biotechnology, vol 1. Elsevier, pp 305–352

    Google Scholar 

  • Gray E, Smith D (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Guerinot M, Chelm BK (1984) Isolation and expression of the Bradyrhizobium japonicum adenylate cyclase gene (cya) in Escherichia coli. J Bacteriol 159:1068–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gügi B, Orange N, Hellio F, Burini J, Guillou C, Leriche F et al (1991) Effect of growth temperature on several exported enzyme activities in the psychrotrophic bacterium Pseudomonas fluorescens. J Bacteriol 173:3814–3820

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102

    CAS  Google Scholar 

  • Gusain YS, Singh US, Sharma AK (2015) Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). Afr J Biotech 14:764–773

    Article  Google Scholar 

  • Haggag WM, Abouziena H, Abd-El-Kreem F, El Habbasha S (2015) Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J Chem Pharm Res 7:882–889

    Google Scholar 

  • Halpern M, Bar-Tal A, Ofek M, Minz D, Muller T, Yermiyahu U (2015) The use of biostimulants for enhancing nutrient uptake. In: Advances in agronomy, vol 130. Elsevier, pp 141–174

    Google Scholar 

  • Hamedi J, Mohammadipanah F (2015) Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J Ind Microbiol Biotechnol 42:157–171

    Article  CAS  PubMed  Google Scholar 

  • Hamedi J, Mohammadipanah F, Panahi HKS (2015) Biotechnological exploitation of actinobacterial members. In: Halophiles. Springer, pp 57–143

    Google Scholar 

  • Handelsman J, Raffel S, Mester EH, Wunderlich L, Grau CR (1990) Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl Environ Microbiol 56:713–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han H, Lee K (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (cu, Zn, Mn, Fe, Ni, Mo, B, cl). Curr Opin Plant Biol 12:259–266

    Article  PubMed  CAS  Google Scholar 

  • Han HS, Jung JS, Lee KD (2006) Rock phosphate-potassium and rock-solubilising bacteria as alternative, sustainable fertilisers. Agron Sustain Dev 26:233–240

    Article  CAS  Google Scholar 

  • Harman G, Hayes C, Lorito M, Broadway R, Di Pietro A, Peterbauer C et al (1993) Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 83:313–318

    Article  CAS  Google Scholar 

  • Hartmann MWF (2006) Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Appl Environ Microbiol 72:7804–7812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hawkins H-J, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hayman D, Stovold G (1979) Spore populations and infectivity of vesicular arbuscular mycorrhizal fungi in New South Wales. Aust J Bot 27:227–233

    Article  Google Scholar 

  • Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agric Sci 11:57–61

    Google Scholar 

  • Hernández A, Castillo H, Ojeda D, Arras A, López J, Sánchez E (2010) Effect of vermicompost and compost on lettuce production. Chilean J Agric Res 70:583–589

    Article  Google Scholar 

  • Herridge D (2008) Inoculation technology for legumes. In: Nitrogen-fixing leguminous symbioses. Springer, pp 77–115

    Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873

    Article  CAS  PubMed  Google Scholar 

  • Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N et al. (2021) Current trends in microbial biotechnology for agricultural sustainability: conclusion and future challenges. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer Singapore, Singapore, pp 555–572. https://doi.org/10.1007/978-981-15-6949-4_22

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  • Huang C-J, Wang T-K, Chung S-C, Chen C-Y (2005) Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. BMB Rep 38:82–88

    Article  CAS  Google Scholar 

  • Husen EH, Simanungkalit R, Saraswati R, Irawan I (2016) Characterization and quality assessment of Indonesian commercial biofertilizers

    Google Scholar 

  • Imanparast S, Hamedi J, Faramarzi MA (2018) Enzymatic esterification of acylglycerols rich in omega-3 from flaxseed oil by an immobilized solvent-tolerant lipase from Actinomadura sediminis UTMC 2870 isolated from oil-contaminated soil. Food Chem 245:934–942

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka J (1992) Trends in biological nitrogen fixation research and application. In: Biological nitrogen fixation for sustainable agriculture. Springer, pp 197–209

    Google Scholar 

  • Jadhav H, Sayyed R (2016) Hydrolytic enzymes of rhizospheric microbes in crop protection. MOJ Cell Sci Rep 3:00070

    Google Scholar 

  • Jadhav H, Shaikh S, Sayyed R (2017) Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview. In: Rhizotrophs: plant growth promotion to bioremediation. Springer, pp 183–203

    Google Scholar 

  • Jain R, Saxena J, Sharma V (2012) Solubilization of inorganic phosphates by Aspergillus awamori S19 isolated from rhizosphere soil of a semi-arid region. Ann Microbiol 62:725–735

    Article  CAS  Google Scholar 

  • Jawson MD, Franzluebbers AJ, Berg RK (1989) Bradyrhizobium japonicum survival in and soybean inoculation with fluid gels. Appl Environ Microbiol 55:617–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J-M (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Article  Google Scholar 

  • Jia Y-J, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M et al. (1999) Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotechnol Biochem 63:542–549

    Google Scholar 

  • Johnson D, Leake JR, Read DJ (2005) Liming and nitrogen fertilization affects phosphatase activities, microbial biomass and mycorrhizal colonisation in upland grassland. Plant Soil 271:157–164

    Google Scholar 

  • Johnson NC, Wilson GW, Bowker MA, Wilson JA, Miller RM (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci 107:2093–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John RP, Tyagi R, Brar S, Surampalli R, Prévost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Critical Rev Biotechnol 31:211–226

    Google Scholar 

  • Kabaluk JT, Svircev AM, Goettel MS, Woo SG (2010) The use and regulation of microbial pesticides in representative jurisdictions worldwide. IOBC Global, pp 94–98

    Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Arshad M, Zahir Z (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi–current perspective. Arch Agrono Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Khan ALWM, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung HY, Lee IJ (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Mobin M, Abbas Z, Alamri S (2018) Fertilizers and their contaminants in soils, surface and groundwater. Encyclopedia Anthropocene 5:225–240

    Article  Google Scholar 

  • Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) FZB24® Bacillus subtilis–mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer 1:1

    Google Scholar 

  • Knox O, Killham K, Mullins C, Wilson MJ (2003) Nematode-enhanced microbial colonization of the wheat rhizosphere. FEMS Microbiol Lett 225:227–233

    Article  CAS  PubMed  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A et al. (2019a) Drought-tolerant phosphorus-solubilizing microbes: Biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting Rhizobacteria for sustainable stress management, vol 1: Rhizobacteria in abiotic stress management. Springer, Singapore, pp 255–308. doi: https://doi.org/10.1007/978-981-13-6536-2_13

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS et al. (2019b) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting Rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65. doi:https://doi.org/10.1007/978-981-13-7553-8_2

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23: https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M et al (2021) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere 31:43–75. https://doi.org/10.1016/S1002-0160(20)60057-1

    Article  Google Scholar 

  • Kucey R (1988) Effect of Penicillium bilaji on the solubility and uptake of P and micronutrients from soil by wheat. Can J Soil Sci 68:261–270

    Article  CAS  Google Scholar 

  • Kumar M, Yadav AN, Saxena R, Paul D, Tomar RS (2021) Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatal Agric Biotechnol 31: https://doi.org/10.1016/j.bcab.2020.101883

    Article  Google Scholar 

  • Laranjo MAA, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169:2–17

    Article  PubMed  Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    Article  CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Henry H (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochimica et Cosmochimica Acta 1 72(1):87–98

    Google Scholar 

  • Li QS-L, Glick BRT (2005) he effect of native and ACC deaminasecontaining Azospirillum brasilense Cdl843 on the rooting of carnation cuttings. Can J Microbiol 51:511–514

    Article  CAS  PubMed  Google Scholar 

  • Lindström K (1989) Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Evol Microbiol 39:365–367

    Google Scholar 

  • Lindström K, Martinez-Romero E (2007) International committee on systematics of prokaryotes; subcommittee on the taxonomy of Agrobacterium and Rhizobium. Int J Syst Evol Microbiol 57:1365–1366

    Article  Google Scholar 

  • Lindström K, Kokko-Gonzales P, Terefework Z, Räsänen LA (2006) Differentiation of nitrogen-fixing legume root nodule bacteria (Rhizobia). In: Molecular approaches to soil, rhizosphere and plant microorganism analysis, p 236

    Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950

    Article  CAS  PubMed  Google Scholar 

  • Lorda G, Breccia J, Barbeito V, Pagliero F, Boeris S, Castaño C et al (2007) Peat-based inoculum of Bradyrhizobium japonicum and Sinorhizobium fredii supplemented with xanthan gum. World J Microbiol Biotechnol 23:1–5

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lupwayi NZ, Clayton GW, Rice WA (2006) Rhizobial inoculants for legume crops. J Crop Improvement 15:289–321

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabood F, Zhou X, Smith DL (2014) Microbial signaling and plant growth promotion. Can J Plant Sci 94:1051–1063

    Article  CAS  Google Scholar 

  • Mäder PFA, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A et al (2017) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 24:3315–3335

    Article  CAS  Google Scholar 

  • Mahdi SS, Hussain Dar M, Hamid A, Ahmad L (2012) Soil phosphorus fixation chemistry and role of phosphate solubilizing bacteria in enhancing its efficiency for sustainable cropping-a review. J Pure Appl Microbiol

    Google Scholar 

  • Malusa E, Sas L (2009) The development of innovative technologies and products for organic fruit production. An integrated project

    Google Scholar 

  • Malusa E, Sas-Paszt L, Zurawicz E, Popinska W (2007) The effect of a mycorrhiza-bacteria substrate and foliar fertilization on growth response and rhizosphere pH of three strawberry cultivars. Int J Fruit Sci 6:25–41

    Article  Google Scholar 

  • Malusa E, Sas-Paszt L, Trzcinski P, Górska A (2010) Influences of different organic fertilizers and amendments on nematode trophic groups and soil microbial communities during strawberry growth. In: XXVIII international horticultural congress on science and horticulture for people (IHC2010): international symposium on 933, pp 253–260

    Google Scholar 

  • Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J

    Google Scholar 

  • Malusà E, Pinzari F, Canfora L (2016) Efficacy of biofertilizers: challenges to improve crop production. In: Microbial inoculants in sustainable agricultural productivity. Springer, pp 17–40

    Google Scholar 

  • Manikandan R, Saravanakumar D, Rajendran L, Raguchander T, Samiyappan R (2010) Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biol Control 54:83–89

    Article  Google Scholar 

  • Manocha M, Balasubramanian R (1994) Fungal chitinases: their properties and roles in morphogenesis, mycoparasitism and control of pathogenic fungi. Host Wall Alterations by Parasitic Fungi APS Press, San Paul Minnesota, pp 81–90

    Google Scholar 

  • Martinez-Toledo M, De La Rubia T, Moreno J, Gonzalez-Lopez J (1988) Root exudates of Zea mays and production of auxins, gibberellins and cytokinins by Azotobacter chroococcum. Plant Soil 110:149–152

    Article  CAS  Google Scholar 

  • Martínez-Viveros O, Jorquera M, Crowley D, Gajardo G, Mora M (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Martin XM, Sumathi CS, Kannan VR (2011) Influence of agrochemicals and Azotobacter sp. application on soil fertility in relation to maize growth under nursery conditions. Eur J Biosci 5

    Google Scholar 

  • Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    Article  CAS  PubMed  Google Scholar 

  • Mathivanan RUS, Ramasamy PK, Thangam Y (2015) Influence of vermicompost on the activity of the plant growth regulators in the leaves of the Indian butter bean plant. Int J Adv Res Biol Sci 2:84–89

    CAS  Google Scholar 

  • McComb RB, Bowers GN, Posen S (2013) Alkaline phosphatase. Springer Science & Business Media

    Google Scholar 

  • McDonnell L, Plett JM, Andersson-Gunnerås S, Kozela C, Dugardeyn J, Van Der Straeten D et al (2009) Ethylene levels are regulated by a plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase. Physiol Plant 136:94–109

    Article  CAS  PubMed  Google Scholar 

  • McGrath JW, Hammerschmidt F, Quinn JP (1998) Biodegradation of phosphonomycin by Rhizobium huakuii PMY1. Appl Environ Microbiol 64:356–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena M, Swapnil P, Zehra A, Aamir M, Dubey MK, Goutam J et al. (2017) Beneficial microbes for disease suppression and plant growth promotion. In: Plant-microbe interactions in agro-ecological perspectives. Springer, pp 395–432

    Google Scholar 

  • Mehnaz S (2015) Azospirillum: a biofertilizer for every crop. In: Plant microbes symbiosis: applied facets. Springer, pp 297–314

    Google Scholar 

  • Meier S, Cornejo P, Cartes P, Borie F, Medina J, Azcón R (2015) Interactive effect between Cu-adapted arbuscular mycorrhizal fungi and biotreated agrowaste residue to improve the nutritional status of Oenothera picensis growing in Cu-polluted soils. J Plant Nutr Soil Sci 178:126–135

    Article  CAS  Google Scholar 

  • Mendes GDO, da Silva NMRM, Anastácio TC, Vassilev NB, Ribeiro JI Jr, da Silva IR et al (2015) Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer. Microb Biotechnol 8:930–939

    Article  CAS  PubMed Central  Google Scholar 

  • Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T et al (1998) Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-l-carboxylate deaminase from Hansenula saturnus. J Biochem 123:1112–1118

    Article  CAS  PubMed  Google Scholar 

  • Mishra P, Dash D (2014) Rejuvenation of biofertilizer for sustainable agriculture and economic development. Consilience 41–61

    Google Scholar 

  • Mishra D, Rajvir S, Mishra U, Kumar SS (2013) Role of bio-fertilizer in organic agriculture: a review. Res J Recent Sci 2:39–41

    CAS  Google Scholar 

  • MM s (2001) Nutritional status and growth of maize plants as affected by green microalgae as soil additives. J Biol Sci 6:475–479

    Google Scholar 

  • Mohammadi K, Sohrabi Y (2012) Bacterial biofertilizers for sustainable crop production: a review. J Agric Biol Sci 7:307–316

    Google Scholar 

  • Mondal S, Halder SK, Yadav AN, Mondal KC (2020) Microbial consortium with multifunctional plant growth promoting attributes: future perspective in agriculture. In: Yadav AN, Rastegari AA, Yadav N, Kour D (eds) Advances in plant microbiome and sustainable agriculture, vol 2: functional annotation and future challenges. Springer, Singapore, pp 219–254. https://doi.org/10.1007/978-981-15-3204-7_10

  • Montañez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28

    Article  Google Scholar 

  • Moore AW (1969) Azolla: biology and agronomic significance. Bot Rev 35(1):17–34

    Article  CAS  Google Scholar 

  • Morrison BA, Cozatl-Manzano R (2003) Initial evidence for use of periphyton as an agricultural fertilizer by the ancient Maya associated with the El Edén wetland, northern Quintana Roo, Mexico. The Lowland Maya area: Three millennia at the human-wildland interface Food Products Press, New York, pp 401–413

    Google Scholar 

  • Muthukumarasamy R, Revathi G, Seshadri S, Lakshminarasimhan C (2002) Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Curr Sci 137–145

    Google Scholar 

  • Nandi M, Selin C, Brassinga AKC, Belmonte MF, Fernando WD, Loewen PC et al (2015) Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PLoS ONE 10:

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nandi M, Selin C, Brawerman G, Fernando WD, de Kievit T (2017) Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biol Control 108:47–54

    Article  CAS  Google Scholar 

  • Nascimento FX, Rossi MJ, Soares CR, McConkey BJ, Glick BR (2014) New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS ONE 9:

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Negi YK, Prabha D, Garg SK, Kumar J (2017) Biological control of ragi blast disease by chitinase producing fluorescent Pseudomonas isolates. Organ Agric 7:63–71

    Article  Google Scholar 

  • Nick GDLP, Eardly BD, Suomalainen S, Paulin L, Zhang X, Gillis M, Lindström K (1999) Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Evol Microbiol 49:1359–1368

    Article  CAS  Google Scholar 

  • Nour SM, Fernandez MP, Normand P, Cleyet-Marel J-C (1994) Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Evol Microbiol 44:511–522

    CAS  Google Scholar 

  • Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, Boller T et al (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  PubMed  Google Scholar 

  • Ohtake HKJ, Kuroda A, Wu H, Ikeda T (1998) Regulation of bacterial phosphate taxis and polyphosphate accumulation in response to phosphate starvation stress. J Biosci 23:491

    Article  CAS  Google Scholar 

  • Okon Y, Baker R (1987) Microbial inoculants as crop-yield enhancers. Crit Rev Biotechnol 6:61–85

    Article  Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ortega-Larrocea M, Siebe C, Becard G, Mendez I, Webster R (2001) Impact of a century of wastewater irrigation on the abundance of arbuscular mycorrhizal spores in the soil of the Mezquital Valley of Mexico. Appl Soil Ecol 16:149–157

    Article  Google Scholar 

  • Otieno N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ et al (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Google Scholar 

  • Owen D, Williams AP, Griffith GW, Withers PJ (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Palmer C, Golden K, Danniels L, Ahmad H (2007) ACC deaminase from Issatchenkia occidentalis. J Biol Sci 7:188–193

    Article  CAS  Google Scholar 

  • Pal S, Singh H, Farooqui A, Rakshit A (2015) Fungal biofertilizers in Indian agriculture: perception, demand and promotion. J Eco-friendly Agric 10:101–113

    Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 149–162

    Google Scholar 

  • Park J, Chang H (2000) Microencapsulation of microbial cells. Biotechnol Adv 18:303–319

    Article  CAS  PubMed  Google Scholar 

  • Parmar P, Sindhu S (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Parray JA, Jan S, Kamili AN, Qadri RA, Egamberdieva D, Ahmad P (2016) Current perspectives on plant growth-promoting rhizobacteria. J Plant Growth Regul 35:877–902

    Article  CAS  Google Scholar 

  • Patagundi BI, Shivasharan C, Kaliwal B (2014) Isolation and characterization of cellulase producing bacteria from soil. Int J Curr Microbiol Appl Sci 3:59–69

    Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  • Perron F, Légère A, Tremblay G, Simard R, Angers D, Hamel C (2001) Crop and weed response to nutrient source, tillage and weed control method in a corn-soybean rotation. Can J Plant Sci 81:561–571

    Article  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, pp 327–331

    Google Scholar 

  • Prasad H, Chandra R (2003) Growth pattern of urdbean Rhizobium sp. with PSB and PGPR in consortia. J Indian Soc Soil Sci 51:76–78

    Google Scholar 

  • Prasad RC, Prasad BN (2001) Cyanobacteria as a source biofertilizer for sustainable agriculture in Nepal. J Plant Sci Botanica Orientalis 127–133

    Google Scholar 

  • Prasad S, Malav LC, Choudhary J, Kannojiya S, Kundu M, Kumar S et al. (2021) Soil microbiomes for healthy nutrient recycling. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer Singapore, Singapore, pp 1–21. https://doi.org/10.1007/978-981-15-6949-4_1

  • Prat D (1992) Effect of inoculation with Frankia on the growth of Alnus in the field. Acta Oecol 13:463–467

    Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, pp 111–125

    Google Scholar 

  • Qin H, Lu K, Strong P, Xu Q, Wu Q, Xu Z et al (2015) Long-term fertilizer application effects on the soil, root arbuscular mycorrhizal fungi and community composition in rotation agriculture. Appl Soil Ecol 89:35–43

    Article  Google Scholar 

  • Qu XH, Wang J (2008) Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Appl Soil Ecol 39:172–179

    Article  Google Scholar 

  • Raghavendra M, Nayaka SC, Nuthan B (2016) Role of rhizosphere microflora in potassium solubilization. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, pp 43–59

    Google Scholar 

  • Rai A, Rai S, Rakshit A (2013) Mycorrhiza-mediated phosphorus use efficiency in plants. Environ Exp Biol 11:107–117

    Google Scholar 

  • Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D et al. (2020) Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 49–60. https://doi.org/10.1016/B978-0-12-820526-6.00004-X

  • Raj SA (2007) Bio-fertilizers for micronutrients. Biofertilizer Newsletter 8–10

    Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Ramadan EM, AbdelHafez AA, Hassan EA, Saber FM (2016) Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afri J Microbiol Res 10:486–504

    Article  CAS  Google Scholar 

  • Ramette A, Moënne-Loccoz Y, Défago G (2006) Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. FEMS Microbiol Ecol 55:369–381

    Article  CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al. (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, vol 1. Diversity and enzymes perspectives. Springer, Switzerland, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019b) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N et al (2020) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107. https://doi.org/10.1007/s10482-020-01429-y

    Article  CAS  PubMed  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Ravanbakhsh M, Sasidharan R, Voesenek LA, Kowalchuk GA, Jousset A (2017) ACC deaminase-producing rhizosphere bacteria modulate plant responses to flooding. J Ecol 105:979–986

    Article  CAS  Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, pp 235–253

    Google Scholar 

  • Reid MS (1981) The role of ethylene in flower senescene. Acta Hortic 261:157–169

    Google Scholar 

  • Reinhold-Hurek BHT (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Rice W, Clayton G, Olsen P, Lupwayi N (2000) Rhizobial inoculant formulations and soil pH influence field pea nodulation and nitrogen fixation. Can J Soil Sci 80:395–400

    Article  Google Scholar 

  • Richardson AEHP (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516

    Article  CAS  PubMed  Google Scholar 

  • Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol 7:1785

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrı́guez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Google Scholar 

  • Rodríguez AASA, Storni MM, Zulpa G, Zaccaro MC (2006a) Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Systems 2(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez HFR, Gonzalez T, Bashan Y (2006b) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Roger P-A, Pierre-Adrien R (1982) Free—living blue—green algae in tropical soils. In: Microbiology of tropical soils and plant productivity. Springer, Dordrecht, pp 147–168

    Google Scholar 

  • Rome S, Fernandez MP, Brunel B, Normand P, Cleyet-Marel J-C (1996) Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Evol Microbiol 46:972–980

    CAS  Google Scholar 

  • Roughley R (1976) The production of high quality inoculants and their contribution to legume yield. Symbiotic Nitro Fix Plants 7:125

    Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340

    Article  PubMed  Google Scholar 

  • Roychowdhury D, Paul M, Banerjee SK (2014) A review on the effects of biofertilizers and biopesticides on rice and tea cultivation and productivity. Int J Sci Eng Technol 2:96–106

    Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeghi A, Koobaz P, Azimi H, Karimi E, Akbari AR (2017) Plant growth promotion and suppression of Phytophthora drechsleri damping-off in cucumber by cellulase-producing Streptomyces. Biocontrol 62:805–819

    Article  CAS  Google Scholar 

  • Sahu P, Brahmaprakash G (2016) Formulations of biofertilizers–approaches and advances. In: Microbial inoculants in sustainable agricultural productivity. Springer, pp 179–198

    Google Scholar 

  • Salimi F, Hamedi J, Motevaseli E, Mohammadipanah F (2018a) Isolation and screening of rare Actinobacteria, a new insight for finding natural products with antivascular calcification activity. J Appl Microbiol 124:254–266

    Article  CAS  PubMed  Google Scholar 

  • Salimi F, Jafari-Nodooshan S, Zohourian N, Kolivand S, Hamedi J (2018b) Simultaneous anti-diabetic and anti-vascular calcification activity of Nocardia sp. UTMC 751. Lett Appl Microbiol 66:110–117

    Article  CAS  PubMed  Google Scholar 

  • Salimi F, Hamedi J, Motevaseli E, Mohammadipanah F (2019) Coexistence of anticoagulant and anti-vascular calcification activities in Kribbella sp. UTMC 267 metabolites. Iran J Pharma Res IJPR 18:459

    Google Scholar 

  • Salisbury FBRC (1992) Photosynthesis: environmental and agricultural aspects. Plant Physiol Wadsworth Publishing Company, Belmont, CA 286:249–265

    Google Scholar 

  • Samoon HADS, Zehra B, Mahdi SS, Hassan GI (2010) Bio-fertilizers in organic agriculture. J Phytol 2:9–14

    Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S et al (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169:20–32

    Article  CAS  PubMed  Google Scholar 

  • Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377:111–126

    Article  CAS  Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3:73

    Article  Google Scholar 

  • Saxena A, Tilak K (1998) Free-living nitrogen fixers: Its role in crop production. Microbes for Health, Wealth and Sustainable Environment, Malhotra Publ Co, New Delhi Edited by Verma AK, pp 25–64

    Google Scholar 

  • Schlesinger WH, Bernhardt E (2013) Biogeochemistry: an analysis of global change. Academic press

    Google Scholar 

  • Scholla MH, Elkan GH (1984) Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int J Syst Evol Microbiol 34:484–486

    Google Scholar 

  • Schuessler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: evolution and phylogeny. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Schulz TJ, Thelen KD (2008) Soybean seed inoculant and fungicidal seed treatment effects on soybean. Crop Sci 48:1975–1983

    Article  CAS  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK et al (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    Article  PubMed  Google Scholar 

  • Segovia L, Young JPW, Martínez-Romero E (1993) Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Evol Microbiol 43:374–377

    CAS  Google Scholar 

  • Sethi SK, Adhikary SP (2012) Cost effective pilot scale production of biofertilizer using Rhizobium and Azotobacter. Afr J Biotech 11:13490–13493

    Article  Google Scholar 

  • Shafi M, Shah A, Bakht J, Shah M, Mohammad W (2012) Integrated effect of inorganic and organic nitrogen sources on soil fertility and productivity of maize. J Plant Nutr 35:524–537

    Article  CAS  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  CAS  PubMed  Google Scholar 

  • Shahzad RKA, Bilal S, Waqas M, Kang SM, Lee IJ (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77

    Article  CAS  Google Scholar 

  • Sharifi R, Ryu C-M (2016) Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both? Front Microbiol 7:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P et al. (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: vol 1: diversity and enzymes perspectives. Springer, Cham, pp 85–120. https://doi.org/10.1007/978-3-030-10480-1_3

  • Sharma VP, Singh S, Dhanjal DS, Singh J, Yadav AN (2021) Potential strategies for control of agricultural occupational health hazards. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer Singapore, Singapore, pp 387–402. https://doi.org/10.1007/978-981-15-6949-4_16

  • Shrivastava M, Srivastava P, D’Souza S (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, pp 221–234

    Google Scholar 

  • Simmons CR (1994) The physiology and molecular biology of plant 1, 3-β-d-glucanases and 1, 3; 1, 4-β-d-glucanases. Crit Rev Plant Sci 13:325–387

    CAS  Google Scholar 

  • Singh R, Adholeya A (2003) Interactions between arbuscular mycorrhizal fungi and plant-growth promoting rhizobacteria. Mycorrhiza News 15:16–17

    Google Scholar 

  • Singh N, Kashyap S (2012) In silico identification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from Phytophthora sojae. J Mol Model 18:4101–4111

    Article  CAS  PubMed  Google Scholar 

  • Singh JS, Pandey VC, Singh D (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agr Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937

    PubMed  PubMed Central  Google Scholar 

  • Singh M, Dotaniya M, Mishra A, Dotaniya C, Regar K, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Conservation agriculture. Springer, pp 113–134

    Google Scholar 

  • Singh A, Kumar R, Yadav AN, Mishra S, Sachan S, Sachan SG (2020) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–15. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

  • Sivakumar T, Shankar T, Vijayabaskar P, Ramasubramanian V (2012) Plant growth promoting activity of nickel tolerant Bacillus cereus TS1. J Agric Technol 8:2101–2113

    CAS  Google Scholar 

  • Skorupska A, Wielbo J, Kidaj D, Marek-Kozaczuk M (2010) Enhancing Rhizobium–legume symbiosis using signaling factors. In: Microbes for legume improvement. Springer, pp 27–54

    Google Scholar 

  • Skraly FA, Cameron DC (1998) Purification and characterization of a Bacillus licheniformis phosphatase specific ford-α-glycerophosphate. Arch Biochem Biophys 349:27–35

    Article  CAS  PubMed  Google Scholar 

  • Smith BE RR, Newton WE (2013) Catalysts for nitrogen fixation: nitrogenases, relevant chemical models and commercial processes. Springer Science & Business Media

    Google Scholar 

  • Smith S, Read D (2008) Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. Mycorrhizal Symbiosis 3:145–148

    Article  Google Scholar 

  • Smith F, Smith S (1997) Tansley review no. 96 structural diversity in (vesicular)–arbuscular mycorrhizal symbioses. The New Phytologist 137:373–388

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13

    Article  PubMed  Google Scholar 

  • Song X, Liu M, Wu D, Griffiths BS, Jiao J, Li H et al (2015) Interaction matters: synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Appl Soil Ecol 89:25–34

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Stephens J, Rask H (2000) Inoculant production and formulation. Field Crops Res 65:249–258

    Article  Google Scholar 

  • Stockwell V, Johnson K, Sugar D, Loper J (2011) Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear. Phytopathology 101:113–123

    Article  CAS  PubMed  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  CAS  PubMed  Google Scholar 

  • Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN (2020) Diversity, plant growth promoting attributes, and agricultural applications of rhizospheric microbes. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer, Cham, pp 1–52. https://doi.org/10.1007/978-3-030-38453-1_1

  • Subramanian GUL (1996) Cyanobacteria in pollution control. J Sci Ind Res 1:685–692

    Google Scholar 

  • Subramaniyam R, Vimala R (2012) Solid state and submerged fermentation for the production of bioactive substances: a comparative study. Int J Sci Nat 3:480–486

    CAS  Google Scholar 

  • Sukarno N, Smith F, Smith S, Scott E (1996) The effect of fungicides on vesicular-arbuscular mycorrhizal symbiosis: II. The effects on area of interface and efficiency of P uptake and transfer to plant. New Phytol 132:583–592

    Article  CAS  PubMed  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity: vol. 1: research perspectives. Springer, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

  • Suthar H, Hingurao K, Vaghashiya J, Parmar J (2017) Fermentation: a process for biofertilizer production. In: Microorganisms for green revolution. Springer, pp 229–252

    Google Scholar 

  • Suyal DC, Soni R, Yadav AN, Goel R (2021) Cold adapted microorganisms: survival mechanisms and applications. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, pp 177–192

    Google Scholar 

  • Świechowski W, Doruchowski G, Trzciński P (2012) Effect of spray application parameters on viability of bacterium Pseudomonas fluorescens used as bio-pesticide in organic fruit production. In: Proceedings of the II international congress on organic fruit research symposium. ISHS, Leavenworth WA, USA, p 9

    Google Scholar 

  • Tairo EV, Ndakidemi PA (2013) Possible benefits of rhizobial inoculation and phosphorus supplementation on nutrition, growth and economic sustainability in grain legumes. Am J Res Commun 1:532–556

    Google Scholar 

  • Taiz LZE (2010) Photosynthesis: the light reactions. Plant Physiol 5:163–198

    Google Scholar 

  • Tarbell T, Koske R (2007) Evaluation of commercial arbuscular mycorrhizal inocula in a sand/peat medium. Mycorrhiza 18:51–56

    Article  CAS  PubMed  Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12-820526-6.00016-6

  • Thaller MC, Berlutti F, Schippa S, Iori P, Passariello C, Rossolini GM (1995) Heterogeneous patterns of acid phosphatases containing low-molecular-mass polypeptides in members of the family Enterobacteriaceae. Int J Syst Evol Microbiol 45:255–261

    CAS  Google Scholar 

  • Thomine S, Lanquar V (2011) Iron transport and signaling in plants. In: Transporters and pumps in plant signaling. Springer, pp 99–131

    Google Scholar 

  • Tien T, Gaskins M, Hubbell D (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tittabutr P, Payakapong W, Teaumroong N, Singleton PW, Boonkerd N (2007) Growth, survival and field performance of bradyrhizobial liquid inoculant formulations with polymeric additives. Sci Asia 33:69–77

    Article  CAS  Google Scholar 

  • Tiwari P, Bajpai M, Singh LK, Mishra S, Yadav AN (2020) Phytohormones producing fungal communities: metabolic engineering for abiotic stress tolerance in crops. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer, Cham, pp 1–25. https://doi.org/10.1007/978-3-030-45971-0_8

  • Tiwari P, Bajpai M, Singh LK, Yadav AN, Bae H (2021) Portraying fungal mechanisms in stress tolerance: perspective for sustainable agriculture. In: Yadav AN (ed) Recent trends in mycological research: volume 1: agricultural and medical perspective. Springer International Publishing, Cham, pp 269–291. https://doi.org/10.1007/978-3-030-60659-6_12

  • Toljander JF, Santos-González JC, Tehler A, Finlay RD (2008) Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiol Ecol 65:323–338

    Article  CAS  PubMed  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. BioMed Res Int

    Google Scholar 

  • Uren NC (2000) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: The rhizosphere. CRC Press, pp 35–56

    Google Scholar 

  • Van Overbeek L, Van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296

    Article  PubMed  CAS  Google Scholar 

  • Vassilev N, Toro M, Vassileva M, Azcon R, Barea JM (1997) Rock phosphate solubilization by immobilized cells of Enterobacter sp. in fermentation and soil conditions. Biores Technol 61:29–32

    Article  CAS  Google Scholar 

  • Vassilev N, Nikolaeva I, Vassileva M (2005) Polymer-based preparation of soil inoculants: applications to arbuscular mycorrhizal fungi. Rev Environ Sci Bio/Technol 4:235–243

    Article  CAS  Google Scholar 

  • Vassilev N, Medina A, Azcon R, Vassileva M (2006a) Microbial solubilization of rock phosphate on media containing agro-industrial wastes and effect of the resulting products on plant growth and P uptake. Plant Soil 287:77

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006b) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  CAS  PubMed  Google Scholar 

  • Velázquez E, Igual JM, Willems A, Fernández MP, Muñoz E, Mateos PF et al (2001) Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51:1011–1021

    Article  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, vol 2: microbial interactions and agro-ecological impacts. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vestergård M, Henry F, Rangel-Castro JI, Michelsen A, Prosser JI, Christensen S (2008) Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting. FEMS Microbiol Ecol 64:78–89

    Article  PubMed  CAS  Google Scholar 

  • Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48

    Article  CAS  PubMed  Google Scholar 

  • Voß U, Bishopp A, Farcot E, Bennett MJ (2014) Modelling hormonal response and development. Trends Plant Sci 19:311–319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walder F, van der Heijden MG (2015) Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nature Plants 1:15159

    Article  CAS  PubMed  Google Scholar 

  • Wall L, Berry A (2007) Early interactions, infection and nodulation in actinorhizal symbiosis. In: Nitrogen-fixing actinorhizal symbioses. Springer, pp 147–166

    Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Mavrodi DV, Ke L, Mavrodi OV, Yang M, Thomashow LS et al (2015) Biocontrol and plant growth-promoting activity of rhizobacteria from C hinese fields with contaminated soils. Microb Biotechnol 8:404–418

    Article  CAS  PubMed  Google Scholar 

  • Wani S (1990) Inoculation with associative nitrogen-fixing bacteria: Role in cereal grain production improvement. Indian J Microbiol 30:363–393

    Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. In: Sparks DL (ed) Advances in agronomy. Academic Press, pp 99–151

    Google Scholar 

  • Wu S, Cao Z, Li Z, Cheung K, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xavier LJ, Germida JJ (2003) Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition. Biol Fertil Soils 37:261–267

    Article  Google Scholar 

  • Xiang W, Zhao L, Xu X, Qin Y, Yu G (2012) Mutual information flow between beneficial microorganisms and the roots of host plants determined the bio-functions of biofertilizers. Am J Plant Sci 3:1115

    Article  Google Scholar 

  • Xie X, Huang W, Liu F, Tang N, Liu Y, Lin H et al (2013) Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytol 198:836–852

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN (2021) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9:1–4. https://doi.org/10.7324/JABB.2021.91ed

    Article  Google Scholar 

  • Yadav AN, Kaur T, Kour D, Rana KL, Yadav N, Rastegari AA et al. (2020a) Saline microbiome: biodiversity, ecological significance and potential role in amelioration of salt stress in plants. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam pp 283–309. https://doi.org/10.1016/B978-0-12-820526-6.00018-X

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020b) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Singh J, Singh C, Yadav N (2021) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Youssef M, Eissa M (2014) Biofertilizers and their role in management of plant parasitic nematodes. A review. E3 J Biotechnol Pharm Res 5:1–6

    Google Scholar 

  • Yu WQ, Zheng GP, Yan FC, Liu WZ, Liu WX (2019) Paenibacillus terrae NK3-4: A potential biocontrol agent that produces β-1, 3-glucanase. Biol Control 129:92–101

    Article  CAS  Google Scholar 

  • Zachow C, Müller H, Monk J, Berg G (2017) Complete genome sequence of Pseudomonas brassicacearum strain L13-6-12, a biological control agent from the rhizosphere of potato. Stand Genom Sci 12:6

    Article  CAS  Google Scholar 

  • Zoppellari F, Malusà E, Chitarra W, Lovisolo C, Spanna F, Bardi L (2014) Improvement of drought tolerance in maize (Zea mays L.) by selected rhizospheric microorganisms. Ital J Agrometeorol 18:5–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Hamedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salimi, F., Hamedi, J. (2021). Biofertilizers: Microbes for Agricultural Productivity. In: Yadav, A.N. (eds) Soil Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-73507-4_14

Download citation

Publish with us

Policies and ethics