Skip to main content

Advertisement

Log in

Salinity stress alleviation using arbuscular mycorrhizal fungi. A review

  • Review Paper
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Salinity is one of the most severe environmental stress as it decreases crop production of more than 20% of irrigated land worldwide. Hence, it is important to develop salt-tolerant crops. Understanding the mechanisms that enable plant growth under saline conditions is therefore required. Acclimation of plants to salinized conditions depends upon activation of cascades of molecular networks involved in stress sensing, signal transduction, and the expression of specific stress-related genes and metabolites. The stress signal is first perceived at the membrane level by the receptors and then transduced in the cell to switch on the stress-responsive genes which mediate stress tolerance. In addition to stress-adaptative mechanisms developed by plants, arbuscular mycorrhizal fungi have been shown to improve plant tolerance to abiotic environmental factors such as salinity. In this review, we emphasize the significance of arbuscular mycorrhizal fungi alleviation of salt stress and their beneficial effects on plant growth and productivity. Although salinity can affect negatively arbuscular mycorrhizal fungi, many reports show improved growth and performance of mycorrhizal plants under salt stress conditions. These positive effects are explained by improved host plant nutrition, higher K+/Na+ ratios in plant tissues and a better osmotic adjustment by accumulation of compatible solutes such as proline, glycine betaine, or soluble sugars. Arbuscular mycorrhizal plants also improve photosynthetic- and water use efficiency under salt stress. Arbuscular mycorrhizal plants enhance the activity of antioxidant enzymes in order to cope with the reactive oxygen species generated by salinity. At the molecular level, arbuscular mycorrhizal symbiosis regulates the expression of plant genes involved in the biosynthesis of proline, of genes encoding aquaporins, and of genes encoding late embryogenesis abundant proteins, with chaperone activity. The regulation of these genes allows mycorrhizal plants to maintain a better water status in their tissues. Gene expression patterns suggest that mycorrhizal plants are less strained by salt stress than non-mycorrhizal plants. In contrast, scarce information is available on the possible regulation by the arbuscular mycorrhizal symbiosis of plant genes encoding Na+/H+ antiporters or cyclic nucleotide-gated channels. These genes encode proteins with a key role in the regulation of uptake, distribution and compartimentation of sodium and other ions within the plant, and are major determinants for the salt sensitiveness of a plant. Thus, we propose that investigating the participation of cation proton antiporters and cyclic nucleotide-gated channels on arbuscular mycorrhizal symbiosis under salinity is a promising field that should shed further light on new mechanisms involved in the enhanced tolerance of mycorrhizal plants to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AMF:

Arbuscular mycorrhizal fungus

BAS:

Branched-absorbing structure

CNGC:

Cyclic nucleotide-gated channel

Lo:

Root hydraulic conductivity

NMP:

Nucleotide monophosphate

NIP:

Nodulin 26-like intrinsic protein

PIP:

Plasma membrane intrinsic protein

P5CS:

Δ1-pyrroline-5-carboxylate-synthetase

ROS:

Reactive oxygen species

RWC:

Relative water content

TIP:

Tonoplast intrinsic protein

SIP:

Small and basic intrinsic protein

Ψleaf:

Leaf water potential

References

  • Ábrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    PubMed  Google Scholar 

  • Adiku SGK, Renger M, Wessolek G, Facklam M, Hecht-Bucholtz C (2001) Simulation of the dry matter production and seed yield of common beans under varying soil water and salinity conditions. Agr Water Manage 47:55–68

    Google Scholar 

  • Al-Garni SMS (2006) Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. Afr J Biotechnol 5:133–142

    CAS  Google Scholar 

  • Alguacil MM, Hernández JA, Caravaca F, Portillo B, Roldán A (2003) Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol Plant 118:562–570

    CAS  Google Scholar 

  • Aliasgharzadeh N, Rastin NS, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122

    CAS  Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    CAS  Google Scholar 

  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7. doi:10.1016/j.scienta.2006.02.019

    Google Scholar 

  • Al-Karaki GN, Clark RB (1998) Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. J Plant Nutr 21:263–276

    CAS  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47

    CAS  Google Scholar 

  • Andrade G, Azcón R, Bethlenfalvay GJ (1995) A rhizobacterium modifies plant and soil responses to the mycorrhizal fungus Glomus mosseae. Appl Soil Ecol 2:195–202

    Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89–96

    CAS  Google Scholar 

  • Aroca R, Ferrante A, Vernieri P, Chrispeels MJ (2006) Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Ann Bot 98:1301–1310. doi:10.1093/aob/mcl219

    PubMed  CAS  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816. doi:10.1111/j.1469-8137.2006.01961.x

    PubMed  CAS  Google Scholar 

  • Augé RM (2000) Stomatal behaviour of arbuscular mycorrhizal plants. In: Kapulnik Y, Douds D (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, Dordrecht, pp 201–237

    Google Scholar 

  • Babu RC, Zhang JX, Blum A, Ho THD, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862. doi:10.1016/j.plantsci.2003.11.023

    CAS  Google Scholar 

  • Balagué C, Lin BQ, Alcon C, Flottes G, Malmström S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379. doi:10.1105/tpc.006999

    PubMed  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2005) Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, pp 195–212

    Google Scholar 

  • Barea JM, Toro M, Orozco MO, Campos E, Azcón R (2002) The application of isotopic 32P and 15N-dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35–42

    CAS  Google Scholar 

  • Benavides MP, Marconi PL, Gallego SM, Comba ME, Tomaro ML (2000) Relationship between antioxidant defence systems and salt tolerance in Solanum tuberosum. Austr J Plant Physiol 27:273–278

    CAS  Google Scholar 

  • Bethlenfalvay GJ, Cantrell IC, Mihara KL, Schreiner RP (1999) Relationships between soil aggregation and mycorrhizae as influenced by soil biota and nitrogen nutrition. Biol Fertil Soils 28:356–363

    Google Scholar 

  • Bethlenfalvay GJ, Schüepp H (1994) Arbuscular mycorrhizas and agrosystem stability. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, Switzerland, pp 117–131

    Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water–stress tolerance in plants. Trends Biotechnol 14:89–97

    CAS  Google Scholar 

  • Bolandnazar S, Aliasgarzadeh N, Neishabury MR, Chaparzadeh N (2007) Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Sci Hortic 114:11–15. doi:10.1016/j.scienta.2007.05.012

    Google Scholar 

  • Borsics T, Webb D, Andeme-Ondzighi C, Staehelin LA, Christopher DA (2007) The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. Planta 225:563–573. doi:10.1007/s00425-006-0372-3

    PubMed  CAS  Google Scholar 

  • Bowler C, Van Montagu MV, Inzé D (1992) Superoxide dismutase and stress tolerance. Ann Rev Plant Physiol Plant Mol Biol 43:83–116

    CAS  Google Scholar 

  • Breuninger M, Requena N (2004) Recognition events in AM symbiosis: analysis of fungal gene expression at the early appressorium stage. Fungal Genet Biol 41:794–804. doi:10.1016/j.fgb.2004.04.002

    PubMed  CAS  Google Scholar 

  • Brundett MC, Abbott LK (1991) Roots of jarrah forest plants. 1. Mycorrhizal associations of shrubs and herbaceous plants. Aust J Bot 39:445–457

    Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    CAS  Google Scholar 

  • Carvalho LM, Cacador I, Martins-Loução MA (2001) Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal). Mycorrhiza 11:303–309

    Google Scholar 

  • Chan CWM, Schorrak LM, Smith RK, Bent AF, Sussman MR (2003) A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiol 132:728–731. doi:10.1104/pp.102.019216

    PubMed  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    CAS  Google Scholar 

  • Close T (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    CAS  Google Scholar 

  • Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK, Bent AF (2000) The Arabidopsis dnd1 "defense, no death" gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97:9323–9328

    PubMed  CAS  Google Scholar 

  • Compant S, van der Heijden MG, Sessitsch A (2010) Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol Ecol 73:197–214. doi:10.1111/j.1574-6941.2010.00900.x

    PubMed  CAS  Google Scholar 

  • Craven KB, Zagotta WN (2006) CNG and HCN channels: two peas, one pod. Ann Rev Physiol 68:375–401. doi:10.1146/annurev.physiol.68.040104.134728

    CAS  Google Scholar 

  • Dalton DA (1995) Antioxidant defenses of plants and fungi. In: Ahmad S (ed) Oxidative stress and antioxidant defenses in biology. Chapman and Hall, New York, pp 298–355

    Google Scholar 

  • Dasgan HY, Aktas H, Abak K, Cakmak I (2002) Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant Sci 163:695–703

    CAS  Google Scholar 

  • Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569:317–320. doi:10.1016/j.febslet.2004.06.016

    PubMed  CAS  Google Scholar 

  • Duan XG, Neuman DS, Reiber JM, Green CD, Saxton AM, Augé RM (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J Exp Bot 47:1541–1550

    CAS  Google Scholar 

  • Duke ER, Johnson CR, Koch KE (1986) Accumulation of phosphorus, dry matter and betaine during Nacl stress of split-root Citrus seedlings colonized with vesicular arbuscular mycorrhizal fungi on zero, one or two halves. New Phytol 104:583–590

    CAS  Google Scholar 

  • Estrada-Luna AA, Davies FT (2003) Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and postacclimatization. J Plant Physiol 160:1073–1083

    PubMed  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280. doi:10.1093/aob/mcp251

    PubMed  CAS  Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190. doi:10.1007/s00572-002-0170-0

    PubMed  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963. doi:10.1111/j.1469-8137.2008.02531.x

    PubMed  CAS  Google Scholar 

  • Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta Gene Struct Expr 1446:149–155

    CAS  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514. doi:10.1139/W09-010

    PubMed  CAS  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan (pigeonpea). J Plant Growth Regul 27:115–124. doi:10.1007/s00344-007-9038-z

    CAS  Google Scholar 

  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Nat Acad Sci USA 96:1480–1485

    PubMed  CAS  Google Scholar 

  • George E (2000) Nutrient uptake. In: Douds KY, Jr DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic, Dordrecht, pp 307–343

    Google Scholar 

  • Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5571–5575

    PubMed  CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Logi C (1994) Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol 127:703–709

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175. doi:10.1007/s00374-003-0636-z

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760. doi:10.1007/s00248-007-9239-9

    PubMed  CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312. doi:10.1007/s00572-003-0274-1

    PubMed  Google Scholar 

  • Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM (2006) Arabidopsis thaliana cyclic nucleotide-gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57:791–800. doi:10.1093/jxb/erj064

    PubMed  CAS  Google Scholar 

  • Goicoechea N, Antolin MC, Sánchez-Díaz M (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100:989–997

    CAS  Google Scholar 

  • Gorham J (1995) Betaines in higher plants-biosynthesis and role in stress metabolism. In: Wallsgrove RM (ed) Amino acids and their derivatives in higher plants. Cambridge University Press, Cambridge, pp 173–203

    Google Scholar 

  • Gossett DR, Millhollon EP, Lucas MC (1994) Antioxidant response to Nacl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706–714

    CAS  Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422

    Google Scholar 

  • Gutteridge JM, Halliwell B (1989) Iron toxicity and oxygen radicals. Baillières Clin Haematol 2:195–256

    PubMed  CAS  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    CAS  Google Scholar 

  • Hajiboland R, Joudmand A (2009) The K/Na replacement and function of antioxidant defence system in sugar beet (Beta vulgaris L.) cultivars. Acta Agr Scand Section B-Soil and Plant Sci 59:246–259. doi:10.1080/09064710802029544

    CAS  Google Scholar 

  • Hajiboland R, Joudmand A, Fotouhi K (2009) Mild salinity improves sugar beet (Beta vulgaris L.) quality. Acta Agr Scand Section B-Soil and Plant Sci 59:295–305. doi:10.1080/09064710802154714

    CAS  Google Scholar 

  • Hanway JJ, Heidel H (1952) Soil analysis methods as used in Iowa State College soil testing laboratory. Iowa Agri news 57:1–31

    Google Scholar 

  • He XH, Nara K (2007) Element biofortification: can mycorrhizas potentially offer a more effective and sustainable pathway to curb human malnutrition? Trends Plant Sci 12:331–333. doi:10.1016/j.tplants.2007.06.008

    PubMed  CAS  Google Scholar 

  • Heinen RB, Ye Q, Chaumont F (2009) Role of aquaporins in leaf physiology. J Exp Bot 60:2971–2985. doi:10.1093/jxb/erp171

    PubMed  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146. doi:10.1016/j.phytochem.2006.09.023

    PubMed  CAS  Google Scholar 

  • Hirrel MC, Gerdemann JW (1980) Improved growth of onion and bell pepper in saline soils by two vesicular–arbuscular mycorrhizal fungi. Soil Sci Soc Amer J 44:654–655

    CAS  Google Scholar 

  • Hu C-A, Delauney A, Verma Desh Pal S (1992) A bifunctional enzyme (pyrroline-5-carboxylate syntethase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89:9354–9358

    PubMed  CAS  Google Scholar 

  • Imai R, Chang L, Ohta A, Bray EA, Takagi M (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170:243–248

    PubMed  CAS  Google Scholar 

  • Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M (2005) Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett 579:5814–5820. doi:10.1016/j.febslet.2005.09.076

    PubMed  CAS  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53. doi:10.1007/s00248-007-9249-7

    PubMed  Google Scholar 

  • Jakob B, Heber U (1996) Photoproduction and detoxification of hydroxyl radicals in chloroplasts and leaves and relation to photoinactivation of photosystems I and II. Plant Cell Physiol 37:629–635

    CAS  Google Scholar 

  • Jeffries P, Barea JM (2001) Arbuscular mycorrhiza: a key component of sustainable plant–soil ecosystems. In: Hock B (ed) The Mycota: fungal associations, Vol. IX. Springer, Berlin, pp 95–113

    Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  Google Scholar 

  • Jindal V, Atwal A, Sekhon BS, Singh R (1993) Effect of vesicular–arbuscular mycorrhizae on metabolism of moong plants under Nacl salinity. Plant Physiol Biochem 31:475–481

    CAS  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    PubMed  CAS  Google Scholar 

  • Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379. doi:10.1007/s00572-006-0046-9

    PubMed  CAS  Google Scholar 

  • Juniper S, Abbott LK (1993) Vesicular–arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    Google Scholar 

  • Kaplan B, Sherman T, Fromm H (2007) Cyclic nucleotide-gated channels in plants. FEBS Lett 581:2237–2246. doi:10.1016/j.febslet.2007.02.017

    PubMed  CAS  Google Scholar 

  • Khalvati MA, Hu Y, Mozafar A, Schmidhalter U (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol 7:706–712. doi:10.1055/s-2005-872893

    PubMed  CAS  Google Scholar 

  • Kishor PB, Hong Z, Miao G-H (1995) Overexpression of pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed  CAS  Google Scholar 

  • Kilironomos JN, Moutoglis P, Kendrick B, Widden P (1993) A comparison of spatial heterogeneity of vesicular–arbuscular mycorrhizal fungi in two maple forest soils. Can J Bot 71:1472–1480

    Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316. doi:10.1104/pp.011171

    PubMed  CAS  Google Scholar 

  • Köhler C, Merkle T, Neuhaus G (1999) Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104

    PubMed  Google Scholar 

  • Koske RE (1981) Multiple germination by spores of Gigaspora gigantea. Trans Brit Mycol Soc 76:328–330

    Google Scholar 

  • Krajinski F, Biela A, Schubert D, Gianinazzi-Pearson V, Kaldenhoff R, Franken P (2000) Arbuscular mycorrhiza development regulates the mRNA abundance of Mtaqp1 encoding a mercury-insensitive aquaporin of Medicago truncatula. Planta 211(1):85–90

    PubMed  CAS  Google Scholar 

  • Kruse E., Uehlein N., Kaldenhoff R. (2006) The aquaporins. Genome Biol. 7. doi:10.1186/gb-2006-7-2-206.

  • Kugler A, Köhler B, Palme K, Wolff P (2009) Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biol 9:140. doi:10.1186/1471-2229-9-140

    PubMed  Google Scholar 

  • Linderman RG (2000) Effects of mycorrhizas on plant tolerance to diseases. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 345–365

    Google Scholar 

  • Logi C, Sbrana C, Giovannetti M (1998) Cellular events involved in survival of individual arbuscular mycorrhizal symbionts growing in the absence of the host. Appl Environ Microbiol 64:3473–3479

    PubMed  CAS  Google Scholar 

  • Ludwig-Muller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regul 32:219–230

    CAS  Google Scholar 

  • Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96

    CAS  Google Scholar 

  • Ma W, Ali R, Berkowitz GA (2006) Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem 44:494–505. doi:10.1016/j.plaphy.2006.08.007

    PubMed  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158. doi:10.1016/j.abb.2005.10.018

    PubMed  CAS  Google Scholar 

  • Marjanovic Z, Uehlein N, Kaldenhoff R, Zwiazek JJ, Wei M, Hampp R, Nehls U (2005) Aquaporins in poplar: what a difference a symbiont makes! Planta 222:258–268. doi:10.1007/s00425-005-1539-z

    PubMed  CAS  Google Scholar 

  • Marschner H, Kuiper PJC, Kylin A (1981) Genotypic differences in the response of sugar-beet plants to replacement of potassium by sodium. Physiol Plant 51:239–244

    CAS  Google Scholar 

  • Marschner H., (1995) (Eds.) Mineral nutrition of higher plants, Second edition, Academic Press, London, UK.

  • Marulanda A, Azcón R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119:526–533

    CAS  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcón R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54:543–552. doi:10.1007/s00248-007-9237-y

    PubMed  CAS  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    PubMed  Google Scholar 

  • Maurel C, Santoni V, Luu DT, Wudick MM, Verdoucq L (2009) The cellular dynamics of plant aquaporin expression and functions. Curr Opin Plant Biol 12:690–698. doi:10.1016/j.pbi.2009.09.002

    PubMed  CAS  Google Scholar 

  • Menconi M, Sgherri CLM, Pinzino C, Navariizzo F (1995) Activated oxygen production and detoxification in wheat plants subjected to a water deficit program. J Exp Bot 46:1123–1130

    CAS  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and functions. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 3–18

    Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 1:563–569. doi:10.1111/j.1438-8677.2009.00308.x

    Google Scholar 

  • Mohammad MJ, Malkawi HI, Shibli R (2003) Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. J Plant Nutr 26:125–137. doi:10.1081/PLN-120016500

    CAS  Google Scholar 

  • Mukerji KG, Ciancio A (2007) Mycorrhizae in the integrated pest and disease. In: Ciancio A, Mukerji KG (eds) Management general concepts in mycosphere integrated pest and disease management. Springer, The Netherlands, pp 245–266

    Google Scholar 

  • Murkute AA, Sharma S, Singh SK (2006) Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hortic Sci 33:70–76

    Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  Google Scholar 

  • Núñez M, Mazzafera P, Mazorra LM, Siqueira WJ, Zullo MAT (2003) Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biol Plant 47:67–70

    Google Scholar 

  • Ojala JC, Jarrell WM, Menge JA, Johnson ELV (1983) Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agron J 75:255–259

    CAS  Google Scholar 

  • Ouziad F, Wilde P, Schmelzer E, Hildebrandt U, Bothe H (2006) Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ Exp Bot 57:177–186. doi:10.1016/j.envexpbot.2005.05.011

    CAS  Google Scholar 

  • Pearson JN, Schweiger P (1993) Scutellospora calospora (Nicol and Gerd) Walker and Sanders associated with subterranean clover—dynamics of colonization, sporulation and soluble carbohydrates. New Phytol 124:215–219

    Google Scholar 

  • Pitman M, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Springer, Netherlands, pp 3–20

    Google Scholar 

  • Pond EC, Menge JA, Jarrell WM (1984) Improved growth of tomato in salinized soil by vesicular–arbuscular mycorrhizal fungi collected from saline soils. Mycologia 76:74–84

    Google Scholar 

  • Porcel R, Aroca R, Azcón R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389–404. doi:10.1007/s11103-005-4210-y

    PubMed  CAS  Google Scholar 

  • Porcel R, Azcón R, Ruiz-Lozano JM (2005) Evaluation of the role of genes encoding for dehydrin proteins (LEA D-11) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. J Exp Bot 56:1933–1942. doi:10.1093/jxb/eri188

    PubMed  CAS  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750. doi:10.1093/jxb/erh188

    PubMed  CAS  Google Scholar 

  • Poss JA, Pond E, Menge JA, Jarrell WM (1985) Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant Soil 88:307–319

    CAS  Google Scholar 

  • Pozo MJ, Azcón C (2007) Unravelling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398. doi:10.1016/j.pbi.2007.05.004

    PubMed  CAS  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2007) Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California Oak savanna. Soil Biol Biochem 39:409–417. doi:10.1016/j.soilbio.2006.08.008

    CAS  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Bioteh 4:210–222

    CAS  Google Scholar 

  • Ramoliya PJ, Patel HM, Pandey AN (2004) Effect of salinization of soil on growth and macro- and micro-nutrient accumulation in seedlings of Salvadora persica (Salvadoraceae). For Ecol Manag 202:181–193. doi:10.1016/j.foreco.2004.07.020

    Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276–284

    PubMed  CAS  Google Scholar 

  • Rehmann H, Wittinghofer A, Bos JL (2007) Capturing cyclic nucleotides in action: snapshots from crystallographic studies. Nat Rev Mol Cell Biol 8:63–73. doi:10.1038/nrm2082

    PubMed  CAS  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) 4-Hundred-million-year-old vesicular–arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    PubMed  CAS  Google Scholar 

  • Requena N, Jeffries P, Barea JM (1996) Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem. Appl Environ Microbiol 62:842–847

    PubMed  CAS  Google Scholar 

  • Requena N, Pérez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified. Appl Environ Microbiol 67:495–498

    PubMed  CAS  Google Scholar 

  • Rosendahl CN, Rosendahl S (1991) Influence of vesicular–arbuscular mycorrhizal fungi (Glomus Spp) on the response of cucumber (Cucumis sativus L) to salt stress. Environ Exp Bot 31:313–318

    Google Scholar 

  • Roussel H, Bruns S, Gianinazzi-Pearson V, Hahlbrock K, Franken P (1997) Induction of a membrane intrinsic protein-encoding mRNA in arbuscular mycorrhiza and elicitor-stimulated cell suspension cultures of parsley. Plant Sci 126:203–210

    CAS  Google Scholar 

  • Rozema J, Arp W, Vandiggelen J, Vanesbroek M, Broekman R, Punte H (1986) Occurrence and ecological significance of vesicular arbuscular mycorrhiza in the salt marsh environment. Act Bot Neerlan 35:457–467

    Google Scholar 

  • Rubio F, Flores P, Navarro JM, Martínez V (2003) Effects of Ca2+, K+ and cGMP on Na+ uptake in pepper plants. Plant Sci 165:1043–1049. doi:10.1016/S0168-9452(03)00297-8

    CAS  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317. doi:10.1007/s00572-003-0237-6

    PubMed  Google Scholar 

  • Ruiz-Lozano J.M., Aroca R. (2011) Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic stress tolerance. In: Symbiosis and Stress. Sechback J., Grube M. (Eds.). Springer, Germany (in press)

  • Ruiz-Lozano JM, Azcón R (1996) Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa plants subjected to drought stress. New Phytol 134:327–333

    CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcón R, Gómez M (1996) Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772

    CAS  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    PubMed  CAS  Google Scholar 

  • Sánchez-Blanco MJ, Ferrández T, Morales MA, Morte A, Alarcón JJ (2004) Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. J Plant Physiol 161:675–682

    PubMed  Google Scholar 

  • Sannazzaro AI, Echeverria M, Alberto EO, Ruiz OA, Menéndez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem 45:39–46. doi:10.1016/j.plaphy.2006.12.008

    PubMed  CAS  Google Scholar 

  • Santos R, Franza T, Laporte ML, Sauvage C, Touati D, Expert D (2001) Essential role of superoxide dismutase on the pathogenicity of Erwinia chrysanthemi strain 3937. Mol Plant-Microb Interact 14:758–767

    CAS  Google Scholar 

  • Sarda X, Tousch D, Ferrare K, Cellier F, Alcon C, Dupuis JM, Casse F, Lamaze T (1999) Characterization of closely related_TIP genes encoding aquaporins which are differentially expressed in sunflower roots upon water deprivation through exposure to air. Plant Mol Biol 40:179–191

    PubMed  CAS  Google Scholar 

  • Serrano R, Culianz-Macia FA, Moreno V (1999) Genetic engineering of salt and drought tolerance with yeast regulatory genes. Sci Hortic 78:261–269

    CAS  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151. doi:10.1016/j.jplph.2006.06.016

    PubMed  CAS  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang BW, Zhang FF, Huang YH (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296. doi:10.1007/s00572-008-0180-7

    PubMed  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    CAS  Google Scholar 

  • Smith SE, Read DJ (eds) (1997) Mycorrhizal symbiosis. Academic Press, San Diego, USA

    Google Scholar 

  • Smith SE, Read DJ (eds) (2008) Mycorrhizal symbiosis. Academic Press, Inc., San Diego, USA

    Google Scholar 

  • Sottosanto JB, Gelli A, Blumwald E (2004) DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter: impact of AtNHX1 on gene expression. Plant J 40:752–771. doi:10.1111/j.1365-313X.2004.02253.x

    PubMed  CAS  Google Scholar 

  • Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8:286–293

    PubMed  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527. doi:10.1093/aob/mcg058

    PubMed  CAS  Google Scholar 

  • Thomson BD, Clarkson DT, Brain P (1990) Kinetics of phosphorus uptake by the germ tubes of the vesicular arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 116:647–653

    CAS  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, Florida, USA, pp 5–25

    Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Osmosensing Osmosignaling 428:419. doi:10.1016/S0076-6879(07)28024-3

    CAS  Google Scholar 

  • Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68:122–129. doi:10.1016/j.phytochem.2006.09.033

    PubMed  CAS  Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • Venema K, Belver A, Marin-Manzano MC, Rodríguez-Rosales MP, Donaire JP (2003) A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants. J Biol Chem 278:22453–22459. doi:10.1074/jbc.M210794200

    PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252. doi:10.1016/j.tplants.2004.03.006

    PubMed  CAS  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. doi:10.1007/s00425-003-1105-5

    PubMed  CAS  Google Scholar 

  • Wild A (1988) (Ed.) Russell’s soil conditions and plant Growth. 11th edn. Harlow; Longman

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    CAS  Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425. doi:10.1016/j.jplph.2005.04.024

    PubMed  CAS  Google Scholar 

  • Wu QS, Xia RX, Zou YN (2006) Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J Plant Physiol 163:1101–1110. doi:10.1016/j.jplph.2005.09.001

    PubMed  CAS  Google Scholar 

  • Wu QS, Zou YN, Xia RX, Wang MY (2007) Five Glomus species affect water relations of Citrus tangerine during drought stress. Bot Stud 48:147–154

    Google Scholar 

  • Wudick MM, Luu DT, Maurel C (2009) A look inside: localization patterns and functions of intracellular plant aquaporins. New Phytol 184:289–302. doi:10.1111/j.1469-8137.2009.02985.x

    PubMed  CAS  Google Scholar 

  • Xia T, Apse MP, Aharon GS, Blumwald E (2002) Identification and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter in Beta vulgaris. Physiol Plant 116:206–212

    PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B (1996) Expression of a late embryogenesis abundant protein gene, HVA 1 from Barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18:241–249. doi:10.1007/s00572-008-0177-2

    PubMed  Google Scholar 

  • Yano-Melo AM, Saggin OJ, Maia LC (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric Ecosyst Environ 95:343–348

    Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    PubMed  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchishinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for delta (1)-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    PubMed  CAS  Google Scholar 

  • Yoshioka K, Moeder W, Kang HG, Kachroo P, Masmoudi K, Berkowitz G, Klessig DF (2006) The chimeric Arabidopsis cyclic nucleotide-gated ion channel11/12 activates multiple pathogen resistance responses. Plant Cell 18:747–763. doi:10.1105/tpc.105.038786

    PubMed  CAS  Google Scholar 

  • Zagotta WN, Siegelbaum SA (1996) Structure and function of cyclic nucleotide-gated channels. Ann Rev Neurosci 19:235–263

    PubMed  CAS  Google Scholar 

  • Zhong QH, Chao XH, Zhi BZ, Zhi RZ, Huai SW (2007) Changes in antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B Biointerfaces 59:128–133. doi:10.1016/j.colsurfb.2007.04.023

    Google Scholar 

  • Zhu JK (2001) Cell signalling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406

    PubMed  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445. doi:10.1016/S1369-5266(03)00085-2

    PubMed  CAS  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513. doi:10.1080/01904160801895027

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Porcel.

About this article

Cite this article

Porcel, R., Aroca, R. & Ruiz-Lozano, J.M. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev. 32, 181–200 (2012). https://doi.org/10.1007/s13593-011-0029-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-011-0029-x

Keywords

Navigation