Skip to main content

Molecular Breeding Strategies of Beetroot (Beta vulgaris ssp. vulgaris var. conditiva Alefeld)

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Vegetable Crops

Abstract

Beetroot, table beet, red beet or garden beet (Beta vulgaris ssp. vulgaris var. conditiva Alefeld) is a cross-pollinated crop that belongs to the family Chenopodiaceae. It is one of the most essential and economical cultivated vegetables. Globally, beetroot is used for food products, pickles, salads and juice rather than for sugar production. Also, edible sugar can be extracted from the root. Gene banks have conserved a wide variety of genetic resources from beetroot including wild species. There are several species with various chromosome numbers. Beta harbors significant diversity based on geographic regions and morphological features. Introgression of novel alleles by crossing different genetic resources for the beetroot e.g. crossing common varieties with locally developed varieties increases genetic diversity and pre-selects for useful traits. It is necessary to ensure ample natural variation in phenotypes. The key goals of breeders and geneticists are to improve beetroot for different desirable traits including tolerance to biotic and abiotic stress, quality and yield characteristics. Applying modern genetic tools to improve conventional breeding programs can further the achievement of these goals. This chapter provides an overview and limitations of the beetroot germplasm biodiversity and conservation, objectives and stages of beetroot breeding programs and conventional breeding methods. Additionally, it addresses modern methods of plant breeding, including marker-assisted breeding and genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi A, Majidi MM, Arzani A et al (2015) Association of SSR markers and morpho-physiological traits associated with salinity tolerance in sugar beet (Beta vulgaris L.). Euphytica 205:785–797

    Article  CAS  Google Scholar 

  • Abou-Elwafa SF, Büttner B, Kopisch-Obuch FG et al (2012) Genetic identification of a novel bolting locus in Beta vulgaris which promotes annuality independently of the bolting gene B. Mol Breed 29(4):989–998

    Article  CAS  Google Scholar 

  • Abu-Ellail FFB, Sadek KA, El-Bakary HMY (2019) Broad-sense heritability and performance of ten sugar beet varieties for growth, yield and juice quality under different soil salinity levels. Bull Fac Agric Cairo Univ 70:327–339

    Google Scholar 

  • Achard FE (1809) Die europiiische Zuckerfabrikation aus Runkelruben, in Verbindung mit der Bereitung des Brandweins, des Rums, des Essigs und eines Coffee-Surrogats aus ihren Abfiillen. Hinrichs JE, Leipzig. Verlag Bartens, Berlin, Replublished on 1985 (German)

    Google Scholar 

  • Adlak T, Tiwari S, Tripathi MK et al (2019) Biotechnology: an advanced tool for crop improvement. Curr J Appl Sci Technol 33(1):2457–1024

    Google Scholar 

  • Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1911. https://doi.org/10.1038/s41467-018-04252-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alikhanyan SI, Akifev AP, Chernin LS (1985) Obshchaya genetika (General Genetics). Vysshaya Shkola, Moscow, pp 320–326. (Russian)

    Google Scholar 

  • Allemann L, Young BW (2008) Vegetable production in a nutshell. Department of Agriculture, Resource Centre, Directorate Agricultural Information Services, Pretoria. www.nda.agric.za/publications

    Google Scholar 

  • Amiri R, Mesbah M, Moghaddam M et al (2009) A new RAPD marker for beet necrotic yellow vein virus resistance gene in Beta vulgaris. Biol Plant 53:112–119

    Article  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:186–198

    Article  Google Scholar 

  • Asher MJC, Grimmer M, Mutasa-Goettgens ES (2009) Selection and characterization of resistance to Polymyxa betae, vector of Beet necrotic yellow vein virus, derived from wild sea beet. Plant Pathol 58:250–260

    Article  Google Scholar 

  • Azeredo HMC (2009) Betalains: properties, sources, applications, and stability-a review. Int J Food Sci Technol 44:2365–2376

    Article  CAS  Google Scholar 

  • Badr-Elden AM, Nower AA, Ibrahim AI (2010) Isolation and fusion of protoplasts in sugar beet (Beta vulgaris L.). Sugar Tech 12(1):53–58

    Article  CAS  Google Scholar 

  • Bansal V (2010) A statistical method for the detection of variants from next-generation resequencing of DNA pools. Bioinformatics 26:1318–1324

    Article  CAS  Google Scholar 

  • Baranski R, Goldman I, Nothnagel T, Scott JW (2016) Improving color sources by plant breeding and cultivation. In: Handbook on natural pigments in food and beverages. Elsevier Ltd, New York, pp 429–472

    Chapter  Google Scholar 

  • Barzen E, Mechelke W, Ritter E et al (1995) An extended map of the sugar beet genome containing RFLP and RAPD loci. Theor Appl Genet 90:189–193. https://doi.org/10.1007/BF00222201

    Article  CAS  PubMed  Google Scholar 

  • Beetroot production guideline (2014). https://www.starkeayres.co.za/com_variety_docs/Beetroot-Production-Guideline-2014.pdf

  • Bellin D, Werber M, Theis T et al (2002) EST sequencing, annotation and macroarray transcriptome analysis identify preferentially root-expressed genes in sugar beet. Plant Biol 4:700–710

    Article  CAS  Google Scholar 

  • Biancardi E, McGrath JM, Panella LW et al (2010) Sugar beet. In: Bradshaw J (ed) Root and tuber crops. Handbook of plant breeding, vol 7. Springer, New York

    Google Scholar 

  • Biscarini F, Stevanato P, Broccanello C et al (2014) Genome-enabled predictions for binomial traits in sugar beet populations. BMC Genet 15:87. https://doi.org/10.1186/1471-2156-15-87

    Article  PubMed  PubMed Central  Google Scholar 

  • Biscarini F, Marini S, Stevanato P et al (2015) Developing a parsimonious predictor for binary traits in sugar beet (Beta vulgaris). Mol Breed 35:10. https://doi.org/10.1007/s11032-015-0197-5

    Article  CAS  Google Scholar 

  • Bliss F, Gabelman WH (1965) Inheritance of male sterility in beet. Crop Sci 5:403–406

    Article  Google Scholar 

  • Bosemark NO (1993) Genetics and breeding. In: Cooke DA, Scott RK (eds) The sugar beet crop. Chapman & Hall, London, pp 67–119

    Chapter  Google Scholar 

  • Bosemark NO (2006) Genetics and breeding. In: Draycott AP (ed) Sugar beet. Blackwell, Oxford, pp 50–88

    Chapter  Google Scholar 

  • Brush S (1991) A farmer-based approach to conserving crop germplasm. Econ Bot 45:153–165

    Article  Google Scholar 

  • Buchting AJ (1995) Experiences from release experiments with rhizomania resistant sugar-beet. Zuckerindustrie 120:138–142

    Google Scholar 

  • Buttner B, Abou-Elwata SF, Zhang W et al (2010) A survey of EMS induced biennial Beta vulgaris mutants reveals a novel bolting locus with unlinked to the bolting gene B. Theor Appl Genet 121:1117–1137

    Article  PubMed  Google Scholar 

  • Campbell LG, Bugbee WM (1993) Pre-breeding for root-rot resistance. J Sugar Beet Res 30:241–252

    Article  Google Scholar 

  • Choudhary K, Choudhary OP, Shekhawat NS (2008) Marker-assisted selection: novel approach for crop improvement. Am Eurasian J Agron 1(2):26–30

    Google Scholar 

  • Clemens VD, Jan S, Rients N, Richard V (2010) Traditional plant breeding methods, Report 338. UR Plant Breeding, Wageningen

    Google Scholar 

  • Clifford T, Howatson G, West DJ et al (2015) The potential benefits of red beetroot supplementation in health and disease. Nutrients 7:2801–2822. https://doi.org/10.3390/nu7042801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JL, Till BJ, Laport RG et al (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9. https://doi.org/10.1186/1471-2229-8-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cureton A, Burns M, Ford-Lloyd B, Newbury H (2002) Development of simple sequence repeat (SSR) markers for the assessment of gene Xow between sea beet (Beta vulgaris ssp. maritima) populations. Mol Ecol Notes 2:402–403

    Article  CAS  Google Scholar 

  • Delfavero J, Weyens G, Jacobs M et al (1994) Construction and characterization of a yeast artificial chromosome library containing 5 haploid sugar beet (Beta vulgaris L) genome equivalents. Theor Appl Genet 88:449–453

    Article  CAS  Google Scholar 

  • Delgado-Paredes GE, Rojas-Idrogo C, Chanamé-Céspedes J et al (2017) Development and agronomic evaluation of in vitro somaclonal variation in sweet potato regenerated plants from direct organogenesis of roots. Asian J Plant Sci Res 7(1):39–48

    CAS  Google Scholar 

  • Dohm JC, Minoche AE, Holtgräwe D et al (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–549

    Article  CAS  PubMed  Google Scholar 

  • Doney DL (1993) Broadening the genetic base of sugarbeet. J Sugar Beet Res 30:209–220

    Article  Google Scholar 

  • Doney DL, Whitney ED, Terry J et al (1990) The distribution and dispersal of Beta vulgaris L. ssp. maritime germplasm in England, Wales and Ireland. J Sugar Beet Res 27:29–37

    Google Scholar 

  • Doney DL, Ford-Lloyd BV, Frese L et al (1995) Scientists worldwide rally to rescue the native beets of the Mediterranean. Diversity 11(1/2):124–125

    Google Scholar 

  • Duan YB, Li J, Qin RY et al (2016) Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol Biol 90(1/2):49–62

    Google Scholar 

  • Ergül A, Khabbazi S, Oğuz MÇ et al (2018) In vitro multiplication of wild relatives in genus Beta conserves the invaluable threatened germplasms. Plant Cell Tissue Organ Cult 134:169–175

    Article  CAS  Google Scholar 

  • Eyers M, Edwards K, Schuch W (1992) Construction and characterization of a yeast artificial chromosome library containing 2 haploid Beta vulgaris L. genome equivalents. Gene 121:195–201

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Gu S, Xu Z et al (2004) Construction of a binary BAC library for an apomictic monosomic addition line of Beta corolliflora in sugar beet and identification of the clones derived from the alien chromosome. Theor Appl Genet 108:1420–1425

    Article  CAS  PubMed  Google Scholar 

  • FAO/IAEA (2020) Mutant database. International Atomic Energy Agency, Vienna. https://mvd.iaea.org/#!Search?page=1&size=15&sortby=Name&sort=ASC&Criteria[0][field]=FreeText&Criteria[0][val]=beta%20vulgaris

    Google Scholar 

  • Fénart S, Arnaud JF, De Cauwer I, Cuguen J (2008) Nuclear and cytoplasmic genetic diversity in weed beet and sugar beet accessions compared to wild relatives: new insights into the genetic relationships within the B. vulgaris complex species. Theor Appl Genet 116:1063–1077

    Article  PubMed  Google Scholar 

  • Ford-Lloyd BV (1995) Sugar beet and other cultivated beets. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman, Essex, pp 35–40

    Google Scholar 

  • Frerichmann SLM, Kirchhoff M, Muller AE et al (2013) Eco-TILLING in Beta vulgaris reveals polymorphism in the FLC-like gene BvFL1 that associated with annularity and winter hardiness. BMC Plant Biol 13:52–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frese L (2000) The synthetic Beta core collection–state of the art. J Sugar Beet Res 37(3):1–10

    Article  Google Scholar 

  • Frese L, Van Hintum TJL (1989) The international data base for Beta. In: IBPGR, international crop network series 3, Report of an international workshop on Beta genetic resources. IBPGR, Rome, pp 17–45

    Google Scholar 

  • Friesen T, Weiland J, Aasheim M et al (2006) Identification of a SCAR marker associated with Bm, the beet mosaic virus resistance gene, on chromosome 1 of sugar beet. Plant Breed 125:167–172

    Article  CAS  Google Scholar 

  • Galewski P, McGrath JM (2020) Genetic diversity among cultivated beets (Beta vulgaris) assessed via population-based whole genome sequences. BMC Genomics 21:189. https://doi.org/10.1186/s12864-020-6451-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158. https://doi.org/10.1016/00144827(68)90403-5

    Article  CAS  PubMed  Google Scholar 

  • Gaskill JO (1954) Viable hybrids from matings of chard with Beta procumbens and B. webbiana. Proc Am Soc Sugar Beet Technol 8:5

    Google Scholar 

  • Gasztonyi MN, Daood H, Hajos MT et al (2001) Composition of red beet (B. vulgaris var. conditiva) varieties on the basis of their pigment components. J Sci Food Agric 81:932–933

    Article  CAS  Google Scholar 

  • Gauchan D, Smale M (2003) Choosing the right tools to assess the economic costs and benefits of growing landraces: an example from Bara District, central Terai, Nepal. Plant Genet Resour Newsl 134:18–25

    Google Scholar 

  • Geng G, Lv C, Stevanato P et al (2019) Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. Int J Mol Sci 20(23):5910. https://doi.org/10.3390/ijms20235910

    Article  CAS  PubMed Central  Google Scholar 

  • Georgiev V, Ilieva M, Bley T et al (2010a) Review: betalain production in plant in vitro systems. Acta Physiol Plant 30:581–593

    Article  CAS  Google Scholar 

  • Georgiev VG, Weber J, Kneschke EM et al (2010b) Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot B. vulgaris cv. Detroit dark red. Plant Foods Hum Nutr 65(2):105–111

    Article  CAS  PubMed  Google Scholar 

  • Gidner S, Lennefors BL, Nilsson NO (2005) QTL mapping of BNYVV resistance from the WB41 source in sugar beet. Genome 48:279–285

    Article  CAS  PubMed  Google Scholar 

  • Gindullis F, Dechyeva D, Schmidt T (2001) Construction and characterization of a BAC library for the molecular dissection of a single wild beet centromere and sugar beet (Beta vulgaris) genome analysis. Genome 44:846–855

    Article  CAS  PubMed  Google Scholar 

  • Giorio G, Gallitelli M, Carriero F (1997) Molecular markers linked to rhizomania resistance in sugar beet, Beta vulgaris, from two different sources map to the same linkage group. Plant Breed 116:401–408

    Article  CAS  Google Scholar 

  • Goldman IL (1996) Inbred line and open-pollinated population releases from the University of Wisconsin beet breeding program. Hortic Sci 31:880–881

    Google Scholar 

  • Goldman IL, Navazio JP (2003) History and breeding of table beet in the United States. Plant Breed Rev 22:357–388

    Google Scholar 

  • Goldman IL, Navazio JP (2008) Beetroot. In: Prohens-Tomas J, Nuez F (eds) Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae and Cucurbitaceae. Springer, New York, pp 219–238

    Chapter  Google Scholar 

  • Goldman IL, Schroeck G, Havey MJ (2000) History of public onion breeding programs and pedigree of public onion germplasm releases in the United States. Plant Breed Rev 20:67–103

    Google Scholar 

  • Grimmer MK, Bean KMR, Asher MJC (2007a) Mapping of five resistance genes to sugar-beet powdery mildew using AFLP and anchored SNP markers. Theor Appl Genet 115:67–75

    Article  CAS  PubMed  Google Scholar 

  • Grimmer M, Trybush S, Hanley S et al (2007b) An anchored linkage map for sugar beet based on AFLP, SNP and RAPD markers and QTL mapping of a new source of resistance to beet necrotic yellow vein virus. Theor Appl Genet 114:1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Grimmer MR, Kraft T, Francis SA, Asher MJC (2008) QTL mapping of BNYVV resistance from the WB 258 source in sugar beet. Plant Breed 127(6):650–652

    Google Scholar 

  • Grimmer MR, Bean KMR, Qi A et al (2010) The action of three beet yellows virus resistance QTLs depend on alleles at a novel genetic locus that controls symptom development. Plant Breed 127:381–397

    Google Scholar 

  • Gürel S, Gurel E, Kaya Z (2000) Doubled haploid plant production from unpollinated ovules of sugar beet (Beta vulgaris L.). Plant Cell Rep 19:1155–1159. https://doi.org/10.1007/s002990000248

    Article  PubMed  Google Scholar 

  • Gürel S, Gürel E, Kaya Z (2001) Callus development and indirect shoot regeneration from seedling explants of sugar beet (B. vulgaris L.) cultured in vitro. Turk J Bot 25:25–33

    Google Scholar 

  • Gürel S, Gürel E, Kaya Z (2002) Protoplast fusion in sugar beet (B. vulgaris L). Turk J Biol 26:126–170

    Google Scholar 

  • Gürel E, Gurel S, Lemaux PG (2008) Biotechnology applications for sugar beet. Crit Rev Plant Sci 27:108–140. https://doi.org/10.1080/07352680802202000

    Article  CAS  Google Scholar 

  • Gürel S, Oğuz MÇ, Turan F et al (2019) Utilization of sucrose during cocultivation positively affects Agrobacterium-mediated transformation efficiency in sugar beet (B. vulgaris L.). Turk J Agric 43:509–517. https://doi.org/10.3906/tar-1812-90

    Article  CAS  Google Scholar 

  • Hagihara E, Itchoda N, Habu Y et al (2005a) Molecular mapping of a fertility restorer gene for owen cytoplasmic male sterility in sugar beet. Theor Appl Genet 111:250–255

    Article  CAS  PubMed  Google Scholar 

  • Hagihara E, Matsuhira H, Ueda M et al (2005b) Sugar beet BAC library construction and assembly of a contig spanning Rf1, a restorer-of-fertility gene for Owen cytoplasmic male sterility. Mol Gen Genomics 274:316–323

    Article  CAS  Google Scholar 

  • Hall RD, Rouwendal GJA, Krens FA (1992) Asymmetric somatic cell hybridization in plants: elecrtophoretic analysis of radiation-induced DNA damage and repair following the exposure of sugar beet (B. vulgaris L.) protoplast to UV and gamma rays. Mol Gen Genet 234:315–324

    Article  CAS  PubMed  Google Scholar 

  • Hall RD, Pedersen C, Krens F (1993) Improvement of protoplasts culture protocols for B. vulgaris L. (sugar beet). Plant Cell Rep 12:339–342

    Article  CAS  PubMed  Google Scholar 

  • Halldén C, Hjerdin A, Rading IM et al (1996) A high density RFLP linkage map of sugar beet. Genome 39:634–645. https://doi.org/10.1139/g96-081

    Article  PubMed  Google Scholar 

  • Hart SE, Saunders JW, Penner D et al (1994) Initial field evaluation of sulfonylurea herbicide resistant sugar beet from somatic cell selection. J Sugar Beet Res 31(3–4):97–103

    Article  Google Scholar 

  • Harveson RM, Hanson LE, Hein GL (2009) Compendium of beet diseases and pests, 2nd edn. American Phytopathological Society, St. Paul

    Book  Google Scholar 

  • Hashimoto R, Shimamoto Y (2001) Transgenic sugar beet plants harboring a pumpkin chitinase gene demonstrating improved resistance to Rhizoctonia solani. Proc Jpn Soc Sugar Beet Technol 43:24–28

    CAS  Google Scholar 

  • Hatlestad GJ, Sunnadeniya RM, Akhavan NA et al (2012) The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat Genet 44:816–820

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höft N, Dally N, Hasler M, Jung C (2018) Haplotype variation of flowering time genes of sugar beet and its wild relatives and the impact on life cycle regimes. Front Plant Sci 8:2211. https://doi.org/10.3389/fpls.2017.02211

    Article  PubMed  PubMed Central  Google Scholar 

  • Hohmann U, Jacobs G, Telgmann A et al (2003) A bacterial artificial chromosome (BAC) library of sugar beet and a physical map of the region encompassing the bolting gene B. Mol Gen Genomics 269:126–136

    Article  CAS  Google Scholar 

  • Holmes RP, Assimos DG (2004) The impact of dietary oxalate on kidney stone formation. Urol Res 32(5):311–316

    Article  CAS  PubMed  Google Scholar 

  • Hospital F (2009) Challenges for effective marker-assisted selection in plant. Genetics 136:303–310

    Google Scholar 

  • Ismail RM, Raslan WM, Hussein GMH (2016) In vitro propagation of sugar beet cultivar Frida, through encapsulated different explants. Am J Agri Sci 3(3):27–34

    Google Scholar 

  • Jacobs G, Dechyeva D, Wenke T et al (2009) A BAC library of Beta vulgaris L. for the targeted isolation of centromeric DNA and molecular cytogenetics of Beta species. Genetics 135:157–167

    CAS  Google Scholar 

  • Jafari M, Norouzi P, Malboobi MA et al (2009) Enhanced resistance to a lepidopteran pest in transgenic sugar beet plants expressing synthetic cry1Ab gene. Euphytica 165:333–344

    Article  CAS  Google Scholar 

  • Jain SM (2005) Major mutation-assisted plant breeding programs supported by FAO/IAEA. Plant Cell Tissue Organ Cult 82:113–123

    Article  CAS  Google Scholar 

  • Jain SM, Suprasanna P (2011) Induced mutations for enhancing nutrition and food production. Gene Conserv 40:201–215

    Google Scholar 

  • Jang TH, Park SC, Yang JH et al (2017) Cryopreservation and its clinical applications. Integr Med Res 6(1):12–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Jankowicz-Cieslak J, Mba C, Till BJ (2017) Mutagenesis for crop breeding and functional genomics. Biotechnologies for plant mutation breeding. Springer, Cham, pp 3–18

    Book  Google Scholar 

  • Jarvis DI, Myer L, Klemick H et al (2000) A training guide for in situ conservation on-farm. Version 1. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Jiang B, Liu WR, Xie DS et al (2015) High-density genetic map construction and gene mapping of pericarp color in wax gourd using specific-locus amplified fragment (SLAF) sequencing. BMC Genomics 16:1035. https://doi.org/10.1186/s12864-015-2220-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang N, Zhang C, Liu JY et al (2019) Development of beet necrotic yellow vein virus-based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. Plant Biotechnol J 17(7):1302–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung C, Wricke G (1987) Selection of diploid nematode-resistant sugar beet from monosomic addition lines. Plant Breed 98:205–214

    Article  Google Scholar 

  • Jung C, Kleine M, Fischer F, Herrmann R (1990) Analysis of DNA from a Beta procumbens chromosome fragment in sugar beet carrying a gene for nematode resistance. Theor Appl Genet 79:663–672

    Article  CAS  PubMed  Google Scholar 

  • Jung C, Koch R, Fischer F et al (1992) DNA markers closely linked to nematode resistance genes in sugar beet (Beta vulgaris L) mapped using chromosome additions and translocations originating from wild beets of the procumbent section. Mol Gen Genet 232:271–278

    Article  CAS  PubMed  Google Scholar 

  • Kapadia GJ, Azuine MA, Sridhar R et al (2003) Chemoprevention of DMBA-induced UV-B promoted, NORI-induced TPA promoted skin carcinogenesis, and DEN-induced phenobarbital promoted liver tumors in mice by extract of beetroot. Pharmacol Res 47:141–148

    Article  CAS  PubMed  Google Scholar 

  • Kartha KK (1981) Meristem culture and cryopreservation-methods and applications. In: Thorpe TA (ed) Plant tissue culture, methods and applications in agriculture. Academic Press, New York, pp 181–212

    Chapter  Google Scholar 

  • Kartha KK, Engelmann F (1994) Cryopreservation and germplasm storage. In: Vasil IK, Thorpe TA (eds) Plant cell and tissue culture. Springer, Dordrecht, pp 195–230

    Chapter  Google Scholar 

  • Kerr SP (2005) Performance of rhizomania resistant sugar beet varieties in UK trials. Asp Appl Biol 76:21–26

    Google Scholar 

  • Khabbazi SD, Özmen CY, Ergül A (2019) Synthetic seeds of wild beet: basic concepts and related methodologies. Biotechnology Institute, Ankara University, Ankara

    Google Scholar 

  • Khoury CK, Bjorkmann AD, Dempewolf H et al (2014) Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci U S A 111:4001–4006. https://doi.org/10.1073/pnas.1313490111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein-Lankhorst R, Salentijn E, Dirkse W et al (1994) Construction of a YAC library from a Beta vulgaris fragment addition and isolation of a major satellite DNA cluster linked to the beet cyst-nematode resistance locus Hs1(pat-1). Theor Appl Genet 89:426–434

    Article  CAS  PubMed  Google Scholar 

  • Klewicka E, Nowak A, Zdunczyk Z et al (2010) Protective effect of lactofermented beetroot juice against aberrant crypt foci and genotoxicity of fecal water in rats. Exp Toxicol Pathol 64(6):599–604. https://doi.org/10.1016/j.etp.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  • Klotz KL, Finger FL (2004) Impact of temperature, length of storage and postharvest disease on sucrose catabolism in sugar beet. Postharvest Biol Technol 34:1–9

    Article  CAS  Google Scholar 

  • Kolchanova S, Kliver S, Komissarov A et al (2019) Genomes of three closely related Caribbean amazons provide insight for species history and conservation. Genes 10:54. https://doi.org/10.3390/genes10010054

    Article  CAS  PubMed Central  Google Scholar 

  • Kornienko AV, Butorina AK (2013) Induced mutagenesis in sugar beet (Beta vulgaris L.): obtained results and prospects for use in development of TILLING project. Biol Bull Rev 3(2):152–160

    Article  Google Scholar 

  • Kovalchuk NS, Roik MV, Hadzalo YM et al (2019) Improvement of the technology of obtaining stable (di) haploid regenerants from embryonic culture of apomictic sugar beet (B. vulgaris) breeding material without the use of colchicine. Agri Sci Pract 6(2):3–17. https://doi.org/10.15407/agrisp6.02.003

    Article  Google Scholar 

  • Kumari P, Thaneshwari R (2018) Embryo rescue in horticultural crops. Int J Curr Microbiol App Sci 7(6):3350–3358

    Article  CAS  Google Scholar 

  • Lange W, De Bock T (1994) Pre-breeding for nematode resistance in beet. J Sugar Beet Res 31:13–26

    Article  Google Scholar 

  • Lange C, Holtgrawe D, Schulz B et al (2008) Construction and characterization of a sugar beet (Beta vulgaris) fosmid library. Genome 51:948–951

    Article  CAS  PubMed  Google Scholar 

  • Lathouwers J, Weyens G, Lefebvre M (2005) Transgenic research in sugar beet. In: Pidgeon J, Molard MR, Wevers JDA, Beckers R (eds) Advances in sugar beet research, genet modification in sugar beet. International Institute for Beet Research, Brussels, pp 5–24

    Google Scholar 

  • Laurent V, Devaux P, Thiel T et al (2007) Comparative effectiveness of sugar beet microsatellite markers isolated from genomic libraries and GenBank ESTs to map the sugar beet genome. Theor Appl Genet 115:793–805. https://doi.org/10.1007/s00122-007-0609-y

    Article  CAS  PubMed  Google Scholar 

  • Lennefors BL, Savenkov EI, Bensefelt J et al (2006) dsRNA mediated resistance to beet necrotic yellow vein virus infections in sugar beet (B. vulgaris L. ssp. vulgaris). Mol Breed 18:313–325

    Article  CAS  Google Scholar 

  • Lennefors BL, VanRoggen PM, Yndgaard F et al (2008) Efficient dsRNA-mediated transgenic resistance to Beet necrotic yellow vein virus in sugar beets is not affected by other soil-borne and aphid transmitted viruses. Transgenic Res 17:219–228

    Article  CAS  PubMed  Google Scholar 

  • Lentini Z, González Á, Tabares E et al (2020) Studies on cytogenesis induction in cassava (Manihot esculenta Crantz) unpollinated ovule culture. Front Plant Sci 11:365

    Article  PubMed  PubMed Central  Google Scholar 

  • Levites EV (2012) Violation of the low of uniformity of the first generation of hybrids. Russ J Genet 48(11):1158–1161

    Article  CAS  Google Scholar 

  • Lewellen RT, Schrandt J (2001) Inheritance of powdery mildew resistance in sugar beet derived from Beta vulgaris subsp. maritima. Plant Dis 85:627–631

    Article  CAS  PubMed  Google Scholar 

  • Leys M, Petit EJ, El-Bahloul Y et al (2014) Spatial genetic structure in Beta vulgaris subsp. maritima and Beta macrocarpa reveals the effect of contrasting mating system, influence of marine currents, and footprints of postglacial recolonization routes. Ecol Evol 4(10):1828–1852. https://doi.org/10.1002/ece3.1061

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAM tools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindsey K, Gallois PJ (1990) Transformation of sugar beet (Beta vulgaris) by Agrobacterium tumefaciens. J Exp Bot 41:529–536

    Article  CAS  Google Scholar 

  • Linnaeus C (1753) Species Plantarum, 1st edn. Printed Lawrence Salvii, Stockholm

    Google Scholar 

  • Liu HY, Wang Q, Yu M et al (2008) Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Plant Cell Environ 31:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist A, Østerbye U, Larsen K et al (1973) Complex self-incompatibility systems in Ranunculus acris L. and Beta. vulgaris L. Hereditas 74:161–168

    Article  Google Scholar 

  • Luo D, Li Y, Zhao Q et al (2019) Highly resolved phylogenetic relationships within order acipenseriformes according to novel nuclear markers. Genes 10:38. https://doi.org/10.3390/genes10010038

    Article  CAS  PubMed Central  Google Scholar 

  • Lytvyn D, Syvura V, Kurylo V et al (2014) Creation of transgenic sugar beet lines expressing insect pest resistance genes cry1C and cry2A. Cytol Genet 48:69–75. https://doi.org/10.3103/S0095452714020078

    Article  Google Scholar 

  • Mack HJ, Gardner EH, Jackson TL (1984) OSU fertilizer guide: table beets western Oregon-west of the Cascades. OSU Extension Publication Series # FG 13-E, https://horticulture.oregonstate.edu/oregon-vegetables/table-beets-western-oregon-west-cascades-fertilizer-guide-osu-extension-series-fg-13-e

  • Magray MM, Wani KP, Chatt MA et al (2017) Synthetic seed technology. Int J Curr Microbiol App Sci 6:662–674

    Article  CAS  Google Scholar 

  • Mandal BB, Tyagi RK, Pandey R et al (2000) In vitro conservation of germplasm of agri-horticultural crops at NBPGR: an overview. In: Razdan MK, Cocking EC (eds) Conservation of plant genetic resources in vitro. Vol 2: application and limitations. Science Publishers, Enfield, pp 297–307

    Google Scholar 

  • Manichaikul A, Mychaleckyj JC, Rich SS et al (2010) Robust relationship inference in genome-wide association studies. Bioinformatics 26:2867–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marggraf AS (1749) Chemical experiments, made with the intention of drawing a real sugar from various plants, which grow in our countries. History of the Royal Academy of Sciences and Beautiful Letters, Berlin, pp 79–90

    Google Scholar 

  • Marja PK, Anu IH, Heikki JV et al (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  CAS  Google Scholar 

  • Masri IM, Ismail RM, Rslan WM et al (2019) In vitro synthetic seed and herbicide resistant sugar beet varieties (Beta vulgaris L.). Biosci Res 16(2):1913–1924

    Google Scholar 

  • Maxted N, Ford-Lloyd B, Hawkes JG (1997) Plant genetic conservation: the in-situ approach. Chapman & Hall, London

    Book  Google Scholar 

  • McGrath J (2010) Assisted breeding in sugar beets. Sugar Tech 12:187–193

    Article  CAS  Google Scholar 

  • McGrath JM, Shaw RS, de los Reyes BG et al (2004) Construction of a sugar beet BAC library from a hybrid with diverse traits. Plant Mol Biol Report 22:23–28

    Article  CAS  Google Scholar 

  • McGrath JM, Trebbi D, Fenwick A et al (2007) An open-source first-generation molecular genetic map from a sugar beet × table beet cross and its extension to physical mapping. Crop Sci 47:S27–S44

    Article  CAS  Google Scholar 

  • Mezei S, Kovacev L, Nagl N (2006) Sugar beet micropropagation. Biotechnol Biotechnol Equip 20:9–14. https://doi.org/10.1080/13102818.2006.10817296

    Article  Google Scholar 

  • Mirmiran P, Houshialsadat Z, Gaeini Z et al (2020) Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutr Metab 17:3. https://doi.org/10.1186/s12986-019-0421-0

    Article  Google Scholar 

  • Mishutkina YV, Gaponenko A (2006) Sugar beet (B. vulgaris L.) morphogenesis in vitro: effects of phytohormone type and concentration in the culture medium, type of explants and plant genotype on shoot regeneration frequency. Genetika 42:150–157

    CAS  Google Scholar 

  • Mohammadzadeh R, Motallebi M, Zamani M et al (2015) Generation of transgenic sugar beet (Beta vulgaris) overexpressing the polygalacturonase inhibiting protein 1 of Phaseolus vulgaris (pvpgip1) through Agrobacterium-mediated transformation. Turk J Agric For 39:429–438

    Article  CAS  Google Scholar 

  • Monteiro F, Frees L, Castro S et al (2018) Genetic and genomic tools to assist sugar beet improvement: the value of the crop wild relatives. Front Plant Sci 9:74. https://doi.org/10.3389/Fpls.00074

    Article  PubMed  PubMed Central  Google Scholar 

  • Mörchen M, Cuguen J, Michaelis G et al (1996) Abundance and length polymorphism of microsatellite repeat in Beta vulgaris L. Theor Appl Genet 92:326–333

    Article  PubMed  Google Scholar 

  • Moreno DA, Garcia-Veguera C, Gil JI et al (2008) Betalains in the era of global agri-food science, technology and nutritional health. Phytochem Rev 7:261–280

    Article  CAS  Google Scholar 

  • Morsi NAA, El-Gabry YA, Abu-Ellail FFB (2019) Indirect regeneration tissue culture and molecular characterization for some sugar beet (Beta vulgaris L.) genotypes. Middle East J Agric Res 8(1):187–199

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Murray R, Paul GL, Seifert JG et al (1989) The effects of glucose, fructose and sucrose ingestion during exercise. Med Sci Sports Exerc 21(3):275–282

    Article  CAS  PubMed  Google Scholar 

  • Negi PS, Roy SK (2001) Effect of drying conditions on quality of green leaves during long term storage. Food Res Int 34:283–287

    Article  CAS  Google Scholar 

  • Nilsson N, Hansen M, Panagopoulos A et al (1999) QTL analysis of Cercospora leaf spot resistance in sugar beet. Plant Breed 118:327–334

    Article  CAS  Google Scholar 

  • Norouzi P, Stevanato P, Mahmoudi SB et al (2017) Molecular progress in sugar beet breeding for resistance to biotic stresses in sub-arid conditions-current status and perspectives. J Crop Sci Biotechnol 20:99–105. https://doi.org/10.1007/s12892-016-0090-0

    Article  Google Scholar 

  • Nottingham S (2011) Beetroot e-book-2004. The Times, London. http://stephennottingham.co.uk. Accessed 28 Jan 2011

    Google Scholar 

  • Paesold S, Borchardt D, Schmidt T et al (2012) A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution. Plant J 72:600–611

    Article  CAS  PubMed  Google Scholar 

  • Paganga G, Miller M, Rice-Evan CA (1999) The polyphenolic content of fruit and vegetables and their antioxidant activities. What does a serving constitute? Free Radic Res 30:153–162

    Article  CAS  PubMed  Google Scholar 

  • Pai SR, D’Mello P (2004) Stability evaluation of beetroot colour in various pharmaceutical matrices. Indian J Pharm Sci 66:696–699

    CAS  Google Scholar 

  • Panella L (2008) Utilizing genetic resources for prebreeding of stress-resistant sugar beet germplasm: using molecular tools. In: Conventional and molecular breeding of field and vegetable crops. Novi Sad, November 24–27, 2008, pp 107–111

    Google Scholar 

  • Paradis E, Schliep K (2018) Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–5268

    Article  CAS  Google Scholar 

  • Paunesca A (2009) Biotechnology for endangered plant conservation: a critical overview. Rom Biotchnol Lett 14(1):4095–4104

    Google Scholar 

  • Pazuki A, Aflaki F, Gürel E et al (2018a) Gynogenesis induction in sugar beet (Beta vulgaris) improved by 6-benzylaminopurine (BAP) and synergized with cold pretreatment. Sugar Tech 20:69–77. https://doi.org/10.1007/s12355-017-0522-x

    Article  CAS  Google Scholar 

  • Pazuki A, Aflaki F, Gürel S et al (2018b) Production of doubled haploids in sugar beet (Beta vulgaris): an efficient method by a multivariate experiment. Plant Cell Tissue Organ Cult 132:85–97. https://doi.org/10.1007/s11240-017-1313-5

    Article  CAS  Google Scholar 

  • Pfeiffer N, Tränkner C, Lemnian I et al (2014) Genetic analysis of bolting after winter in sugar beet (Beta vulgaris L.). Theor Appl Genet 127:2479–2489. https://doi.org/10.1007/s00122-014-2392-x

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer N, Müller AE, Jung C, Kopisch-Obuch FJ (2017) QTL for delayed bolting after winter detected in leaf beet (Beta vulgaris L.). Plant Breed 136(2):237–244

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T et al (1999) Enhanced drought resistance in fructan-producing sugar beet. Plant Physiol Biochem 37:313–317

    Article  CAS  Google Scholar 

  • Pink DAC (1993) Beetroot (Beta vulgaris subsp. vulgaris) in genetic improvement of vegetable crops. Elsevier Ltd, Pergamon, pp 473–477

    Book  Google Scholar 

  • Plucknett DL, Smith NJH, Williams JT et al (1987) Gene banks and the world’s food. Princeton University Press, Princeton

    Book  Google Scholar 

  • Polischuk VV, Polischuk OV, Karpuk LM (2012) Selection of nutrient medium for sugar beet cms component introduction and proliferation. Autochthonous and Introduced Plants of Ukraine 8:123–128. (in Ukrainian)

    Google Scholar 

  • Polishchuk VV, Karpuk LM, Mykolaiko VP et al (2017) In vitro rhizogenesis of sugar beet microclones. Regul Mech Biosyst 8(4):616–622. https://doi.org/10.15421/021794

    Article  Google Scholar 

  • Porch TG, Blair MW, Lariguet P et al (2009) Generation of a mutant population for TILLING common bean genotype BAT93. Am Hortic Soc 134:348–355

    Article  Google Scholar 

  • Poulsen G, Holten C, Von Bothmer R (2007) AFLP similarities among historic Danish cultivars of fodder beet (Beta vulgaris L. subsp vulgaris var. rapacea Koch). Genet Resour Crop Evol 54:1105–1115

    Article  Google Scholar 

  • Rae S, Aldam C, Domingez I et al (2000) Development and incorporation of microsatellite markers into the linkage map of sugar beet (Beta vulgaris L.). Theor Appl Genet 100:1240–1248

    Article  CAS  Google Scholar 

  • Rajabi A, Borchardt D (2015) QTL mapping for root yield and leaf traits in sugar beet (Beta vulgaris L.) under drought stress condition. Iran J Crop Sci 17(1):46–62

    Google Scholar 

  • Ramarathnam N, Ochi H, Takeuchi M (1997) Antioxidant defense system in vegetable extracts. In: Shahidi F (ed) Natural antioxidants: chemistry, health effects and applications. AOCS Press, Champaign, pp 76–87

    Google Scholar 

  • Reddy MC, Murthy KSR, Pullaiah T (2012) Synthetic seeds: a review in agriculture and forestry. Afr J Biotechnol 11(78):14254–14275

    Google Scholar 

  • Reeves PA, He Y, Schmitz RJ et al (2007) Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics 176(1):295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reif JC, Wenxin L, Manje G (2010) Genetic basis of agronomically important traits in sugar beet (Beta vulgaris L.) investigated with joint linkage association mapping. Theor Appl Genet 121:1489–1499

    Article  PubMed  Google Scholar 

  • Richards C, Brownson M, Mitchell S et al (2004) Polymorphic microsatellite markers for inferring diversity in wild and domesticated sugar beet (Beta vulgaris). Mol Ecol Notes 4(2):243–245

    Article  CAS  Google Scholar 

  • Ricroch A, Clairand P, Harwood W (2017) Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci 1(2):169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie G, Short K, Davey MR (1989) In vitro shoot regeneration from callus, leaf axils and petioles of sugar beet (Beta vulgaris L.). J Exp Bot 40:277–283

    Article  Google Scholar 

  • Rodríguez del Río Á, Minoche AE, Zwickl NF et al (2019) Genomes of the wild beets Beta patula and Beta vulgaris ssp. maritima. Plant J 99(6):1242–1253

    Article  PubMed  CAS  Google Scholar 

  • Rouzbeh F, Sadeghian SY, Yavari N et al (2005) Inter-specific hybridization in Beta genus using embryo rescue technique. J Sugar Beet 21:15–30

    Google Scholar 

  • Russello M, Amato G, DeSalle R, Knapp M (2020) Conservation genetics and genomics. Genes 11(3):318. https://doi.org/10.3390/genes11030318

    Article  CAS  PubMed Central  Google Scholar 

  • Samuelian S, Kleine M, Ruyter-Spira CP et al (2004) Cloning and functional analyses of a gene from sugar beet up-regulated upon cyst nematode infection. Plant Mol Biol 54:147–156

    Article  CAS  PubMed  Google Scholar 

  • Schneider K, Schäfer-Pregl R, Borchardt D et al (2002) Mapping QTLs for sucrose content, yield and quality in a sugar beet population fingerprinted by EST-related markers. Theor Appl Genet 104:1107–1113. https://doi.org/10.1007/s00122-002-0890-8

    Article  CAS  PubMed  Google Scholar 

  • Schneider K, Kulosa D, Soerensen TR et al (2007) Analysis of DNA polymorphisms in sugar beet (B. vulgaris L.) and development of an SNP-based map of expressed genes. Theor Appl Genet 115:601–615

    Article  CAS  PubMed  Google Scholar 

  • Schrader WL, Mayberry KS (2003) Beet and Swiss chard production in California. University of California, Division of Agriculture and Natural Resources. https://anrcatalog.ucanr.edu/pdf/8096.pdf

  • Schulte D, Cai DG, Kleine M et al (2006) A complete physical map of a wild beet (Beta procumbens) translocation in sugar beet. Mol Gen Genomics 275:504–511

    Article  CAS  Google Scholar 

  • Shelake RM, Pramanik D, Kim JY (2019) Exploration of plant-microbe interactions for sustainable agriculture in CRISPR era. Microorgan 7:269. https://doi.org/10.3390/microorganisms7080269

    Article  Google Scholar 

  • Shukla S (2016) Embryo rescue technology: an approach for varietal development and in vitro germplasm conservation. Nat Acad Agric Sci (NAAS) 34(3):841–847

    Google Scholar 

  • Simeonov DR, Marson A (2019) CRISPR-based tools in immunity. Annu Rev Immunol 37:571–597

    Article  CAS  PubMed  Google Scholar 

  • Simon P (2000) Domestication, historical development, and modern breeding of carrot. Plant Breed Rev 19:157–190

    Google Scholar 

  • Smith M (1985) In vitro mutagenesis. Annu Rev Genet 19:423–462

    Article  CAS  PubMed  Google Scholar 

  • Smith GA (1987) Sugar beet. In: Fehr WR (ed) Principles of cultivar development, vol 2. Macmillan, New York, pp 577–625

    Google Scholar 

  • Smith GA, Hecker RJ, Maag GW, Rasmusson DM (1973) Combining ability and gene action estimates in an eight parent diallel cross of sugar beet. Crop Sci 13:312–316

    Article  Google Scholar 

  • Sowa MT, Olszewska D (2019) Evaluation of genetic stability of sugar beet (Beta vulgaris L.) plants obtained from unfertilized ovules using RAPD markers. J Cent Eur Agric 20(3):928–937

    Article  Google Scholar 

  • Spencer-Lopes MM, Forster BP, Jankuloski L (2018) Manual on mutation breeding. Food and Agriculture Organization (FAO) of the United Nations, Rome

    Google Scholar 

  • Stevanato P, Trebbi D, Saccomani M (2010) Root traits and yield in sugar beet: identification of AFLP markers associated with root elongation rate. Euphytica 173(3):289–298

    Article  Google Scholar 

  • Stevanato P, Trebbi D, Panella L et al (2015) Identification and validation of a SNP marker linked to the gene HsBvm-1 for nematode resistance in sugar beet. Plant Mol Biol Report 33:474–479. https://doi.org/10.1007/s11105-014-0763-8

    Article  CAS  Google Scholar 

  • Stevanato P, Trebbi D, Saccomani M (2017) Single nucleotide polymorphism markers linked to root elongation rate in sugar beet. Biol Plant 61:48–54. https://doi.org/10.1007/s10535-016-0643-1

    Article  CAS  Google Scholar 

  • Stintzing FC, Carle R (2007) Betalains: emerging prospects for food scientists. Trends Food Sci Technol 18:514–525

    Article  CAS  Google Scholar 

  • Suprasanna P, Nakagawa H (2012) Mutation breeding of vegetatively propagated crops. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CAB International and FAO, Rome, pp 347–358

    Chapter  Google Scholar 

  • Tadege M, Wang TL, Wen J et al (2009) Mutagenesis and beyond! Tools for understanding legume biology. Plant Physiol 151:978–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi K, Ogata N, Kubo T et al (2009) Quantitative trait locus responsible for resistance to Aphanomyces root rot (black root) caused by Aphanomyces cochlioides Drechs. in sugar beet. Theor Appl Genet 118:227–234. https://doi.org/10.1007/s00122-008-0891-3

    Article  PubMed  Google Scholar 

  • Taguchi K, Okazaki K, Takahashi H et al (2010) Molecular mapping of a gene conferring resistance to Aphanomyces root rot (black root) in sugar beet (Beta vulgaris L.). Euphytica 173:409–418

    Article  CAS  Google Scholar 

  • Taguchi K, Kubo T, Takahashi H, Abe H (2011) Identification and precise mapping of resistant QTLs of Cercospora leaf spot resistance in sugar beet (Beta vulgaris L.). G3 1(4):283–291

    Article  PubMed  PubMed Central  Google Scholar 

  • Theurer JC (1993) Pre-breeding to change sugarbeet root architecture. J Sugar Beet Res 30:221–239

    Google Scholar 

  • Till BJ, Colbert T, Tompa R (2003) High throughput TILLING for functional genomics. Methods Mol Biol 236:205–220

    CAS  PubMed  Google Scholar 

  • Till BJ, Cooper J, Tai TH (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19. https://doi.org/10.1186/1471-2229-7-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomaszewska-Sowa M, Olszewska D (2019) Evaluation of genetic stability of sugar beet (Beta vulgaris L.) plants obtained from unfertilized ovules using RAPD markers. J Cent Eur Agric 20(3):928–937

    Article  Google Scholar 

  • Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46

    Article  CAS  Google Scholar 

  • Trebbi D, McGrath JM (2009) Functional differentiation of the sugar beet root system as indicator of developmental phase change. Physiol Plant 135:84–97

    Article  CAS  PubMed  Google Scholar 

  • Tsai CJ, Saunders JW (1999) Encapsulation, germination and conversion of somatic embryos in sugarbeet. J Sugar Beet Res 36:11–32

    Article  Google Scholar 

  • Tsai H, Howell T, Nitcher RV et al (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Wiel C, Schaart J, Niks R et al (2010) Traditional plant breeding methods, Report 338. UR Plant Breeding, Wageningen

    Google Scholar 

  • Vandenbussche B, Weyens G, De Proft M (2000) Cryopreservation of in vitro sugar beet (Beta vulgaris L.) shoots tips by a vitrification technique. Plant Cell Rep 19:1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Viard F, Bernard J, Desplanque B (2002) Crop–weed interactions in the Beta vulgaris complex at a local scale: allelic diversity and gene Xow within sugar beet fields. Theor Appl Genet 104:688–697

    Article  CAS  PubMed  Google Scholar 

  • Vinson JA, Hontz BA (1995) Phenol antioxidant index: comparative antioxidant effectiveness of red and white wines. J Agric Food Chem 43:401–403

    Article  CAS  Google Scholar 

  • Vinson JA, Hao Y, Su C, Zubic L (1998) Phenol antioxidant quantity and quality in foods: vegetables. J Agric Food Chem 46:3630–3634

    Article  CAS  Google Scholar 

  • Wang M, Goldman IL (1999) Genetic distance and diversity in table beet and sugar beet accessions measured by random amplified polymorphic DNA (RAPD). J Am Soc Hortic Sci 124:630–635

    Article  CAS  Google Scholar 

  • Wang MQ, Li B, Wu ZD, Wang HZ (2017) QTL analysis of root yield and sugar content in sugar beet. Chin Agric Sci Bull 33:43–47. https://doi.org/10.11924/j.issn.1000-6850.casb16120030

    Article  Google Scholar 

  • Wang MQ, Xu YH, Wu ZD et al (2018) High-density genetic map construction in sugar beet (Beta vulgaris L.) by high-throughput technology. Sugar Tech 20:212–219. https://doi.org/10.1007/s12355-017-0550-6

    Article  CAS  Google Scholar 

  • Wang M, Xu Y, Wang W et al (2019) Quantitative trait locus (QTL) mapping of sugar yield-related traits in sugar beet (Beta vulgaris L.). Sugar Tech 21:135–144. https://doi.org/10.1007/s12355-018-0632-0

    Article  Google Scholar 

  • Watts L (1980) Flower and vegetable plant breeding. Grower Books, London, p 179

    Google Scholar 

  • Weber WE, Borchardt DC, Koch G (1999) Combined linkage maps and QTLs in sugar beet (Beta vulgaris L.) from different populations. Plant Breed 118(3):193–204

    Article  CAS  Google Scholar 

  • Weber B, Wenke T, Frommel U et al (2010) The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance, chromosomal distribution and age. Chromosom Res 18:247–263

    Article  CAS  Google Scholar 

  • Weisshaar B, Himmelbauer H, Schmidt T et al (2016) Sugar beet BeetMap-3 and steps to improve the genome assembly and genome sequence annotation. W875, Plant & Animal Genome XXIV, January 9–13, 2016, San Diego, USA

    Google Scholar 

  • Würschum T, Kraft T (2014) Cross-validation in association mapping and its relevance for the estimation of QTL parameters of complex traits. Heredity 112(4):463–468

    Article  PubMed  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in breeding: from publication to practice. Crop Sci 48(2):391–407

    Article  Google Scholar 

  • Xu X, Qi LS (2019) A CRISPR–dCas toolbox for genetic engineering and synthetic biology. J Mol Biol 431:34–47

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Chen D, Kaufmann K (2016) Efficient multiplex mutagenesis by RNA-guided Cas9 and its use in the characterization of regulatory elements in the AGAMOUS gene. Plant Methods 12(1):23. https://doi.org/10.1186/s13007-016-0125-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang AF, Duan XG, Gu XF et al (2005) Efficient transformation of beet (Beta vulgaris) and production of plants with improved salt-tolerance. Plant Cell Tissue Organ Cult 83:259–270

    Article  CAS  Google Scholar 

  • Youssef AA, Rslan WM (2018) Sugar beet improvement using Agrobacterium-mediated transformation technology. Highlights BioSci 1:1–5. https://doi.org/10.36462/H.BioSci.20183

    Article  Google Scholar 

  • Yuan Y, Zhang P, Wang K et al (2018) Genome sequence of the freshwater Yangtze finless porpoise. Genes 9:213. https://doi.org/10.3390/genes9040213

    Article  CAS  PubMed Central  Google Scholar 

  • Zakrzewski F, Schubert V, Viehoever P et al (2014) The CHH motif in sugar beet satellite DNA: a modulator for cytosine. Plant J 78:937–950. https://doi.org/10.1111/tpj.12519

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrag F. B. Abu-Ellail .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: List of Major Institutes Engaged in Research on Beetroot (Beta vulgaris )

Country

Institution name

Website

UK

British Beet Research Organization (BBRO)

http://bbro.co.uk

USA

Oregon State University (OSU)

https://oregonstate.edu/

Germany

Institute of Sugar Beet Research (IFZ)

https://www.ifz-goettingen.de

China

Hunan Agricultural University (HAU)

https://www.scau.edu.cn/

Finland

The University of Helsinki (UH)

https://www.helsinki.fi/en

India

Tamil Nadu Agriculture University (TNAU)

http://www.tnau.ac.in

Nigeria

National Root Crops Research Institute (NRCRI)

https://nrcri.gov.ng

Egypt

Horticulture Research Institute (HRI)

http://www.arc.sci.eg

China

Southwest Agricultural University (SWAU)

http://www.swu.edu.cn/

Egypt

Agricultural Research Center (ARC)

http://www.arc.sci.eg

New Zealand

Massey University (MU)

https://www.massey.ac.nz

France

Institut National de la Recherche Agronomique (INRA)

https://www.inrae.fr/en

Japan

National Institute of Agrobiological Sciences (NIAS)

http://www.naro.affrc.go.jp/english/laboratory/nias/

Germany

International Institute of Sugar Beet Research (IIRB)

https://www.iirb.org

Turkey

Atatürk Central Horticultural Research Institute (ACHRI)

https://arastirma.tarimorman.gov.tr/yalovabahce

Turkey

Faculty of Agriculture, Department of Horticulture (EGE)

https://agr.ege.edu.tr/eng-1082/welcome.html

1.2 Appendix II: World List of Recommended Varieties of Beetroot

Country

Recommended beetroot varieties

Egypt

Egyptian Crosby, Egyptian Flat, Red Local and Detroit Dark Red

Russia

Egyptian Flat, Red Ball, Cylinder, Bordeaux 237, Detroit Dark Red, Borshchevaya, Russian Odnosemyanaya, Nezhnosty, Lyubava Marishka, Fortuna, Demetra, Bordovaya, VNIIO and Gaspadinya

USA

Red Ace, Detroit Dark Red, Early Wonder Tall Top, Bull’s Blood, Cylindra, Forno, Ruby Queen, Golden, Bastian’s, Crosby’s, Red Castelnaudary and Touchstone Gold SL2121

India

Ooty 1, Crimson Globe, Detroit Dark Red, Imperator and Red Ball

Austria

Gyptische Plattrunde, Bolivar, Forono, Mona Lisa, Moronia, Redval and Robuschka.

Germany

Boltardy, Chiogga, Kestrel, Cylindra, Pablo, Red ace, Blankoma and Globe 2

South Africa

Crimson Globe, Detroit Dark Red, Star 1105, Merlin, Globe Dark Red, Osprey and Early Wonder

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abu-Ellail, F.F.B., Salem, K.F.M., Saleh, M.M., Alnaddaf, L.M., Al-Khayri, J.M. (2021). Molecular Breeding Strategies of Beetroot (Beta vulgaris ssp. vulgaris var. conditiva Alefeld). In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66965-2_4

Download citation

Publish with us

Policies and ethics