Skip to main content

Advertisement

Log in

Challenges of formulation and quality of biofertilizers for successful inoculation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The interest in biofertilizers is increasing and so is the potential for their use in sustainable agriculture. However, many of the products that are currently available worldwide are often of very poor quality, resulting in the loss of confidence from farmers. The formulation of an inoculant is a crucial multistep process that should result in one or several strains of microorganisms included in a suitable carrier, providing a safe environment to protect them from the often harsh conditions during storage and ensuring survival and establishment after introduction into soils. One of the key issues in formulation development and production is the quality control of the products, at each stage of the process. This review presents the different components and the major steps involved in the formulation of good quality biofertilizers, including the techniques used to assess the quality of the products following production. The quality of currently available inoculants is also reviewed, emphasizing the need for better quality control systems worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abd-Alla MH, Omar SA, Omar SA (2001) Survival of rhizobia/bradyrhizobia and a rock-phosphate-solubilizing fungus Aspergillus niger on various carriers from some agro-industrial wastes and their effects on nodulation and growth of faba bean and soybean. J Plant Nutr 24:261–272

    Article  CAS  Google Scholar 

  • Adholeya A, Tiwari P, Singh R (2005) Large-scale inoculum production of arbuscular mycorrhizal fungi on root organs and inoculation strategies. In: Declerck S, Strullu DG, Fortin A (eds) In vitro culture of mycorrhizas. Springer, Heidelberg, pp 315–338

    Chapter  Google Scholar 

  • Albareda M, Rodríguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779

    Article  CAS  Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2011) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Microbiology monographs, vol 18. Springer, Berlin, pp 97–116

    Chapter  Google Scholar 

  • Atieno M, Herrmann L, Okalebo R, Lesueur D (2012) Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World J Microbiol Biotechnol 28:2541–2550

    Article  PubMed  CAS  Google Scholar 

  • Banayo NPM, Cruz PC, Aguilar EA, Badayos RB, Haefele SM (2012) Evaluation of biofertilizers in irrigated rice: effects on grain yield at different fertilizer rates. Agriculture 2:73–86

    Article  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  PubMed  CAS  Google Scholar 

  • Biederbeck VO, Geissler HJ (1993) Effect of storage temperatures on Rhizobium meliloti survival in peat- and clay-based inoculants. Can J Plant Sci 73:101–110

    Article  Google Scholar 

  • Brockwell J (1963) Accuracy of a plant-infection technique for counting populations of Rhizobium trifolii. Appl Microbiol 11:377–383

    PubMed  CAS  Google Scholar 

  • Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27:683–697

    Article  CAS  Google Scholar 

  • Bünemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms—a review. Soil Res 44:379–406

    Article  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101

    Article  CAS  Google Scholar 

  • Catroux G, Amarger N (1992) Rhizobia as soil inoculants in agriculture. In: Fry JC, Day MJ (eds) Release of genetically engineered and other micro-organisms. Cambridge University Press, Cambridge, pp 1–13

    Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230:21–30

    Article  CAS  Google Scholar 

  • Clayton GW, Rice WA, Lupwayi NZ, Johnston AM, Lafond GP, Grant CA, Walley F (2004a) Inoculant formulation and fertilizer nitrogen effects on field pea: crop yield and seed quality. Can J Plant Sci 84:89–96

    Article  Google Scholar 

  • Clayton GW, Rice WA, Lupwayi NZ, Johnston AM, Lafond GP, Grant CA, Walley F (2004b) Inoculant formulation and fertilizer nitrogen effects on field pea: nodulation, N2 fixation and nitrogen partitioning. Can J Plant Sci 84:79–88

    Article  Google Scholar 

  • Corkidi L, Allen EB, Merhaut D, Allen MF, Downer J, Bohn J, Evans M (2004) Assessing the infectivity of commercial mycorrhizal inoculants in plant nursery conditions. J Environ Hort 22:149–154

    Google Scholar 

  • Dalpé Y, Monreal M (2004) Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Online Crop Manag. doi:10.1094/CM-2004-0301-09-RV

    Google Scholar 

  • Date RA (2000) Inoculated legumes in cropping systems of the tropics. Field Crops Res 65:123–136

    Article  Google Scholar 

  • Date RA (2001) Advances in inoculant technology: a brief review. Anim Prod Sci 41:321–325

    Article  CAS  Google Scholar 

  • Date RA, Roughley RJ (1977) Preparation of legume seed inoculants. In: Hardy RWF, Gibson AH (eds) A treatise on dinitrogen fixation. Section IV. Agronomy and ecology. Wiley, New York, pp 243–275

    Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology—a review. Soil Biol Biochem 36:1275–1288

    Article  CAS  Google Scholar 

  • De-Bashan LE, Bashan Y (2008) Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant–bacterium interactions. Appl Environ Microbiol 74:6797–6802

    Article  PubMed  CAS  Google Scholar 

  • Duffy EM, Cassells AC (2000) The effect of inoculation of potato (Solanum tuberosum L.) microplants with arbuscular mycorrhizal fungi on tuber yield and tuber size distribution. Appl Soil Ecol 15:137–144

    Article  Google Scholar 

  • Faye A, Dalpé Y, Ndung'u-Magiroi K, Jefwa J, Ndoye ID, Lesueur D (2013) Evaluation of commercial arbuscular mycorrhizal inoculants on maize in Kenya. Can J Plant Sci (in press)

  • Fenice M, Selbman L, Federici F, Vassilev N (2000) Application of encapsulated Penicillium variabile P16 in solubilization of rock phosphate. Bioresour Technol 73:157–162

    Article  CAS  Google Scholar 

  • Forestier S, Alvarado G, Badjel SB, Lesueur D (2001) Effect of Rhizobium inoculation methodologies on nodulation and growth of Leucaena leucocephala. World J Microbiol Biotechnol 17:359–362

    Article  Google Scholar 

  • Gamal-Eldin H, Elbanna K (2011) Field evidence for the potential of Rhodobacter capsulatus as biofertilizer for flooded rice. Curr Microbiol 62:391–395

    Article  PubMed  CAS  Google Scholar 

  • Gaur A, Adholeya A, Mukerji KG (1998) A comparison of AM fungi inoculants using Capsicum and Polianthes in marginal soil amended with organic matter. Mycorrhiza 7:307–312

    Article  Google Scholar 

  • Gemell LG, Hartley EJ, Herridge DF (2005) Point-of-sale evaluation of preinoculated and custom-inoculated pasture legume seed. Anim Prod Sci 45:161–169

    Article  Google Scholar 

  • Gomez M, Revellin C, Hartmann A, Catroux G (1995) Improved enumeration of Bradyrhizobium japonicum in commercial soybean inoculants using selective media. Lett Appl Microbiol 21:142–145

    Article  Google Scholar 

  • Gomez M, Silva N, Hartmann A, Sagardoy M, Catroux G (1997) Evaluation of commercial soybean inoculants from Argentina. World J Microbiol Biotechnol 13:167–173

    Article  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  PubMed  CAS  Google Scholar 

  • Hafeez FY, Yasmin S, Ariani D, Zafar Y, Malik KA (2006) Plant growth-promoting bacteria as biofertilizer. Agron Sustain Dev 26:143–150

    Article  CAS  Google Scholar 

  • Hartley EJ, Gemell LG, Slattery JF, Howieson JG, Herridge DF (2005) Age of peat-based lupin and chickpea inoculants in relation to quality and efficacy. Anim Prod Sci 45:183–188

    Article  Google Scholar 

  • Herridge DF (2008) Inoculation technology for legumes. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 77–115

    Google Scholar 

  • Herridge DF, Gemell G, Hartley E (2002) Legume inoculants and quality control. In: Herridge DF (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR, Canberra, pp 105–115

    Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Herrmann L, Atieno M, Brau L, Lesueur D (2013) Microbial quality of commercial inoculants to increase BNF and nutrient use efficiency. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Hungria M, Loureiro MF, Mendes IC, Campo RJ, Graham PH (2005) Inoculant preparation, production and application. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Kluwer, Dordrecht, pp 223–253

    Chapter  Google Scholar 

  • Husen E, Simanungkalit RDM, Saraswati R (2007) Characterization and quality assessment of Indonesian commercial biofertilizers. Indones J Agric Sci 8:31–38

    Google Scholar 

  • Hynes RK, Jans DC, Bremer E, Lupwayi NZ, Rice WA, Clayton GW, Collins MM (2001) Rhizobium population dynamics in the pea rhizosphere of rhizobial inoculant strain applied in different formulations. Can J Microbiol 47:595–600

    Article  PubMed  CAS  Google Scholar 

  • Jawson MD, Franzluebbers AJ, Berg RK (1989) Bradyrhizobium japonicum survival in and soybean inoculation with fluid gels. Appl Environ Microbiol 55:617–622

    PubMed  CAS  Google Scholar 

  • Jenkins NE, Grzywacz D (2000) Quality control of fungal and viral biocontrol agents—assurance of product performance. Biocontrol Sci Technol 10:753–777

    Article  Google Scholar 

  • John RP, Tyagi RD, Brar SK, Surampalli RY, Prevost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31:211–226

    Article  PubMed  CAS  Google Scholar 

  • Júnior PIF, da Silva Júnior EB, da Silva Júnior S, Rumjanek LMVM, Xavier GR (2012) Performance of polymer compositions as carrier to cowpea rhizobial inoculant formulations: survival of rhizobia in pre-inoculated seeds and field efficiency. Afr J Biotech 11:2945–2951

    Google Scholar 

  • Kannaiyan S (2003) Inoculant production in developing countries-problems, potentials and success. In: Hardarson G, Broughton WJ (eds) Maximising the use of biological nitrogen fixation in agriculture. Kluwer, Dordrecht, pp 187–198

    Google Scholar 

  • Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier JP, Bécard G, Belausov E (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216

    Article  PubMed  CAS  Google Scholar 

  • Khalid A, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth promoting rhizobacteria and sustainable agriculture. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Heidelberg, pp 133–160

    Chapter  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Article  Google Scholar 

  • Knight DJ (2007) Evaluation of Rhizobium inoculant formulations for alfalfa yield and N fixation. Can J Plant Sci 87:267–272

    Article  Google Scholar 

  • Liu ZL, Sinclair JB (1990) Enhanced soybean plant growth and nodulation by Bradyrhizobium japonicum in the presence of strains of Bacillus megaterium. Phytopathology 80:1024

    Article  Google Scholar 

  • Lorda G, Breccia JD, Barbeito V, Pagliero F, Boeris S, Castano C, Pordomingo A, Altolaguirre F, Pastor MD (2007) Peat-based inoculum of Bradyrhizobium japonicum and Sinorhizobium fredii supplemented with xanthan gum. World J Microbiol Biotechnol 23:1–5

    Article  CAS  Google Scholar 

  • Lovato P, Guillemin JP, Gianinazzi S (1992) Application of commercial arbuscular endomycorrhizal fungal inoculants to the establishment of micropropagated grapevine rootstock and pineapple plants. Agronomie 12:873–880

    Article  Google Scholar 

  • Lupwayi NZ, Olsen PE, Sande ES, Keyser HH, Collins MM, Singleton PW, Rice WA (2000) Inoculant quality and its evaluation. Field Crops Res 65:259–270

    Article  Google Scholar 

  • Lupwayi NZ, Clayton GW, Rice WA (2006) Rhizobial inoculants for legume crops. J Crop Improv 15:289–321

    Article  CAS  Google Scholar 

  • Mabood F, Zhou X, Smith D (2006) Preincubated with methyl jasmonate increases soybean nodulation and nitrogen fixation. Agron J 98:289–294

    Article  Google Scholar 

  • Malusa E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:491206. doi:10.1100/2012/491206

    Article  CAS  Google Scholar 

  • Manikandan R, Saravanakumar D, Rajendran L, Raguchander T, Samiyappan R (2010) Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biol Control 54:83–89

    Article  Google Scholar 

  • Marks BB, Megías M, Nogueira MA, Hungria M (2013) Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express 3:1–10

    Article  Google Scholar 

  • Mary P, Ochin D, Tailliez R (1985) Rates of drying and survival of Rhizobium meliloti strains during storage at different relative humidities. Appl Environ Microbiol 50:207–211

    PubMed  CAS  Google Scholar 

  • Maurice S, Beauclair P, Giraud JJ, Sommer G, Hartmann A, Catroux G (2001) Survival and change in physiological state of Bradyrhizobium japonicum in soybean (Glycine max L. Merril) liquid inoculants after long-term storage. World J Microbiol Biotechnol 17:635–643

    Article  CAS  Google Scholar 

  • McQuilken MP, Halmer P, Rhodes DJ (1998) Application of microorganisms to seeds. In: Burges HD (ed) Formulation of microbial biopesticides. Springer, Berlin, pp 255–285

    Chapter  Google Scholar 

  • Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Online Crop Manag. doi:10.1994/CM-2004-0301-05-RV

    Google Scholar 

  • Nguyen HT, Deaker R, Kennedy IR, Roughley RJ (2003) The positive yield response of field-grown rice to inoculation with a multi-strain biofertiliser in the Hanoi area, Vietnam. Symbiosis 35:231–245

    Google Scholar 

  • Okon Y, Hadar H (1987) Microbial inoculants as crop-yield enhancers. Crit Rev Biotechnol 6:61–85

    Article  Google Scholar 

  • Okon Y, Itzigsohn R (1995) The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol Adv 13:415–424

    Article  PubMed  CAS  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Olsen PE, Rice WA, Bordeleau LM, Biederbeck VO (1994a) Analysis and regulation of legume inoculants in Canada: the need for an increase in standards. Plant Soil 161:127–134

    Article  Google Scholar 

  • Olsen PE, Rice WA, Collins MM (1994b) Biological contaminants in North American legume inoculants. Soil Biol Biochem 27:699–701

    Article  Google Scholar 

  • Olsen PE, Rice WA, Bordeleau LM, Demidoff AH, Collins MM (1996) Levels and identities of nonrhizobial microorganisms found in commercial legume inoculant made with nonsterile peat carrier. Can J Microbiol 42:72–75

    Article  PubMed  CAS  Google Scholar 

  • Omer AM (2010) Bioformulations of Bacillus spores for using as biofertilizer. Life Sci J 7:124–131

    Google Scholar 

  • Park JK, Chang HN (2000) Microencapsulation of microbial cells. Biotechnol Adv 18:303–319

    Article  PubMed  CAS  Google Scholar 

  • Penna C, Massa R, Olivieri F, Gutkind G, Cassán F (2011) A simple method to evaluate the number of bradyrhizobia on soybean seeds and its implication on inoculant quality control. AMB Express 1:1–10

    Article  CAS  Google Scholar 

  • Porter WM (1979) The ‘most probable number’ method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soil. Aust J Soil Res 17:515–519

    Article  Google Scholar 

  • Rasoamampionona B, Rabeharisoa L, Andrianjaka A, Duponnois R, Plenchette C (2008) Arbuscular mycorrhizae in Malagasy cropping systems. Biol Agric Hortic 25:327–337

    Article  Google Scholar 

  • Rebah FB, Tyagi RD, Prevost D, Surampalli RY (2002) Wastewater sludge as a new medium for rhizobial growth. Water Qual Res J Can 37:353–370

    Google Scholar 

  • Revellin C, Meunier G, Giraud JJ, Sommer G, Wadoux P, Catroux G (2000) Changes in the physiological and agricultural characteristics of peat-based Bradyrhizobium japonicum inoculants after long-term storage. Appl Microbiol Biotechnol 54:206–211

    Article  PubMed  CAS  Google Scholar 

  • Rice WA, Clayton GW, Olsen PE, Lupwayi NZ (2000) Rhizobial inoculant formulations and soil pH influence field pea nodulation and nitrogen fixation. Can J Soil Sci 80:395–400

    Article  Google Scholar 

  • Rose MT, Deaker R, Potard S, Tran CKT, Vu NT, Kennedy IR (2011) The survival of plant growth promoting microorganisms in peat inoculant as measured by selective plate counting and enzyme-linked immunoassay. World J Microbiol Biotechnol 27:1649–1659

    Article  CAS  Google Scholar 

  • Roughley R (1976) The production of high quality inoculants and their contribution to legume yield. In: Nutman PS (ed) Symbiotic nitrogen fixation in plants. Cambridge University Press, Cambridge, pp 125–136

    Google Scholar 

  • Roughley RJ, Vincent JM (1967) Growth and survival of Rhizobium spp. in peat culture. J Appl Microbiol 30:362–376

    Article  Google Scholar 

  • Rowe HI, Brown CS, Claassen VP (2007) Comparisons of mycorrhizal responsiveness with field soil and commercial inoculum for six native montane species and Bromus tectorum. Restor Ecol 15:44–52

    Article  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734

    Article  PubMed  CAS  Google Scholar 

  • Sahay NS, Singh A, Varma A (1998) Trends in endomycorrhizal research. Indian J Exp Biol 36:1069–1086

    Google Scholar 

  • Sankaram A (1959) Examination of commercial legume inoculants for quality. In: Proceedings of the Indian Academy of Sciences. Springer, pp 40–45

  • Saxena J (2011) Efficacy of rhizobacterial strains encapsulated in nontoxic biodegradable gel matrices to promote growth and yield of wheat plants. Appl Soil Ecol 48:301–308

    Google Scholar 

  • Schulz TJ, Thelen KD (2008) Soybean seed inoculant and fungicidal seed treatment effects on soybean. Crop Sci 48:1975–1983

    Article  CAS  Google Scholar 

  • Seneviratne G, Zavahir JS, Bandara WMMS, Weerasekara MLMA (2008) Fungal–bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24:739–743

    Article  CAS  Google Scholar 

  • Singleton PW, Boonkerd N, Carr TJ, Thompson JA (1997) Technical and market constraints limiting legume inoculant use in Asia. In: Rupela OP, Johansen C, Herridge DF (eds) Extending nitrogen fixation research to farmers' fields. ICRISAT, Patancheru, pp 17–38

    Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. In: Herridge DF (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR, Canberra, pp 52–66

    Google Scholar 

  • Skorupska A, Wielbo J, Kidaj D, Marek-Kozaczuk M (2010) Enhancing Rhizobium–legume symbiosis using signaling factors. In: Khan MS (ed) Microbes for legume improvement. Springer, Wien, pp 27–54

    Chapter  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13

    Article  PubMed  Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crops Res 65:249–258

    Article  Google Scholar 

  • Strullu DG, Plenchette C (1994) Encapsulation de mycorhizes. Biofutur:35–36

  • Suneja P, Dudeja SS, Narula N (2007) Development of multiple co-inoculants of different biofertilizers and their interaction with plants. Arch Agron Soil Sci 53:221–230

    Article  Google Scholar 

  • Tarbell TJ, Koske RE (2007) Evaluation of commercial arbuscular mycorrhizal inocula in a sand/peat medium. Mycorrhiza 18:51–56

    Article  PubMed  CAS  Google Scholar 

  • Taurian T, Anzuay MS, Angelini JG, Tonelli ML, Ludueña L, Pena D, Ibáñez F, Fabra A (2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil 329:421–431

    Article  CAS  Google Scholar 

  • Temprano FJ, Albareda M, Camacho M, Daza A, Santamaria C, Rodríguez-Navarro DN (2002) Survival of several Rhizobium/Bradyrhizobium strains on different inoculant formulations and inoculated seeds. Int Microbiol 5:81–86

    Article  PubMed  CAS  Google Scholar 

  • Thompson AJ (1984) Production and quality control of carrier-based legume inoculants. Information Bulletin No. 17. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India

    Google Scholar 

  • Tittabutr P, Payakapong W, Teaumroong N, Singleton PW, Boonkerd N (2007) Growth, survival and field performance of bradyrhizobial liquid inoculant formulations with polymeric additives. Sci Asia 33:69–77

    Article  CAS  Google Scholar 

  • Trivedi P, Pandey A (2007) Application of immobilized cells of Pseudomonas putida strain MTCC 6842 in alginate to solubilize phosphate in culture medium and soil. J Plant Nutr Soil Sci 170:629–631

    Article  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  PubMed  CAS  Google Scholar 

  • Vassilev N, Nikolaeva I, Vassileva M (2005) Polymer-based preparation of soil inoculants: applications to arbuscular mycorrhizal fungi. Rev Environ Sci Biotechnol 4:235–243

    Article  CAS  Google Scholar 

  • Verma A, Adholeya A (1996) Cost-economics of existing methodologies for inoculum production of vesicular–arbuscular mycorrhizal fungi. In: Mukerji KG (ed) Concepts in mycorrhizal research. Kluwer Academic, Dordrecht, pp 179–194

    Chapter  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vidyarthi AS, Desrosiers M, Tyagi RD, Valero JR (2000) Foam control in biopesticide production from sewage sludge. J Ind Microbiol Biotechnol 25:86–92

    Article  CAS  Google Scholar 

  • Walley F, Clayton G, Gan Y, Lafond G (2004) Performance of rhizobial inoculant formulations in the field. Online Crop Manag. doi:10.1994/CM-2004-0301-03-RV

    Google Scholar 

  • Xavier IJ, Holloway G, Leggett M, Bios P (2004) Development of rhizobial inoculant formulations. Online Crop Manag. doi:10.1994/CM-2004-0301-03-RV

    Google Scholar 

  • Yabur R, Bashan Y, Hernández-Carmona G (2007) Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion. J Appl Phycol 19:43–53

    Article  CAS  Google Scholar 

  • Yardin MR, Kennedy IR, Thies JE (2000) Development of high quality carrier materials for field delivery of key microorganisms used as bio-fertilisers and bio-pesticides. Radiat Phys Chem 57:565–568

    Article  CAS  Google Scholar 

  • Young CC (2007) Development and application of biofertilizers in the republic of China. In: Business potential for agricultural biotechnology. Asian Productivity Organization, Japan, pp 51–57

  • Young CC, Rekha PD, Lai WA, Arun AB (2006) Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnol Bioeng 95:76–83

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Lambert Brau for editing this manuscript and for his useful comments to improve its content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Lesueur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, L., Lesueur, D. Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97, 8859–8873 (2013). https://doi.org/10.1007/s00253-013-5228-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5228-8

Keywords

Navigation