Skip to main content

Advertisement

Log in

Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability

  • Review Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Endophytic microbes are known to live asymptomatically inside their host throughout different stages of their life cycle and play crucial roles in the growth, development, fitness, and diversification of plants. The plant–endophyte association ranges from mutualism to pathogenicity. These microbes help the host to combat a diverse array of biotic and abiotic stressful conditions. Endophytic microbes play a major role in the growth promotion of their host by solubilizing of macronutrients such as phosphorous, potassium, and zinc; fixing of atmospheric nitrogen, synthesizing of phytohormones, siderophores, hydrogen cyanide, ammonia, and act as a biocontrol agent against wide array of phytopathogens. Endophytic microbes are beneficial to plants by directly promoting their growth or indirectly by inhibiting the growth of phytopathogens. Over a long period of co-evolution, endophytic microbes have attained the mechanism of synthesis of various hydrolytic enzymes such as pectinase, xylanases, cellulase, and proteinase which help in the penetration of endophytic microbes into tissues of plants. The effective usage of endophytic microbes in the form of bioinoculants reduce the usage of chemical fertilizers. Endophytic microbes belong to different phyla such as Actinobacteria, Acidobacteria, Bacteroidetes, Deinococcus–thermus, Firmicutes, Proteobacteria, and Verrucomicrobia. The most predominant and studied endophytic bacteria belonged to Proteobacteria followed by Firmicutes and then by Actinobacteria. The most dominant among reported genera in most of the leguminous and non-leguminous plants are Bacillus, Pseudomonas, Fusarium, Burkholderia, Rhizobium, and Klebsiella. In future, endophytic microbes have a wide range of potential for maintaining health of plant as well as environmental conditions for agricultural sustainability. The present review is focused on endophytic microbes, their diversity in leguminous as well as non-leguminous crops, biotechnological applications, and ability to promote the growth of plant for agro-environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhikari TB, Gurung S, Hansen JM, Bonman JM (2012) Pathogenic and genetic diversity of Xanthomonas translucens pv. undulosa in North Dakota. Phytopathology 102:390–402

    PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Google Scholar 

  • Ahmed N, Shahab S (2011) Phosphate solubilization: their mechanism genetics and application. Int J Microbiol 9:4408–4412

    Google Scholar 

  • Aina O, Quesenberry K, Gallo M (2012) Thidiazuron-induced tissue culture regeneration from quartered-seed explants of Arachis paraguariensis. Crop Sci 52:1076–1083

    CAS  Google Scholar 

  • Albermann S, Linnemannstöns P, Tudzynski B (2013) Strategies for strain improvement in Fusarium fujikuroi: overexpression and localization of key enzymes of the isoprenoid pathway and their impact on gibberellin biosynthesis. Appl Microbiol Biotechnol 97:2979–2995

    CAS  PubMed  Google Scholar 

  • Andrist-Rangel Y, Hillier S, Öborn I, Lilly A, Towers W, Edwards AC, Paterson E (2010) Assessing potassium reserves in northern temperate grassland soils: a perspective based on quantitative mineralogical analysis and aqua-regia extractable potassium. Geoderma 158:303–314

    CAS  Google Scholar 

  • Ardebili ZO, Ardebili NO, Mahdi Hamdi SM (2011) Physiological effects of’Pseudomonasfluorescens’ CHA0 on tomato (‘Lycopersicon esculentum’Mill.) plants and its possible impact on Fusarium oxysporum f. sp.’Lycopersici’. Aust J Crop Sci 5:1631

    CAS  Google Scholar 

  • Asghari S, Harighi B, Mozafari AA, Esmaeel Q, Barka EA (2019) Screening of endophytic bacteria isolated from domesticated and wild growing grapevines as potential biological control agents against crown gall disease. Biocontrol 64:723–735

    CAS  Google Scholar 

  • Ashley DL, Blount BC, Singer PC, Depaz E, Wilkes C, Gordon S, Lyu C, Masters J (2005) Changes in blood trihalomethane concentrations resulting from differences in water quality and water use activities. Arch Environ Occup Health 60:7–15

    CAS  PubMed  Google Scholar 

  • Baca B, Elmerich C (2007) Microbial production of plant hormones. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 113–143

    Google Scholar 

  • Bacon C, Hinton D (1996) Symptomless endophytic colonization of maize by Fusarium moniliforme. Can J Bot 74:1195–1202

    Google Scholar 

  • Bacon CW, Hinton DM (2007) Potential for control of seedling blight of wheat caused by Fusarium graminearum and related species using the bacterial endophyte Bacillus mojavensis. Biocontrol Sci Technol 17:81–94

    Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  Google Scholar 

  • Baldani JI, Baldani VL (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Ciênc 77:549–579

    CAS  PubMed  Google Scholar 

  • Banerjee MR, Yesmin L, Vessey JK (2006) Plant-growth-promoting rhizobacteria as biofertilizers and biopesticides. Handbook of microbial biofertilizers. Food Products Press, New York, pp 137–181

    Google Scholar 

  • Bary A (1866) Morphologie und physiologie der pilze, flechten und myxomyceten. W. Engelmann, Lemgo

    Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66

    PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay S (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209

    CAS  PubMed  Google Scholar 

  • Bhattacharyya P, Jain R (2000) Phosphorus solubilising biofertilisers in the whirlpool of rock phosphate-challenges and opportunities. Fertil News 45:45–52

    CAS  Google Scholar 

  • Bhutani N, Maheshwari R, Suneja P (2018) Isolation and characterization of plant growth promoting endophytic bacteria isolated from Vigna radiata. Indian J Agric Res 52:596–603

    Google Scholar 

  • Black M, Moolhuijzen P, Chapman B, Barrero R, Howieson J, Hungria M, Bellgard M (2012) The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes 3:138–166

    PubMed  PubMed Central  Google Scholar 

  • Caballero-Mellado J, Martínez-Aguilar L, Paredes-Valdez G, De-Los Santos P (2004) Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172. https://doi.org/10.1099/ijs.0.02951-0

    Article  CAS  PubMed  Google Scholar 

  • Camerini S, Senatore B, Lonardo E, Imperlini E, Bianco C, Moschetti G, Rotino GL, Campion B, Defez R (2008) Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch Microbiol 190:67–77

    CAS  PubMed  Google Scholar 

  • Cassán F (2003) Activación de giberelinas in vivo por bacterias endofíticas a través de la deconjugación de glucosíl conjugados y la 3β-hidroxilación. Ph.D. Thesis, Universidad Nacional de Río Cuarto

  • Castro S, Permigiani M, Vinocur M, Fabra A (1999) Nodulation in peanut (Arachis hypogaea L.) roots in the presence of native and inoculated rhizobia strains. Appl Soil Ecol 13:39–44

    Google Scholar 

  • Chang L, Ramireddy E, Schmülling T (2013) Lateral root formation and growth of Arabidopsis is redundantly regulated by cytokinin metabolism and signalling genes. J Exp Bot 64:5021–5032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary R, Dhar V, Singh R (2009) Association of fungi with wilt complex of lentil at different crop growth stages and moisture regimes. Arch Phytopathol Plant Prot 42:340–343

    CAS  Google Scholar 

  • Chaudhary HJ, Peng G, Hu M, He Y, Yang L, Luo Y, Tan Z (2012) Genetic diversity of endophytic diazotrophs of the wild rice, Oryza alta and identification of the new diazotroph, Acinetobacter oryzae sp. nov. Microb Ecol 63:813–821

    CAS  PubMed  Google Scholar 

  • Chelius MK, Triplett EW (2000) Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl Environ Microbiol 66:783–787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chelius M, Triplett E (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    CAS  PubMed  Google Scholar 

  • Chen C, Xin K, Liu H, Cheng J, Shen X, Wang Y, Zhang L (2017) Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 7:41564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Huh SU, Kojima M, Sakakibara H, Paek K-H, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19:284–295

    CAS  PubMed  Google Scholar 

  • Chung EJ, Hossain MT, Khan A, Kim KH, Jeon CO, Chung YR (2015) Bacillus oryzicola sp. nov., an endophytic bacterium isolated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice. Plant Pathol J 31:152

    PubMed  PubMed Central  Google Scholar 

  • Cui L, Yang C, Wei L, Li T, Chen X (2020) Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab. Biol Control 141:104156

    Google Scholar 

  • Dalal J, Kulkarni N, Bodhankar M (2014) Antagonistic and plant growth promoting potentials of indigenous endophytic fungi of soybean (Glycine max (L.) Merril). Indian J Adv Plant Res 1:9–16

    Google Scholar 

  • de Bellone SC, Bellone C (2006) Presence of endophytic diazotrophs in sugarcane juice. World J Microbiol Biotechnol 22:1065–1068

    Google Scholar 

  • de Souza JT, de Boer M, de Waard P, van Beek TA, Raaijmakers JM (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172

    PubMed  PubMed Central  Google Scholar 

  • Défago G (1993) 2,4-Diacetylphloroglucinol, a promising compound in biocontrol. Plant Pathol 42:311–312

    Google Scholar 

  • Delvasto P, Valverde A, Ballester A, Munoz J, González F, Blazquez M, Igual J, García-Balboa C (2008) Diversity and activity of phosphate bioleaching bacteria from a high-phosphorus iron ore. Hydrometallurgy 92:124–129

    CAS  Google Scholar 

  • Dhingra OD, Coelho-Netto RA, Rodrigues FÁ, Silva GJ Jr, Maia CB (2006) Selection of endemic nonpathogenic endophytic Fusarium oxysporum from bean roots and rhizosphere competent fluorescent Pseudomonas species to suppress Fusarium-yellow of beans. Biol Control 39:75–86

    Google Scholar 

  • Dinić Z, Ugrinović M, Bosnić P, Mijatović M, Zdravković J, Miladinović M, Jošić D (2014) Solubilization of inorganic phosphate by endophytic Pseudomonas sp. from French bean nodules. Ratarstvo i povrtarstvo 51:100–105

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    CAS  Google Scholar 

  • Donald T, Shoshannah R, Deyrup ST, Gloer JB (2005) A protective endophyte of maize: acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol Res 109:610–618

    Google Scholar 

  • Dorozhkin SV (2011) Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter 1:121–164

    PubMed  PubMed Central  Google Scholar 

  • Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek 106:85–125

    CAS  PubMed  Google Scholar 

  • Dudeja S, Giri R, Saini R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microbiol 52:248–260

    CAS  PubMed  Google Scholar 

  • Dwivedi D, Johri B (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 85:1693–1703

    CAS  Google Scholar 

  • Estrada P, Mavingui P, Cournoyer B, Fontaine F, Balandreau J, Caballero-Mellado J (2002) A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Can J Microbiol 48:285–294

    CAS  PubMed  Google Scholar 

  • Franco C, Michelsen P, Percy N, Conn V, Listiana E, Moll S, Loria R, Coombs J (2007) Actinobacterial endophytes for improved crop performance. Australas Plant Pathol 36:524–531

    Google Scholar 

  • Frank A, Saldierna Guzmán J, Shay J (2017) Transmission of bacterial endophytes. Microorganisms 5:70

    PubMed Central  Google Scholar 

  • Franz CMAP, Vancanneyt M, Vandemeulebroecke K, De Wachter M, Cleenwerck I, Hoste B, Schillinger U, Holzapfel WH, Swings J (2006) Pediococcus stilesii sp. nov., isolated from maize grains. Int J Syst Evol Microbiol 56:329–333. https://doi.org/10.1099/ijs.0.63944-0

    Article  CAS  PubMed  Google Scholar 

  • Fuentes-Ramirez LE, Jimenez-Salgado T, Abarca-Ocampo I, Caballero-Mellado J (1993) Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil 154:145–150

    CAS  Google Scholar 

  • Gao J-l, Lv F-y, Wang X-m, Qiu T-l, Yuan M, Li J-w, Zhou Y, Sun J-g (2015a) Paenibacillus wenxiniae sp. nov., a nifH gene-harbouring endophytic bacterium isolated from maize. Antonie Van Leeuwenhoek 108:1015–1022

    CAS  PubMed  Google Scholar 

  • Gao J-l, Lv F-y, Wang X-m, Yuan M, Li J-w, Wu Q-y, Sun J-g (2015b) Flavobacterium endophyticum sp. nov., a nifH gene-harbouring endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 65:3900–3904

    CAS  PubMed  Google Scholar 

  • Gao X, Gong Y, Huo Y, Han Q, Kang Z, Huang L (2015c) Endophytic Bacillus subtilis strain E1R-J is a promising biocontrol agent for wheat powdery mildew. Biomed Res Int 2015:462645

    PubMed  PubMed Central  Google Scholar 

  • Gao J-l, Sun P, Wang X-m, Cheng S, Lv F, Qiu T-l, Yuan M, Sun J-g (2016a) Sphingomonas zeicaulis sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 66:3755–3760

    CAS  PubMed  Google Scholar 

  • Gao J-L, Sun P, Wang X-M, Qiu T-L, Lv F-Y, Yang M-M, Lu M, Sun J-G (2016b) Filimonas zeae sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 66:2730–2734

    CAS  PubMed  Google Scholar 

  • Gao J-l, Sun P, Wang X-m, Qiu T-l, Lv F-y, Yuan M, Yang M-m, Sun J-g (2016c) Dyadobacter endophyticus sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 66:4022–4026. https://doi.org/10.1099/ijsem.0.001304

    Article  CAS  PubMed  Google Scholar 

  • Gao J-L, Yuan M, Wang X-M, Qiu T-L, Lv F-Y, Yang M-M, Sun J-G (2016d) Paenibacillus radicis sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 66:807–811

    CAS  PubMed  Google Scholar 

  • Gao J-l, Sun P, Mao X-j, Du Y-l, Liu B-y, Sun J-g (2017a) Pedobacter zeae sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 67:231–236

    CAS  PubMed  Google Scholar 

  • Gao J-l, Sun P, Wang X-m, Lv F-y, Mao X-j, Sun J-g (2017b) Rhizobium wenxiniae sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 67:2798–2803

    CAS  PubMed  Google Scholar 

  • Gao J-l, Sun P, Wang X-m, Lv F-y, Sun J-g (2017c) Microbacterium zeae sp. nov., an endophytic bacterium isolated from maize stem. Antonie Van Leeuwenhoek 110:697–704

    CAS  PubMed  Google Scholar 

  • Gao J-l, Sun P, Sun X-h, Tong S, Yan H, Han M-l, Mao X-j, Sun J-g (2018) Caulobacter zeae sp. nov. and Caulobacter radicis sp. nov., novel endophytic bacteria isolated from maize root (Zea mays L.). Syst Appl Microbiol 41:604–610

    CAS  PubMed  Google Scholar 

  • Garcia-Romera I, Garcia-Garrido J, Martin J, Fracchia S, Mujica M, Godeas A, Ocampo J (1998) Interactions between saprotrophic Fusarium strains and arbuscular mycorrhizas of soybean plants. Symbiosis 24:235–246

    Google Scholar 

  • Garima G, Nath JP (2015) Screening of potential PGPR candidates as future biofertilizers-a strategic approach from lab to field. Res J Biotechnol 10:48–62

    CAS  Google Scholar 

  • Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephan MP, Teixeira KRS, Dobereiner J, De Ley J (1989) Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int J Syst Evol Microbiol 39:361–364. https://doi.org/10.1099/00207713-39-3-361

    Article  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Altern Agric 1:51–57

    Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, pp 197–203

    Google Scholar 

  • Goldstein AH Future trends in research on microbial phosphate solubilization: one hundred years of insolubility. In: Velázquez E, Barrueco CR (eds) First international meeting on microbial phosphate solubilization, 2007. Springer, Netherlands, pp 91–96

  • Gond SK, Bergen MS, Torres MS, White JF Jr (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    CAS  PubMed  Google Scholar 

  • Govindarajan M, Kwon S-W, Weon H-Y (2007) Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World J Microbiol Biotechnol 23:997–1006

    CAS  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon S-W, Weon H-Y, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37

    PubMed  Google Scholar 

  • Guo YL, Ge S (2005) Molecular phylogeny of Oryzeae (Poaceae) based on DNA sequences from chloroplast, mitochondrial, and nuclear genomes. Am J Bot 92:1548–1558

    CAS  PubMed  Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Biotechnol 44:136–142

    CAS  Google Scholar 

  • Guo X, Guan X, Liu C, Jia F, Li J, Jin P, Li W, Wang X, Xiang W (2016) Plantactinosporasoyae sp. nov., an endophytic actinomycete isolated from soybean root [Glycine max (L.) Merr]. Int J Syst Evol Microbiol 66:2578–2584. https://doi.org/10.1099/ijsem.0.001088

    Article  CAS  PubMed  Google Scholar 

  • Gupta G, Panwar J, Akhtar MS, Jha PN (2012) Endophytic nitrogen-fixing bacteria as biofertilizer. In: Lichtfouse E (ed) Sustainable agriculture reviews. Springer, Dordrecht, pp 183–221

    Google Scholar 

  • Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza A, Mehouachi JR, Tadeo F, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Google Scholar 

  • Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    PubMed  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178

    CAS  PubMed  Google Scholar 

  • Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda S, Okubo T, Kaneko T, Inaba S, Maekawa T, Eda S, Sato S, Tabata S, Mitsui H, Minamisawa K (2010) Community shifts of soybean stem-associated bacteria responding to different nodulation phenotypes and N levels. ISME J 4:315

    CAS  PubMed  Google Scholar 

  • Imran A, Hafeez FY, Frühling A, Schumann P, Malik KA, Stackebrandt E (2010) Ochrobactrum ciceri sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol Microbiol 60:1548–1553

    CAS  PubMed  Google Scholar 

  • Indananda C, Thamchaipenet A, Matsumoto A, Inahashi Y, Duangmal K, Takahashi Y (2011) Actinoallomurus oryzae sp. nov., an endophytic actinomycete isolated from roots of a Thai jasmine rice plant. Int J Syst Evol Microbiol 61:737–741

    CAS  PubMed  Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant Microbe Interact 17:1078–1085

    CAS  PubMed  Google Scholar 

  • James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119

    Google Scholar 

  • James EK, Gyaneshwar P, Barraquio WL, Mathan N, Ladha JK (2000) Endophytic diazotrophs associated with rice. The quest for nitrogen fixation in rice. International Rice Research Institute, Makati City, pp 119–140

    Google Scholar 

  • Jankiewicz U, Kołtonowicz M (2012) The involvement of Pseudomonas bacteria in induced systemic resistance in plants. Appl Biochem Biotechnol 48:244–249

    CAS  Google Scholar 

  • Jeong J-J, Sang MK, Lee DW, Choi I-G, Kim KD (2019) Chryseobacterium phosphatilyticum sp. nov., a phosphate-solubilizing endophyte isolated from cucumber (Cucumis sativus L.) root. Int J Syst Evol Microbiol 69:610–615

    CAS  PubMed  Google Scholar 

  • Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Microb Ecol 58:179–188

    CAS  PubMed  Google Scholar 

  • Ji SH, Gururani MA, Chun S-C (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98

    CAS  PubMed  Google Scholar 

  • Joe MM, Islam MR, Karthikeyan B, Bradeepa K, Sivakumaar PK, Sa T (2012) Resistance responses of rice to rice blast fungus after seed treatment with the endophytic Achromobacter xylosoxidans AUM54 strains. Crop Prot 42:141–148

    Google Scholar 

  • Joseph B, Ranjan Patra R, Lawrence R (2012) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod 1:141–152

    Google Scholar 

  • Kaewkla O, Franco CMM (2017) Streptomyces roietensis sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of jasmine rice, Oryza sativa KDML 105. Int J Syst Evol Microbiol 67:4868–4872

    CAS  PubMed  Google Scholar 

  • Kämpfer P, Busse H-J, Kleinhagauer T, McInroy JA, Glaeser SP (2016a) Sphingobacterium zeae sp. nov., an endophyte of maize. Int J Syst Evol Microbiol 66:2643–2649

    PubMed  Google Scholar 

  • Kämpfer P, Glaeser SP, McInroy JA, Busse H-J (2016b) Nocardioides zeicaulis sp. nov., an endophyte actinobacterium of maize. Int J Syst Evol Microbiol 66:1869–1874. https://doi.org/10.1099/ijsem.0.000959

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi–current perspective. Arch Agron Soil Sci 56:73–98

    CAS  Google Scholar 

  • Khunnamwong P, Surussawadee J, Jindamorakot S, Limtong S (2014) Wickerhamiella siamensis fa, sp. nov., an endophytic and epiphytic yeast species isolated from sugar cane leaf. Int J Syst Evol Microbiol 64:3849–3855

    PubMed  Google Scholar 

  • Kieber JJ (2002) Tribute to Folke Skoog: recent advances in our understanding of cytokinin biology. J Plant Growth Regul 21:1

    CAS  PubMed  Google Scholar 

  • Kieber JJ, Schaller GE (2014) Cytokinins. The Arabidopsis Book/American Society of Plant Biologists 12

  • Kim I, Chhetri G, Kim J, Seo T (2019) Amnibacterium setariae sp. nov., an endophytic actinobacterium isolated from dried foxtail. Antonie Van Leeuwenhoek 112:1731–1738

    CAS  PubMed  Google Scholar 

  • Kouas S, Labidi N, Debez A, Abdelly C (2005) Effect of P on nodule formation and N fixation in bean. Agron Sustain Dev 25:389–393

    CAS  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    CAS  PubMed  Google Scholar 

  • Kumar M, Tomar RS, Lade H, Paul D (2016a) Methylotrophic bacteria in sustainable agriculture. World J Microbiol Biotechnol 32:120

    PubMed  Google Scholar 

  • Kumar P, Dubey R, Maheshwari DK, Bajpai V (2016b) ACC deaminase producing Rhizobium leguminosarum RPN5 isolated from root nodules of Phaseolus vulgaris L. Bangladesh J Bot 45:477–484

    Google Scholar 

  • Kumar V, Jain L, Jain SK, Chaturvedi S, Kaushal P (2020) Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. S Afr J Bot. https://doi.org/10.1016/j.sajb.2020.02.017

    Article  Google Scholar 

  • Kumawat K, Sharma P, Sirari A, Singh I, Gill B, Singh U et al (2019) Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp.(LSBR-3) for improving plant growth, nutrient acquisition and soil health in soybean. World J Microbiol Biotechnol 35:47

    CAS  PubMed  Google Scholar 

  • Kushwaha P, Kashyap PL, Srivastava AK, Tiwari RK (2020) Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Braz J Microbiol 51:229–241

    PubMed  Google Scholar 

  • Ladha J, Barraquio W, Revilla L (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. In: Ladha JK, de Bruijn FJ, Malik KA (eds) Opportunities for biological nitrogen fixation in rice and other non-legumes. Springer, Dordrecht, pp 15–24

    Google Scholar 

  • Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla J, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186:5384–5391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J-H, Seo M-W, Kim H-G (2012) Isolation and characterization of an antagonistic endophytic bacterium Bacillus velezensis CB3 the control of citrus green mold pathogen Penicillium digitatum. Korean J Mycol 40:118–123

    Google Scholar 

  • Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246

    CAS  Google Scholar 

  • Li D, Rothballer M, Schmid M, Esperschütz J, Hartmann A (2011) Acidovorax radicis sp. nov., a wheat-root-colonizing bacterium. Int J Syst Evol Microbiol 61:2589–2594. https://doi.org/10.1099/ijs.0.025296-0

    Article  CAS  PubMed  Google Scholar 

  • Lin S-Y, Hameed A, Liu Y-C, Hsu Y-H, Hsieh Y-T, Lai W-A, Young C-C (2016) Chryseobacterium endophyticum sp. nov. isolated from a maize leaf. Int J Syst Evol Microbiol 67:570–575

    Google Scholar 

  • Lindsay W, Schwab A (1982) The chemistry of iron in soils and its availability to plants. J Plant Nutr 5:821–840

    CAS  Google Scholar 

  • Liu W, Xu X, Wu X, Yang Q, Luo Y, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28:133–140

    PubMed  Google Scholar 

  • Liu B, Qiao H, Huang L, Buchenauer H, Han Q, Kang Z, Gong Y (2009) Biol Control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol Control 49:277–285

    Google Scholar 

  • Liu Y, Liu L, Qiu F, Schumann P, Shi Y, Zou Y, Zhang X, Song W (2010) Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 60:1266–1270. https://doi.org/10.1099/ijs.0.012179-0

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Li YH, Liu Y, Zhu JN, Liu QF, Liu Y, Gu JG, Zhang XX, Li CL (2011) Flavobacterium phragmitis sp. nov., an endophyte of reed (Phragmites australis). Int J Syst Evol Microbiol 61:2717–2721

    CAS  PubMed  Google Scholar 

  • Liu C, Wang X, Zhao J, Liu Q, Wang L, Guan X, He H, Xiang W (2013) Streptomycesharbinensis sp. nov., an endophytic, ikarugamycin-producing actinomycete isolated from soybean root [Glycine max (L.) Merr.]. Int J Syst Evol Microbiol 63:3579–3584

    CAS  PubMed  Google Scholar 

  • Liu Y, Zhai L, Wang R, Zhao R, Zhang X, Chen C, Cao Y, Cao Y, Xu T, Ge Y, Zhao J, Cheng C (2015) Paenibacillus zeae sp. nov., isolated from maize (Zea mays L.) seeds. Int J Syst Evol Microbiol 65:4533–4538. https://doi.org/10.1099/ijsem.0.000608

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhao R, Wang R, Yao S, Zhai L, Zhang X et al (2016) Paenibacillus chinensis sp. nov., isolated from maize (Zea mays L.) seeds. Antonie Van Leeuwenhoek 109:207–213

    CAS  PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ER, Taghavi S, Mezgeay M, der Lelie DV (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Google Scholar 

  • López-López A, Rogel MA, Ormeno-Orrillo E, Martínez-Romero J, Martínez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33:322–327

    PubMed  Google Scholar 

  • Louden BC, Haarmann D, Lynne AM (2011) Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ 12:51

    PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Ann Rev Microbiol 63:541–556

    CAS  Google Scholar 

  • MacMillan J, Suter P (1958) The occurrence of gibberellin A 1 in higher plants: isolation from the seed of runner bean (Phaseolus multiflorus). Naturwissenschaften 45:46

    CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Hari K, Saravanan V, Sa T (2006) Influence of pesticides on the growth rate and plant-growth promoting traits of Gluconacetobacter diazotrophicus. Pestic Biochem Physiol 84:143–154

    CAS  Google Scholar 

  • Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2017) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 24:3315–3335

    CAS  Google Scholar 

  • Manoel da Silva J, Carvalho dos Santos TM, Santos de Albuquerque L, Coentro Montaldo Y, Ubaldo Lima de Oliveira J, Mesquita da Silva SG, Silva Nascimento M, da Rocha Oliveira Teixeira R (2015) Potential of the endophytic bacteria (‘Herbaspirillum’spp. and’Bacillus’ spp.) to promote sugarcane growth. Aust J Crop Sci 9:754

  • Mbai F, Magiri E, Matiru V, Nganga J, Nyambati V (2013) Isolation and characterization of bacterial root endophytes with potential to enhance plant growth from Kenyan Basmati rice. Am Int J Contemp Res 3:25–40

    Google Scholar 

  • McAfee J (2008) Potassium, a key nutrient for plant growth. Department of Soil and Crop Sciences. http://jimmcafeetamu.edu/files/potassium

  • McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348

    PubMed  Google Scholar 

  • Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbio 73:7259–7267

    CAS  Google Scholar 

  • Menéndez E, Carro L, Tejedor C, Fernández-Pascual M, Martínez-Molina E, Peix A, Velázquez E (2016) Paenibacillus hispanicus sp. nov. isolated from Triticum aestivum roots. Int J Syst Evol Microbiol 66:4628–4632. https://doi.org/10.1099/ijsem.0.001401

    Article  CAS  PubMed  Google Scholar 

  • Merbach W, Fankem H, Deubel A (2009) Influence of rhizosphere bacteria of African oil palm (Elaeis guineensis) on calcium, iron, and aluminum phosphate in vitro mobilization. In: International symposium “root research and applications, pp 2–4

  • Milner J, Raffel S, Lethbridge B, Handelsman J (1995) Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus UW85. Appl Microbiol Biotechnol 43:685–691

    CAS  PubMed  Google Scholar 

  • Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061–3065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mingma R, Duangmal K, Trakulnaleamsai S, Thamchaipenet A, Matsumoto A, Takahashi Y (2014) Sphaerisporangium rufum sp. nov., an endophytic actinomycete from roots of Oryza sativa L. Int J Syst Evol Microbiol 64:1077–1082

    CAS  PubMed  Google Scholar 

  • Mingma R, Duangmal K, Thamchaipenet A, Trakulnaleamsai S, Matsumoto A, Takahashi Y (2015) Streptomyces oryzae sp. nov., an endophytic actinomycete isolated from stems of rice plant. J Antibiot 68:368

    CAS  PubMed  Google Scholar 

  • Mirza MS, Ahmad W, Latif F, Haurat J, Bally R, Normand P, Malik KA (2001) Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 237:47–54

    CAS  Google Scholar 

  • Montañez A, Abreu C, Gill PR, Hardarson G, Sicardi M (2009) Biological nitrogen fixation in maize (Zea mays L.) by 15 N isotope-dilution and identification of associated culturable diazotrophs. Biol Fertil Soils 45:253–263

    Google Scholar 

  • Nakayama T, Homma Y, Hashidoko Y, Mizutani J, Tahara S (1999) Possible role of xanthobaccins produced by Stenotrophomonas sp. Strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 65:4334–4339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neubauer U, Furrer G, Kayser A, Schulin R (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytoremediat 2:353–368

    CAS  Google Scholar 

  • Nielsen TH, Sørensen J (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl Environ Microbiol 69:861–868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen T, Sørensen D, Tobiasen C, Andersen JB, Christophersen C, Givskov M, Sørensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nour SM, Fernandez MP, Normand P, Cleyet-Marel J-C (1994) Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Evol Microbiol 44:511–522

    CAS  Google Scholar 

  • Nour SM, Cleyet-Marel J-C, Normand P, Fernandez MP (1995) Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Evol Microbiol 45:640–648

    CAS  Google Scholar 

  • Nourozian J, Etebarian HR, Khodakaramian G (2006) Biol control of Fusarium graminearum on wheat by antagonistic bacteria. Songklanakarin J Sci Technol 28:29–38

    Google Scholar 

  • Ofek-Lalzar M, Gur Y, Ben-Moshe S, Sharon O, Kosman E, Mochli E, Sharon A (2016) Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis. FEMS Microbiol Ecol 92:fiw152. https://doi.org/10.1093/femsec/fiw152

  • Oliveira A, Urquiaga S, Döbereiner J, Baldani J (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215

    CAS  Google Scholar 

  • Othman R, Aminun Naher U, Zuraidah Yusoff S (2013) Effect of urea-N on growth and indoleacetic acid production of Stenotrophomonas maltophilia (Sb16) isolated from rice growing soils in Malaysia. Chil J Agric Res 73:187–192

    Google Scholar 

  • Ozturk A, Caglar O, Sahin F (2003) Yield response of wheat and barley to inoculation of plant growth promoting rhizobacteria at various levels of nitrogen fertilization. J Plant Nutr Soil Sci 166:262–266

    CAS  Google Scholar 

  • Patel N, Patel Y, Mankad A (2014) Bio fertilizer: a promising tool for sustainable farming. Int J Innov Res Sci Eng Technol 3(15838):15842

    Google Scholar 

  • Pathak A, Sharma A, Johri B, Sharma A (2004) Pseudomonas strain GRP3 induces systemic resistance to sheath blight in rice. Int Rice Res Notes 29:35–36

    Google Scholar 

  • Peng G, Yuan Q, Li H, Zhang W, Tan Z (2008) Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 58:2158–2163

    CAS  PubMed  Google Scholar 

  • Peng G, Zhang W, Luo H, Xie H, Lai W, Tan Z (2009) Enterobacter oryzae sp. nov., a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia. Int J Syst Evol Microbiol 59:1650–1655

    CAS  PubMed  Google Scholar 

  • Perin L, Martinez-Aguilar L, Paredes-Valdez G, Baldani J, Estrada-De Los Santos P, Reis V, Caballero-Mellado J (2006) Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int J Syst Evol Microbiol 56:1931–1937

    CAS  PubMed  Google Scholar 

  • Perrig D, Boiero M, Masciarelli O, Penna C, Ruiz O, Cassán F, Luna M (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    CAS  PubMed  Google Scholar 

  • Pourkheirandish M, Komatsuda T (2007) The importance of barley genetics and domestication in a global perspective. Ann Bot 100:999–1008

    PubMed  PubMed Central  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2015) Can a diazotrophic endophyte originally isolated from lodgepole pine colonize an agricultural crop (corn) and promote its growth? Soil Biol Biochem 89:210–216

    CAS  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2018) Nitrogen-fixation by endophytic bacteria in agricultural crops: recent advances. In: Khan A, Fahad S (eds) Nitrogen in agriculture-updates. InTech Publisher, pp 73–94

  • Quecine M, Araújo W, Rossetto P, Ferreira A, Tsui S, Lacava P, Mondin M, Azevedo J, Pizzirani-Kleiner AA (2012) Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans 33.1. Appl Environ Microbiol 78:7511–7518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537

    CAS  PubMed  Google Scholar 

  • Radzki W, Mañero FG, Algar E, García JL, García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104:321–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajan S, Watkinson J, Sinclair A (1996) Phosphate rocks for direct application to soils. In: Sparks DL (ed) Advances in agronomy, vol 57. Academic Press, New York, pp 77–159

    Google Scholar 

  • Rajawat MVS, Singh R, Singh D, Yadav AN, Singh S, Kumar M et al (2020) Spatial distribution and identification of bacteria in stressed environments capable to weather potassium aluminosilicate mineral. Braz J Microbiol 51:751–764. https://doi.org/10.1007/s42770-019-00210-2

    Article  PubMed  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    CAS  Google Scholar 

  • Ramesh R, Joshi A, Ghanekar M (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol 25:47–55

    Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl Soil Ecol 73:87–96

    Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India Sect B Biol Sci. https://doi.org/10.1007/s40011-020-01168-0

    Article  Google Scholar 

  • Rangjaroen C, Rerkasem B, Teaumroong N, Noisangiam R, Lumyong S (2015) Promoting plant growth in a commercial rice cultivar by endophytic diazotrophic bacteria isolated from rice landraces. Ann Microbiol 65:253–266

    CAS  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biol control of multiple cucumber pathogens. Phytopathology 88:1158–1164

    CAS  PubMed  Google Scholar 

  • Rehm G, Schmitt M (2002) Potassium for crop production. University of Minnesota, Minneapolis

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    PubMed  Google Scholar 

  • Reis V, Estrada-De Los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani V, Schmid M, Baldani J (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54:2155–2162

    CAS  PubMed  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    PubMed  Google Scholar 

  • Rothballer M, Schmid M, Klein I, Gattinger A, Grundmann S, Hartmann A (2006) Herbaspirillum hiltneri sp. nov., isolated from surface-sterilized wheat roots. Int J Syst Evol Microbiol 56:1341–1348

    CAS  PubMed  Google Scholar 

  • Sabry SR, Saleh SA, Batchelor CA, Jones J, Jotham J, Webster G, Kothari SL, Davey MR, Cocking EC (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proc Roy Soc Lond B Biol Sci 264:341–346

    Google Scholar 

  • Saini R, Kumar V, Dudeja S, Pathak D (2015) Beneficial effects of inoculation of endophytic bacterial isolates from roots and nodules in chickpea. Int J Curr Microbiol App Sci 4:207–221

    CAS  Google Scholar 

  • Sandhya V, Shrivastava M, Ali SZ, Prasad VSSK (2017) Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russ Agric Sci 43:22–34

    Google Scholar 

  • Saubidet MI, Fatta N, Barneix AJ (2002) The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant Soil 245:215–222

    CAS  Google Scholar 

  • Sayyed R, Badgujar M, Sonawane H, Mhaske M, Chincholkar S (2005) Production of microbial iron chelators (siderophores) by fluorescent Pseudomonads. Indian J Biotechnol 4:489–490

    Google Scholar 

  • Sayyed R, Chincholkar S, Reddy M, Gangurde N, Patel P (2013) Siderophore producing PGPR for crop nutrition and phytopathogen suppression. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin, pp 449–471

    Google Scholar 

  • Schindler DW, Hecky R (2009) Eutrophication: more nitrogen data needed. Science 324:721–722

    CAS  PubMed  Google Scholar 

  • Senthil N, Raguchander T, Viswanathan R, Samiyappan R (2003) Talc formulated fluorescent pseudomonads for sugarcane red rot suppression and enhanced yield under field conditions. Sugar Tech 5:37–43

    CAS  Google Scholar 

  • Senthilkumar M, Anandham R, Madhaiyan M, Venkateswaran V, Sa T (2011) Endophytic bacteria: perspectives and applications in agricultural crop production. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, pp 61–96

    Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif mutant strains. Mol Plant Microb Interact 14:358–366

    CAS  Google Scholar 

  • Sha Y, Wang Q, Li Y (2016) Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast. SpringerPlus 5:1238

    PubMed  PubMed Central  Google Scholar 

  • Shahid M, Khan MS (2018) Glyphosate induced toxicity to chickpea plants and stress alleviation by herbicide tolerant phosphate solubilizing Burkholderia cepacia PSBB1 carrying multifarious plant growth promoting activities. 3 Biotech 8:131

    PubMed  PubMed Central  Google Scholar 

  • Shakeel M, Rais A, Hassan MN, Hafeez FY (2015) Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Front Microbiol 6:1286

    PubMed  PubMed Central  Google Scholar 

  • Sharma A, Johri B, Sharma A, Glick B (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP 3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35:887–894

    CAS  Google Scholar 

  • Shehata H, Lyons E, Jordan K, Raizada M (2016) Bacterial endophytes from wild and ancient maize are able to suppress the fungal pathogen Sclerotinia homoeocarpa. J Appl Microbiol 120:756–769

    CAS  PubMed  Google Scholar 

  • Shen Y, Zhang Y, Liu C, Wang X, Zhao J, Jia F, Yang L, Yang D, Xiang W (2014) Micromonospora zeae sp. nov., a novel endophytic actinomycete isolated from corn root (Zea mays L.). J Antibiot 67:739

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    CAS  PubMed  Google Scholar 

  • Sheng X, Huang W (2002) Mechanism of potassium release from feldspar affected by the sprain Nbt of silicate bacterium. Acta Pedol Sin 39:863–871

    CAS  Google Scholar 

  • Sindhu S, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 171–185

    Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Mahajan MM, Prasanna R, Singh S, Kaushik R, Singh RN, Kumar K, Saxena AK (2017a) Deciphering the Mechanisms of Endophyte-Mediated Biofortification of Fe and Zn in Wheat. J Plant Growth Regul 37:174–182

    Google Scholar 

  • Singh D, Rajawat MVS, Kaushik R, Prasanna R, Saxena AK (2017b) Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant Soil 416:107–116

    CAS  Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Mahajan MM, Prasanna R, Singh S, Kaushik R, Singh RN, Kumar K, Saxena AK (2018) Deciphering the mechanisms of endophyte-mediated biofortification of Fe and Zn in wheat. J Plant Growth Regul 37:174–182

    CAS  Google Scholar 

  • Singh B, Boukhris I, Pragya KV, Yadav AN, Farhat-Khemakhem A et al (2020) Contribution of microbial phytases in improving plants growth and nutrition: a review. Pedosphere 30:295–313. https://doi.org/10.1016/S1002-0160(20)60010-8

    Article  Google Scholar 

  • Skoog F, Miller C (1957) Chemical regulation of growth and organ formation in plant tissues cultured. Symp Soc Exp Biol 54:118–130

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    CAS  PubMed  Google Scholar 

  • Sparks DL (1987) Potassium dynamics in soils. Adv Soil Sci 6:1–63

    CAS  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Royal Botanic Gardens, Kew

    Google Scholar 

  • Statistics F (2006) The fertiliser association of India. New Delhi 5:125–127

    Google Scholar 

  • Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial endophytes. Dekker, New York, pp 3–30

    Google Scholar 

  • Sturz A, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Google Scholar 

  • Subramanian P, Kim K, Krishnamoorthy R, Sundaram S, Sa T (2015) Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regul 76:327–332

    CAS  Google Scholar 

  • Suman A, Shrivastava A, Gaur A, Singh P, Singh J, Yadav R (2008) Nitrogen use efficiency of sugarcane in relation to its BNF potential and population of endophytic diazotrophs at different N levels. Plant Growth Regul 54:1–11

    CAS  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 117–143

    Google Scholar 

  • Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424

    CAS  PubMed  Google Scholar 

  • Susilowati D, Kadir T, Ruskanda A (2012) Seed dipping application of local endophytic bacterial consortium against bacterial leaf blight of rice. J Agrotrop 17:7–13

    Google Scholar 

  • Thanaboripat D, Thawai C, Kittiwongwattana C, Laosinwattana C, Koohakan P, Parinthawong N (2015) Micromonospora endophytica sp. nov., an endophytic actinobacteria of Thai upland rice (Oryza sativa). J Antibiot 68:680

    CAS  PubMed  Google Scholar 

  • Tian X, Cao L, Tan H, Zeng Q, Jia Y, Han W, Zhou S (2004) Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J Microbiol Biotechnol 20:303–309

    Google Scholar 

  • Tilak K, Ranganayaki N, Pal K, De R, Saxena A, Nautiyal CS, Mittal S, Tripathi A, Johri B (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Tivendale ND, Ross JJ, Cohen JD (2014) The shifting paradigms of auxin biosynthesis. Trends Plant Sci 19:44–51

    CAS  PubMed  Google Scholar 

  • Tonelli M, Taurian T, Ibáñez F, Angelini J, Fabra A (2010) Selection and in vitro characterization of biocontrol agents with potential to protect peanut plants against fungal pathogens. J Plant Pathol 92:73–82

    Google Scholar 

  • Tripathi AK, Verma SC, Chowdhury SP, Lebuhn M, Gattinger A, Schloter M (2006) Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 56:1677–1680. https://doi.org/10.1099/ijs.0.63934-0

    Article  CAS  PubMed  Google Scholar 

  • Turkington T, Orr D, Clear R, Patrick S, Burnett P, Xi K (2002) Fungal plant pathogens infecting barley and wheat seed from Alberta, 1995–1997. Can J Plant Pathol 24:302–308

    Google Scholar 

  • Valverde A, Velazquez E, Gutierrez C, Cervantes E, Ventosa A, Igual J-M (2003) Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53:1979–1983

    CAS  PubMed  Google Scholar 

  • Van Loon L (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Google Scholar 

  • Vande Broek A, Vanderleyden J (1995) Genetics of the Azospirillum-plant root association. Crit Rev Plant Sci 14:445–466

    CAS  Google Scholar 

  • Vandevivere P, Welch S, Ullman W, Kirchman D (1994) Enhanced dissolution of silicate minerals by bacteria at near-neutral pH. Microb Ecol 27:241–251

    CAS  PubMed  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant–microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant–microbe interactions in agro-ecological perspectives. Springer, Berlin, pp 543–580

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK et al (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26:1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  Google Scholar 

  • Vessey JK, Pawlowski K, Bergman B (2005) Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp. and cycads. In: Root physiology: from gene to function. SpringerNature, Singapore, pp 51–78

  • Voisard C, Keel C, Haas D, Dèfago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Dai C-C (2011) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol 61:207–215

    CAS  Google Scholar 

  • Wang S, Hu T, Jiao Y, Wei J, Cao K (2009) Isolation and characterization of Bacillus subtilis EB-28, an endophytic bacterium strain displaying biocontrol activity against Botrytis cinerea Pers. Front Agric China 3:247–252

    Google Scholar 

  • Wang S, Wang W, Jin Z, Du B, Ding Y, Ni T, Jiao F (2013) Screening and diversity of plant growth promoting endophytic bacteria from peanut. Afr J Microbiol Res 7:875–884

    Google Scholar 

  • Wang Y, Yang X, Zhang X, Dong L, Zhang J, Wei Y, Feng Y, Lu L (2014) Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator. Sedum alfredii H. JAgric Food Chem 62:1783–1791

    CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    CAS  Google Scholar 

  • Whitelaw MA (1999) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    Google Scholar 

  • Winterbourn CC (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 82:969–974

    PubMed  Google Scholar 

  • Woodward AW, Bartel B (2005) A receptor for auxin. Plant Cell 17:2425–2429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie C-H, Yokota A (2005) Pleomorphomonas oryzae gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from paddy soil of Oryza sativa. Int J Syst Evol Microbiol 55:1233–1237

    CAS  PubMed  Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK et al (2015) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Kumar V, Dhaliwal HS, Prasad R, Saxena AK (2018) Microbiome in crops: diversity, distribution, and potential role in crop improvement. In: Crop improvement through microbial biotechnology. Elsevier, Amsterdam, pp 305–332. https://doi.org/10.1016/B978-0-444-63987-5.00015-3

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020a) Advances in plant microbiome and sustainable agriculture: diversity and biotechnological applications. Springer, Singapore

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020b) Advances in plant microbiome and sustainable agriculture: functional annotation and future challenges. Springer, Singapore

    Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020c) Plant Microbiomes for Sustainable Agriculture. Springer, Cham

    Google Scholar 

  • Yaish MW, Antony I, Glick BR (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek 107:1519–1532

    CAS  PubMed  Google Scholar 

  • Yan J, Yan H, Liu LX, Chen WF, Zhang XX, Verástegui-Valdés MM, Wang ET, Han XZ (2017) Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil. Arch Microbiol 199:97–104

    CAS  PubMed  Google Scholar 

  • Yang JH, Liu HX, Zhu GM, Pan YL, Xu LP, Guo JH (2008) Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. J Appl Microbiol 104:91–104

    CAS  PubMed  Google Scholar 

  • Yang F, Zhang R, Wu X, Xu T, Ahmad S, Zhang X et al (2020) An endophytic strain of the genus Bacillus isolated from the seeds of maize (Zea mays L.) has antagonistic activity against maize pathogenic strains. Microb Pathog 142:104074

    CAS  PubMed  Google Scholar 

  • Yanni YG, Rizk RY, El-Fattah FKA, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Funct Plant Biol 28:845–870

    CAS  Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    CAS  Google Scholar 

  • You C, Zhou F (1989) Non-nodular endorhizospheric nitrogen fixation in wetland rice. Can J Microbiol 35:403–408

    CAS  Google Scholar 

  • Youssef HH, Fayez M, Monib M, Hegazi N (2004) Gluconacetobacter diazotrophicus: a natural endophytic diazotroph of Nile Delta sugarcane capable of establishing an endophytic association with wheat. Biol Fertil Soils 39:391–397

    CAS  Google Scholar 

  • Yu J, Guan X, Liu C, Xiang W, Yu Z, Liu X et al (2016) Lysinibacillus endophyticus sp. nov., an indole-3-acetic acid producing endophytic bacterium isolated from corn root (Zea mays cv. Xinken-5). Antonie Van Leeuwenhoek 109:1337–1344

    CAS  PubMed  Google Scholar 

  • Zaidi A, Khan M, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    CAS  PubMed  Google Scholar 

  • Zhang GX, Peng GX, Wang ET, Yan H, Yuan QH, Zhang W, Lou X, Wu H, Tan ZY (2008a) Diverse endophytic nitrogen-fixing bacteria isolated from wild rice Oryza rufipogon and description of Phytobacter diazotrophicus gen. nov. sp. nov. Arch Microbiol 189:431–439

    CAS  PubMed  Google Scholar 

  • Zhang J, Wu D, Zhang J, Liu Z, Song F (2008b) Saccharopolyspora shandongensis sp. nov., isolated from wheat-field soil. Int J Syst Evol Microbiol 58:1094–1099. https://doi.org/10.1099/ijs.0.65521-0

    Article  CAS  PubMed  Google Scholar 

  • Zhang JJ, Liu TY, Chen WF, Wang ET, Sui XH, Zhang XX, Li Y, Li Y, Chen WX (2012a) Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. Int J Syst Evol Microbiol 62:2737–2742

    CAS  PubMed  Google Scholar 

  • Zhang YZ, Chen WF, Li M, Sui XH, Liu H-C, Zhang XX, Chen WX (2012b) Bacillus endoradicis sp. nov., an endophytic bacterium isolated from soybean root. Int J Syst Evol Microbiol 62:359–363

    CAS  PubMed  Google Scholar 

  • Zhang X-X, Gao J-S, Cao Y-H, Sheirdil RA, Wang X-C, Zhang L (2015) Rhizobium oryzicola sp. nov., potential plant-growth-promoting endophytic bacteria isolated from rice roots. Int J Syst Evol Microbiol 65:2931–2936

    CAS  PubMed  Google Scholar 

  • Zhang L, Gao J-S, Kim S-G, Zhang C-W, Jiang J-Q, Ma X-T, Zhang J, Zhang X-X (2016) Novosphingobium oryzae sp. nov., a potential plant-promoting endophytic bacterium isolated from rice roots. Int J Syst Evol Microbiol 66:302–307

    CAS  PubMed  Google Scholar 

  • Zhang L-L, Gan L-Z, Xu Z-B, Yang F, Li Y, Fan X-L, Liu X-F, Tian Y-Q, Dai Y-M (2018) Pedobacter chitinilyticus sp. nov., a chitin-degrading bacterium isolated from wheat leaf tissue. Int J Syst Evol Microbiol 68:3713–3719

    PubMed  Google Scholar 

  • Zhao L, Xu Y, Lai X-H, Shan C, Deng Z, Ji Y (2015) Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz J Microbiol 46:977–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Xu Y, Lai X (2018) Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Braz J Microbiol 49:269–278

    CAS  PubMed  Google Scholar 

  • Zhu B, Zhou Q, Lin L, Hu C, Shen P, Yang L, An Q, Xie G, Li Y (2013) Enterobacter sacchari sp. nov., a nitrogen-fixing bacterium associated with sugar cane (Saccharum officinarum L.). Int J Syst Evol Microbiol 63:2577–2582

    CAS  PubMed  Google Scholar 

  • Ziedan E (2006) Manipulating endophytic bacteria for biological control to soil borne diseases of peanut. J Appl Sci Res 2:497–502

    Google Scholar 

  • Zörb C, Senbayram M, Peiter E (2014) Potassium in agriculture—status and perspectives. J Plant Physiol 171:656–669

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib and Department of Environment, Science and Technology (DEST), Shimla, HP funded project “Development of microbial consortium as bio-inoculants for drought and low temperature growing crops for organic farming in Himachal Pradesh” for providing the facilities and financial support, to undertake the investigations. There are no conflicts of interest.

Funding

Funding by Department of Environment, Science and Technology (DEST), Shimla, HP funded project “Development of microbial consortium as bio-inoculants for drought and low temperature growing crops for organic farming in Himachal Pradesh”.

Author information

Authors and Affiliations

Authors

Contributions

KLR, and DK, has compiled the review and TK, RD, and NY finalised the figure and table. The review has been checked and revised by ANY, NY, HSD, AKS.

Corresponding author

Correspondence to Ajar Nath Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, K.L., Kour, D., Kaur, T. et al. Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie van Leeuwenhoek 113, 1075–1107 (2020). https://doi.org/10.1007/s10482-020-01429-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-020-01429-y

Keywords

Navigation