Skip to main content

Advertisement

Log in

Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Plant growth promoting (PGP) bacteria are involved in various interactions known to affect plant fitness and soil quality, thereby increasing the productivity of agriculture and stability of soil. Although the potential of actinobacteria in antibiotic production is well-investigated, their capacity to enhance plant growth is not fully surveyed. Due to the following justifications, PGP actinobacteria (PGPA) can be considered as a more promising taxonomical group of PGP bacteria: (1) high numbers of actinobacteria per gram of soil and their filamentous nature, (2) genome dedicated to the secondary metabolite production (~5 to 10 %) is distinctively more than that of other bacteria and (3) number of plant growth promoter genera reported from actinobacteria is 1.3 times higher than that of other bacteria. Mechanisms by which PGPA contribute to the plant growth by association are: (a) enhancing nutrients availability, (b) regulation of plant metabolism, (c) decreasing environmental stress, (d) control of phytopathogens and (e) improvement of soil texture. Taxonomical and chemical diversity of PGPA and their biotechnological application along with their associated challenges are summarized in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aldesuquy HS, Mansour FA, Abo-Hamed SA (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43:465–470

    Google Scholar 

  2. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050, ESA Working Paper No. 12-03, Agricultural Development Economics Division, Food and Agriculture Organization of the United Nations

  3. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    CAS  PubMed  Google Scholar 

  4. Babalola OO, Berner DK, Amusa NA (2007) Evaluation of some bacterial isolates as germination stimulants of Striga hermonthica. Afr J Agric Res 2:27–30

    Google Scholar 

  5. Babalola OO, Sanni AI, Odhiambo GD et al (2007) Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and detectable amounts of ethylene are produced. World J Microbiol Biotechnol 23:747–752

    Google Scholar 

  6. Bach TJ, Rohmer M (2012) Isoprenoid synthesis in plants and microorganisms’. New Concepts and Experimental Approaches, Springer

    Google Scholar 

  7. Bais HP, Park SW, Weir TL et al (2004) How plants communicate using the underground information super highway. Trends Plant Sci 9:26–32

    CAS  PubMed  Google Scholar 

  8. Baranasic D, Gacesa R, Starcevic A et al (2013) Draft genome sequence of Streptomyces rapamycinicus strain NRRL 5491, the producer of the immunosuppressant rapamycin. Genome Announc 1(4):e00581-13

    PubMed Central  PubMed  Google Scholar 

  9. Barea JM, Pozo MJ, Azcon R et al (2005) Microbial cooperation in the rhizosphere. J Exp Bot 56:1761–1778

    CAS  PubMed  Google Scholar 

  10. Beauséjour J, Agbessi S, Beaulieu C (2001) Geldanamycin producing strains as biocontrol agents against common scab of potato. Can J Plant Pathol 23:194

    Google Scholar 

  11. Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    CAS  PubMed  Google Scholar 

  12. Bian GK, Feng ZZ, Qin S (2012) Kineococcus endophytica sp. nov., a novel endophytic actinomycete isolated from a coastal halophyte in Jiangsu. China Antonie Van Leeuwenhoek 102:621–628

    CAS  Google Scholar 

  13. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by Rhizobacteria. Curr Opin Plant Biol 4:343–350

    CAS  PubMed  Google Scholar 

  14. Bouizgarne B (2013) Bacteria for plant growth promotion and disease management. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin, pp 15–47

  15. Brundtland Commission (1987) Report of the world commission on environment and development:“our common future”, United Nations

  16. Bukhalid RA, Takeuchi T, Labeda D et al (2002) Horizontal transfer of the plant virulence, nec1, and flanking sequences among genetically distinct Streptomyces strains in the diastatochromogenes cluster. Appl Environ Microbiol 68:738–744

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Carson R (1962) Silent Spring. Houghton Mifflin Co, Boston, New Jersy

    Google Scholar 

  18. Chaia EE, Wall LG, Huss Danell K (2010) Life in soil by the actinorhizal root nodule endophyte Frankia a review. Symbiosis 51:201–226

    Google Scholar 

  19. Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 2:14555–14561

    Google Scholar 

  20. Chen HH, Qin S, Lee JC et al (2009) Streptomyces mayteni sp. nov., a novel endophytic actinomycete isolated from Chinese medicinal plant. Antonie Leeuwenhoek 95:47–53

    CAS  PubMed  Google Scholar 

  21. Chen HH, Qin S, Li J (2009) Pseudonocardia endophytica sp. nov., isolated from a pharmaceutical plant Lobelia clavata. Int J Syst Evol Microbiol 59:559–593

    CAS  PubMed  Google Scholar 

  22. Chen HH, Zhao GZ, Park DJ et al (2009) Micrococcus endophyticus sp. nov., isolated from surface-sterilized Aquilaria sinensis roots. Int J Syst Evol Microbiol 59:1070–1075

    CAS  PubMed  Google Scholar 

  23. Conn VM, Franco CMM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Crawford DL, Kowalski M, Roberts MA et al (2005) Discovery, development and commercialization of a microbial biocontrol agent, Streptomyces lydicus WYEC108: history of a decade long endeavor. SIM News 55:88–95

    Google Scholar 

  25. Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Dernoeden PH (2001) Polyoxin D (Endorse®)-A new fungicide for brown patch and large patch control, TURFAX. The International Newsletter about Current Developments in turfgrass, vol 9. pp 6–7

  27. Dimkpa C, Svatoš A, Merten D et al (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L) under nickel stress. Can J Microbiol 54:163–172

    CAS  PubMed  Google Scholar 

  28. Dodd IC, Ruiz-Lozano JM (2012) Microbial enhancement of crop resource use efficiency. Curr Opin Biotechnol 23:236–242

    CAS  PubMed  Google Scholar 

  29. Doumbou CL, Akimov V, Beaulieu C (1998) Selection and characterization of microorganisms utilizing thaxtomin A, a phytotoxin produced by Streptomyces scabies. Appl Environ Microbiol 44:4313–4316

    Google Scholar 

  30. Duangmal K, Thamchaipenet A, Matsumoto A (2009) Pseudonocardia acaciae sp. nov., isolated from roots of Acacia auriculiformis A. Cunn. exBenth. Int J Syst Evol Microbiol 59:1487–1491

    CAS  PubMed  Google Scholar 

  31. Tarabily kA El, Hardy GES J, Sivasithamparam K (2010) Performance of three endophytic actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the United Arab Emirates. Eur J Plant Pathol 128:527–539

    Google Scholar 

  32. El Tarabily KA, Nassar AH, Hardy GESJ et al (2009) Plant growth promotion and biological control of Pythium aphanidermatum a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26

    PubMed  Google Scholar 

  33. El Tarabily KA, Nassar AH, Sivasithamparam K (2008) Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate solubilizing, rhizosphere competent isolate of Micromonospora endolithica. Appl Soil Ecol 39:161–171

    Google Scholar 

  34. El Tarabily KA, Sykes ML, Kurtböke ID et al (1996) Synergistic effects of a cellulase producing Micromonospora carbonaceae and an antibiotic producing Streptomyces violascens on the suppression of Phytophthora cinnamomi root rot of Banksiagrandis. Can J Bot 74:618–624

    Google Scholar 

  35. Elmer WH, McGovern RJ (2004) Efficacy of integrating biologicals with fungicides for the suppression of Fusarium wilt of cyclamen. Crop Prot 23:909–914

    CAS  Google Scholar 

  36. Feduchi E, Cosin M, Carrasco L (1985) Mildiomycin: a nucleoside antibiotic that inhibits protein synthesis. J Antibiot 38:415–419

    CAS  PubMed  Google Scholar 

  37. Franco-Correa M, Quintana A, Duque C et al (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Google Scholar 

  38. Garcia LC, Martinez-Molina E, Trujillo ME (2010) Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337

    PubMed  Google Scholar 

  39. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    CAS  PubMed  Google Scholar 

  40. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15

    Google Scholar 

  41. Gopalakrishnan S, Pande S, Sharma M et al (2011) Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot 30:1070–1078

    CAS  Google Scholar 

  42. Gopalakrishnan S, Vadlamudi S, Apparla S et al (2013) Evaluation of Streptomyces spp. for their plant-growth-promotion traits in rice. Can J Microbiol 59:534–539

    CAS  PubMed  Google Scholar 

  43. Gopalakrishnan S, Vadlamudi S, Bandikinda P (2014) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol Res 169:40–48

    CAS  PubMed  Google Scholar 

  44. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant bacterium signaling processes. Soil Biol Biochem 37:395–412

    CAS  Google Scholar 

  45. Gu Q, Luo HL, Zheng W (2006) Pseudonocardia oroxyli sp. nov., isolated from Oroxylum indicum root. Int J Syst Evol Microbiol 56:2193–2197

    CAS  PubMed  Google Scholar 

  46. Gu Q, Zheng W, Huang Y (2007) Glycomyces sambucus sp. nov., an endophytic actinomycete isolated from the stem of Sambucus adnata Wall. Int J Syst Evol Microbiol 57:1995–1998

    CAS  PubMed  Google Scholar 

  47. Hallman J, Quadt Hallman A, Mahafee WF et al (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Google Scholar 

  48. Himmelstein JC, Maul JE, Everts KL (2014) Impact of five cover crop green manures and actinovate on fusarium wilt of watermelon. Plant Dis 98:965–972

    Google Scholar 

  49. Hirsch AM, Valdes M (2010) Micromonospora—an important microbe for biomedicine and potentially for biocontrol and biofuels. Soil Biol Biochem 42:536–542

    CAS  Google Scholar 

  50. Horlacher N, Nachtigall J, Schulz D et al (2013) Biotransformation of the fungal phytotoxin fomannoxin by soil Streptomycetes. J Chem Ecol 39:931–941

    CAS  PubMed  Google Scholar 

  51. Igarashi Y, Iida T, Yoshida R et al (2002) Pteridic acids A and B, novel plant growth promoters with auxin-like activity from Streptomyces hygroscopicus TP-A0451. J Antibiot 55:764–767

    CAS  PubMed  Google Scholar 

  52. Inahashi Y, Matsumoto A, Danbara H et al (2009) Phytohabitans suffuscus gen. nov., sp. nov., a novel actinomycetes of the family Micromonosporaceae isolated from a plant root. Int J Syst Evol Microbiol 60(11):2652–2658

    PubMed  Google Scholar 

  53. Inahashi Y, Matsumoto A, Omura S (2011) Streptosporangium oxazolinicum sp. nov., a novel endophytic actinomycete producing new antitrypanosomal antibiotics, spoxazomicins. J Antibiot 64:297–302

    CAS  PubMed  Google Scholar 

  54. Indananda C, Matsumoto A, Inahashi Y et al (2010) Actinophytocola gen. nov., a new genus of the family Pseudonocardiaceae and description of a new species, Actinophytocola oryzae sp. nov., isolated from root of Thai glutinous rice plant. Int J Syst Evol Microbiol 60:1141–1146

    CAS  PubMed  Google Scholar 

  55. Indananda C, Thamchaipenet A, Matsumoto A et al (2010) Actinoallomurus oryzae sp. nov., an endophytic actinomycete isolated from root of Thai jasmine rice plant. Int J Syst Evol Microbiol 61(4):737–741

    PubMed  Google Scholar 

  56. Janso JE, Carter GT (2010) Biosynthetic potential of phylogenetically unique endophytic actinomycetes from tropical plants. Appl Environ Microbiol 76(13):4377–4386

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Jog R, Nareshkumar G, Rajkumar S (2012) Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. J Appl Microbiol 113:1154–1164

    CAS  PubMed  Google Scholar 

  58. Jonathan M, Mc Donnell L, Regan S (2009) Plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase activity implicated in different aspects of plant development. Plant Signal Behav 4:1186–1189

    Google Scholar 

  59. Jorquera MA, Hernandez MT, Rengel Z et al (2008) Isolation of culturable phosphobacteria with both phytate mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034

    CAS  Google Scholar 

  60. Kaewkla O, Franco CM (2010) Pseudonocardia adelaidensis sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of a grey box tree (Eucalyptus microcarpa). Int J Syst Evol Microbiol 60:2818–2822

    CAS  PubMed  Google Scholar 

  61. Kaewkla O, Franco CM (2011) Flindersiella endophytica gen. nov., sp. nov., an endophytic actinobacterium isolated from the root of Grey Box, an endemic eucalyptus tree. Int J Syst Evol Microbiol 61:2135–2140

    CAS  PubMed  Google Scholar 

  62. Kaewkla O, Franco CMM (2010) Nocardia callitridis sp. nov., an endophytic actinobacterium isolated from a surface-sterilized root of an Australian native pine tree. Int J Syst Evol Microbiol 60:1532–1536

    CAS  PubMed  Google Scholar 

  63. Kaewkla O, Franco CMM (2010) Pseudonocardia eucalypti sp. nov., an endophytic actinobacterium with a unique knobby spore surface, isolated from the surface-sterilized root of a native Australian eucalyptus tree. Int J Syst Evol Microbiol 61(4):742–746

    PubMed  Google Scholar 

  64. Kaewkla O, Franco CMM (2012) Kribbella endophytica sp. nov., an endophytic actinobacterium isolated from the surface-sterilized leaf of a native apricot tree. Int J Syst Evol Microbiol 63(4):1249–1253

    PubMed  Google Scholar 

  65. Kirby BM, Meyers PR (2010) Micromonospora tulbaghiae sp. nov., isolated from the leaves of wild garlic, Tulbaghia violacea. Int J Syst Evol Microbiol 60:1328–1333

    CAS  PubMed  Google Scholar 

  66. Kortemaa H, Rita H, Haahtela K et al (1994) Root-colonization ability of antagonistic Streptomyces griseoviridis. Plant Soil 163:77–83

    Google Scholar 

  67. Kumar KV, Srivastava S, Singh N et al (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170:51–57

    CAS  PubMed  Google Scholar 

  68. Latha P, Anand T, Rappathi N et al (2009) Antimicrobial activity of plant extracts and induction of systemic resistance in tomato plants by mixtures of PGPR strains and Zimmu leaf extract against Alternaria solani. Biol Control 50:85–93

    Google Scholar 

  69. Lavania M, Chauhan PS, Chauhan SVS et al (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52:363–368

    CAS  PubMed  Google Scholar 

  70. Li J, Zhao GZ, Chen HH et al (2008) Rhodococcus cercidiphylli sp. nov., a new endophytic actinobacterium isolated from leaf of Cercidiphyllum japonicum. Syst Appl Microbiol 31:1108–1113

    Google Scholar 

  71. Li J, Zhao GZ, Huang HY et al (2009) Kineosporia mesophila sp. nov., isolated from the surface sterilized stem of Tripterygium wilfordii. Int J Syst Evol Microbiol 59:3150–3154

    CAS  PubMed  Google Scholar 

  72. Li J, Zhao GZ, Huang HY, Zhu WY (2010) Nonomuraea endophytica sp. nov., an endophytic actinomycete isolated from Artemisia annua L. Int J Syst Evol Microbiol 61(4):757–761

    PubMed  Google Scholar 

  73. Li J, Zhao GZ, Qin S et al (2009) Herbidospora osyridis sp. nov., isolated from tissue of Osyris wightiana wall. Int J Syst Evol Microbiol 59:3123–3127

    CAS  PubMed  Google Scholar 

  74. Li J, Zhao GZ, Qin S et al (2009) Saccharopolyspora tripterygii sp. nov., an endophytic actinomycete isolated from the stem of Tripterygium hypoglaucum. Int J Syst Evol Microbiol 59:3040–3044

    CAS  PubMed  Google Scholar 

  75. Li J, Zhao GZ, Qin S et al (2009) Streptomyces sedi sp. nov., isolated from surface-sterilized roots of Sedum sp. Int J Syst Evol Microbiol 59:1492–1496

    CAS  PubMed  Google Scholar 

  76. Li J, Zhao GZ, Varma A et al (2012) An endophytic Pseudonocardia species induces the production of Artemisinin in Artemisia annua. PLOS 7:1–23

    Google Scholar 

  77. Li J, Zhao GZ, Zhang YQ et al (2008) Dietzia schimae sp. nov. and Dietzia cercidiphylli sp. nov., from surface-sterilized plant tissues. Int J Syst Evol Microbiol 58:2549–2554

    CAS  PubMed  Google Scholar 

  78. Li J, Zhao GZ, Zhu WY et al (2011) Phytomonospora endophytica gen. nov., sp. nov., isolated from the roots of Artemisia annua L. Int J Syst Evol Microbiol 61:2967–2973

    CAS  PubMed  Google Scholar 

  79. Lichatowich T (2007) The plant growth enhancing and biocontrol mechanisms of Streptomyces lydicus WYEC 108 and its use in nursery and greenhouse production. In: USDA Forest Service Proceedings RMRS-P-50, pp 61–62

  80. Lin L, Ge HM, Yan T et al (2012) Thaxtomin A-deficient endophytic Streptomyces sp. enhances plant disease resistance to pathogenic Streptomyces scabies. Planta 236:1849–1861

    CAS  PubMed  Google Scholar 

  81. Liu N, Wang HB, Liu M et al (2009) Streptomyces alni sp. nov., a daidzein-producing endophyte isolated from a root of Alnus nepalensis D. Don. Int J Syst Evol Microbiol 59:254–258

    CAS  Google Scholar 

  82. Lodewyckx NY, Vangronsveld CJ, Porteous F et al (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Google Scholar 

  83. Ludwig W, Euzeby J, Schumann P, Busse HJ, Trujillo ME, Kämpfer P, Whitman WB (2012) Road map of the phylum Actinobacteria, In: Rainey FA, Kämpfer P, Vos PD, Chun J, Trujillo ME, Kämpfer P, Whitman WB (eds) Bergey’s Manual of Systematic Bacteriology. Springer, Berlin

  84. Meguro A, Toyoda K, Ogiyama H et al (2012) Genes expressed in tissue-cultured seedlings of mountain laurel Kalmia latifolia L with colonizing Streptomyces padanus AOK30. J Gen Plant Pathol 78:303–310

    CAS  Google Scholar 

  85. Merzaeva OV, Shirokikh IG (2010) The production of auxins by the endophytic bacteria of winter rye. Appl Biochem Microbiol 46(1):44–50

    CAS  Google Scholar 

  86. Mingma R, Duangmal K, Trakulnaleamsai S et al (2013) Sphaerisporangium rufum sp. nov., an endophytic actinomycete from roots of Oryza sativa L. Int J Syst Evol Microbiol 64(4):1077–1082

    PubMed  Google Scholar 

  87. Mohandas S, Poovarasana S, Panneerselvama P et al (2013) Guava (Psidium guajava L.) rhizosphere Glomus mosseae spores harbor actinomycetes with growth promoting and antifungal attributes. Sci Hortic 150:371–376

    CAS  Google Scholar 

  88. Müller J, Boller T, Wiemken A (1995) Effects of validamycin A, a potent trehalase inhibitor, and phytohormones on trehalose metabolism in roots and root nodules of soybean and cowpea. Planta 197:362–368

    Google Scholar 

  89. Newton JA, Fray RG (2004) Integration of environmental and host derived signals with quorum sensing during plant microbe interactions. Cell Microbiol 6:213–224

    CAS  PubMed  Google Scholar 

  90. Palaniyandi AS, Yang SH, Zhang LW et al (2013) Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 97:9621–9636

    CAS  PubMed  Google Scholar 

  91. Pertry I, Václavíková K, Gemrotová M et al (2010) Rhodococcus fascians impacts plant development through the dynamic fas-mediated production of a cytokinin mix. Mol Plant Microbe Interact 23:1164–1174

    CAS  PubMed  Google Scholar 

  92. Pierzynski G M, Vance GF, Sims J T (2005) Soils and environmental quality. Taylor and Francis

  93. Psallidas PG, Tsiantos J (2000) Chemical control of fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI Publishing, Wallingford, pp199–234

  94. Qin S, Chen HH, Klenk HP et al (2009) Glycomyces scopariae sp. nov. and Glycomyces mayteni sp. nov., isolated from two medicinal plants in China. Int J Syst Evol Microbiol 59:1023–1027

    CAS  PubMed  Google Scholar 

  95. Qin S, Chen HH, Lee JC et al (2010) Saccharopolyspora gloriosa sp. nov., a novel endophytic actinomycete isolated from the stem of Gloriosa superba L. Int J Syst Evol Microbiol 60:1147–1151

    CAS  PubMed  Google Scholar 

  96. Qin S, Jiang JH, Klenk HP et al (2012) Promicromonospora xylanilytica sp. nov., an endophytic actinomycete isolated from surface-sterilized leaves of the medicinal plant Maytenus austroyunnanensis. Int J Syst Evol Microbiol 62:84–89

    CAS  PubMed  Google Scholar 

  97. Qin S, Li J, Chen HH et al (2009) Isolation, diversity and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Enviro Microbiol 75(19):6176–6186

    CAS  Google Scholar 

  98. Qin S, Li J, Zhang YQ, Zhu WY et al (2009) Plantactinospora mayteni gen. nov., sp. nov., a member of the family Micromonosporaceae. Int J Syst Evol Microbiol 5:2527–2533

    Google Scholar 

  99. Qin S, Li J, Zhao GZ et al (2008) Saccharopolyspora endophytica sp. nov., an endophytic actinomycete isolated from the root of Maytenus austroyunnanensis. Syst Appl Microbiol 31:352–357

    CAS  PubMed  Google Scholar 

  100. Qin S, Xing K, Jiang JH et al (2011) Biodiversity bioactive natural products and biotechnological potential of plant associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473

    CAS  PubMed  Google Scholar 

  101. Qin S, Zhao GZ, Klenk HP et al (2009) Nonomuraea antimicrobica sp. nov., an endophytic actinomycete isolated from leaves of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 59:2747–2751

    CAS  PubMed  Google Scholar 

  102. Qin S, Zhao GZ, Li J et al (2009) Actinomadura flavalba sp. nov., an endophytic actinomycete isolated from leaves of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 59:2453–2457

    CAS  PubMed  Google Scholar 

  103. Qin S, Zhu WY, Jiang JH (2009) Pseudonocardia tropica sp. nov., a novel endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 60(11):2524–2528

    PubMed  Google Scholar 

  104. Qin S, ZhuWY Jiang JH et al (2010) Pseudonocardia tropica sp. nov., a novel endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 60(11):2524–2528

    CAS  PubMed  Google Scholar 

  105. Qiu FB, Huang Y, Sun L et al (2007) Leifsoniagin sengi sp. nov., isolated from ginseng root. Int J Syst Evol Microbiol 57:405–408

    PubMed  Google Scholar 

  106. Rezzonico F, Stockwell OV, Duffy B (2009) Plant agricultural streptomycin formulations do not carry antibiotic resistance genes. Antimicrobl Agents Chemother 53(7):3173–3177

    CAS  Google Scholar 

  107. Richardson AE, Barea JM, Mc Neill Prigent AM et al (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  108. Rose MT, Deaker R, Potard S et al (2011) The survival of plant growth promoting microorganisms in peat inoculant as measured by selective plate counting and enzyme-linked immunoassay. World J Microbiol Biotechnol 27:1649–1659

    CAS  Google Scholar 

  109. Saracchi M, Quaroni S, Corbetta C (2004) Variability on Catellatospora spp. strains isolatedfrom plant materials. Ann Microbiol 54:13–24

    Google Scholar 

  110. Saxena MJ (2011) Efficacy of rhizobacterial strains encapsulated in nontoxic biodegradable gel matrices to promote growth and yield of wheat plants. Appl Soil Ecol 48:301–308

    Google Scholar 

  111. Scherlacha K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760

    Google Scholar 

  112. Schroeckh V, Scherlach K, Nützmann HW et al (2009) Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci USA 106:14558–14563

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Shimizu M (2011) Endophytic Actinomycetes: biocontrol agents and growth promoters. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin

  114. Singh B, Satyanarayana T (2011) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17:93–103

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Singh S, Ladha JK, Gupta RK et al (2007) Evaluation of mulching, intercropping with Sesbania and herbicide use for weed management in dry-seeded rice (Oryza sativa L.). Crop Prot 26:518–524

    CAS  Google Scholar 

  116. Solans M (2007) Discaria trinervis-Frankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47:243–250

    PubMed  Google Scholar 

  117. Solans M, Vobis G, Cassán F et al (2011) Production of phytohormones by root-associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World J Microbiol Biotechnol 27(9):2195–2202

    CAS  Google Scholar 

  118. Solans M, Vobis G, Wall LG (2009) Saprophytic actinomycetes promote nodulation in Medicago sativa Sinorhizobium meliloti symbiosis in the presence of high N. J Plant Growth Regul 28:106–114

    CAS  Google Scholar 

  119. Song GC, Yasir M, Bibi F et al (2010) Nocardioides caricicola sp. nov., an endophytic bacterium isolated from a halophyte, Carex scabrifolia Steud. Int J Syst Evol Microbiol 61(1):105–109

    PubMed  Google Scholar 

  120. Spaepen S, Vanderleyden J (2011) Auxin and plant microbe interactions. Cold Spring Harb Perspect Biol 3(4):1–13

    Google Scholar 

  121. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Google Scholar 

  123. Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385

    CAS  Google Scholar 

  124. Tamura T, Hatano K, Suzuki K (2006) A new genus of the family Micromonosporaceae, Polymorphospora gen. nov., with description of Polymorphospora rubra sp. nov. Int J Syst Evol Microbiol 56:1959–1964

    CAS  PubMed  Google Scholar 

  125. Thamchaipenet A, Indananda C, Bunyoo C et al (2010) Actinoallomurus acaciae sp. nov., a novel endophytic actinomycete isolated from Acacia auriculiformis A. Cunn.exBenth. in Thailand. Int J Syst Evol Microbiol 60:554–559

    CAS  PubMed  Google Scholar 

  126. Tian XL, Cao LX, Tan HM et al (2004) Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. J Microbiol Biotechnol 20:303–309

    Google Scholar 

  127. Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JFand Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Applied Environ Microbiol 2161–2171

  128. Trejo-Estrada SR, Rivas Sepulveda I, Crawford DL (1998) In vitro and in vivo antagonism of Streptomyces violaceusniger YCED9 against fungal pathogens of turfgrass. World J Microbiol Biotechnol 14(6):865–872

    Google Scholar 

  129. Trujillo ME, Kroppenstedt RM, Fernández-Molinero C et al (2007) Micromonospora lupini sp. nov. and Micromonosporasa elicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol 57:2799–2804

    CAS  PubMed  Google Scholar 

  130. Tsavkelova EA, Cherdyntseva TA, Netrusov AI (2005) Auxin production by bacteria associated with orchid roots. Microbiol 74:55–62

    CAS  Google Scholar 

  131. US Environmental Protection Agency, Office of Pesticide Programs, Biopesticide registration action document Streptomyces lydicus LYDICUS WYEC 108, PC Code 006327

  132. Valdes M, Perez NO, Estrada-De Los Santos P et al (2005) Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71:460–466

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    PubMed  Google Scholar 

  134. Vernekar JV, Ghatge MS, Deshpande VV (1999) Alkaline protease inhibitor: a novel class of antifungal proteins against phytopathogenic fungi. Biochem Biophys Res Commun 262:702–707

    CAS  PubMed  Google Scholar 

  135. Wang W, Qiu Z, Tan H, Cao L (2014) Siderophore production by actinobacteria. Biometals 27:623–631

    CAS  PubMed  Google Scholar 

  136. Xie QY, Wang C, Wang R et al (2010) Jishengella endophytica gen. nov., sp. nov., a new member of the family Micromonosporaceae. Int J Syst Evol Microbiol 61(5):1153–1159

    PubMed  Google Scholar 

  137. Xing K, Bian JK, Qin S et al (2012) Kibdelosporangium phytohabitans sp. nov. a novel endophytic actinomycete isolated from oil-seed plant Jatrophacurcas L. containing 1-aminocyclopropane- 1-carboxylic acid deaminase. Antonie Van Leeuwenhoek 101:433–441

    CAS  PubMed  Google Scholar 

  138. Xing K, Liu W, Zhang YJ et al (2013) Amycolatopsis jiangsuensis sp. nov., a novel endophytic actinomycete isolated from a coastal plant in Jiangsu. China Antonie van Leeuwenhoek 103:433–439

    CAS  Google Scholar 

  139. Xing K, Qin S, Fei SM et al (2010) Nocardia endophytica sp. nov., a novel endophytic actinomycete isolated from oil-seed plant Jatropha curcas L. Int J Syst Evol Microbiol 61(8):1854–1858

    PubMed  Google Scholar 

  140. Yandigeri MS, Meena KK, Singh D et al (2012) Drought tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420

    CAS  Google Scholar 

  141. Yoon JH, Lee HB, Yeo SH et al (2004) Janibacter melonis sp. nov., isolated from abnormally spoiled oriental melon in Korea. Int J Syst Evol Microbiol 54:1975–1980

    CAS  PubMed  Google Scholar 

  142. Yuan WM, Crawford DL (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Zacharia JT (2011) Ecological effects of pesticides. In: Stoytcheva M (ed) Pesticides in Modern Worlds-Risks and benefits. Publisher InTech, pp 129–142

  144. Zhao GZ, Li J, Huang HY et al (2010) Pseudonocardia artemisiae sp. nov., a novel actinobacterium isolated from surface-sterilized Artemisia annua L. Int J Syst Evol Microbiol 61(5):1061–1065

    PubMed  Google Scholar 

  145. Zhao GZ, Li J, Qin S et al (2009) Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris root. Int J Syst Evol Microbiol 59:2383–2387

    CAS  PubMed  Google Scholar 

  146. Zhao GZ, Li J, Qin S et al (2010) Streptomyces artemisiae sp. nov., a novel actinomycete isolated from surface-sterilized Artemisia annua L. tissue. Int J Syst Evol Microbiol 60:27–32

    CAS  PubMed  Google Scholar 

  147. Zhao GZ, Li J, Zhu WY et al (2012) Rhodococcus artemisiae sp. nov., an endophytic actinobacterium isolated from the pharmaceutical plant Artemisia annua L. Int J Syst Evol Microbiol 62:900–905

    CAS  PubMed  Google Scholar 

  148. Zhao K, Penttinen P, Guan T et al (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi Plateau, China. Curr Microbiol 62:182–190

    CAS  PubMed  Google Scholar 

  149. Zhou Z, Gu J, Li YQ et al (2012) Genome plasticity and systems evolution in Streptomyces. BMC Bioinform 13(Suppl 10):S8

    CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to Ms. Mana Momeni for her assistance in preparation of schematic figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Hamedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamedi, J., Mohammadipanah, F. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J Ind Microbiol Biotechnol 42, 157–171 (2015). https://doi.org/10.1007/s10295-014-1537-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1537-x

Keywords

Navigation