Skip to main content
Log in

Root traits and yield in sugar beet: identification of AFLP markers associated with root elongation rate

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Morpho-physiological and molecular analysis were conducted to identify useful root indexes of sugar beet nutrient uptake capacity and productivity. Root architectural parameters, root elongation rate, sulfate uptake rate and glucose and fructose content in the root apex, traits involved in the plant response to sulfate stress, were evaluated in 18 sugar beet genotypes characterized by different root yield. Morpho-physiological traits, determined on 11-day-old seedlings grown in hydroponics under sulfate deprivation, showed variations from 59 to 197% and were significantly correlated (P < 0.01) with root yield. Under field conditions, the highest root yield genotype (L18), which has the highest root phenotypic values following sulfate shortage, also showed the greatest root length density and leaf relative water content, with respect to the lowest root yield genotype (L01). Bulk segregant analysis based on AFLP analysis, done on a segregating progeny obtained from the cross between the two lines L01 × L18, allowed the identification of two AFLP markers associated to the root elongation rate parameter that showed the highest variation among all the analyzed root traits. The genetic diversity of root adaptive traits and the use of marker-assisted selection aimed at increasing sugar yield under water and nutrient stress in sugar beet breeding programmes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

RLD:

Root length density

RWC:

Leaf relative water content

AFLP:

Amplified fragment length polymorphism

BSA:

Bulk segregant analysis

LOD:

Likelihood of odds

References

  • Ali ML, Pathan MS, Zhang J, Bai G, Sarkarung S, Nguyen HT (2000) Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theor Appl Genet 101:756–766

    Article  CAS  Google Scholar 

  • Arnon DI, Hoagland DR (1940) Crop production in artificial culture solution and in soils with special reference to factors influencing yields and absorption of inorganic nutrients. Soil Sci 50:463–483

    CAS  Google Scholar 

  • Atkinson D (1991) Influence of root system morphology and development on the need for fertilizers and the efficiency of use. In: Waisel Y, Eshel A, Kafkaki U (eds) Plant roots: the hidden half. Marcel Dekker Inc, New York, pp 411–451

    Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow PW (2004) Root apices as plant command centres: the unique ‘brain-like’ status of the root apex transition zone. Biologia (Bratisl) 59:7–19

    Google Scholar 

  • Barbanti L, Monti A, Venturi G (2007) Nitrogen dynamics and fertilizer use efficiency in leaves of different ages of sugar beet (Beta vulgaris) at variable water regimes. Ann Appl Biol 150:197–205

    Article  CAS  Google Scholar 

  • Barrs HD, Weatherly PE (1962) A re-examination of relative turgidity for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Brar GS, Gomez JF, McMichael BL, Matches AG, Taylor HM (1990) Root development of 12 forage legumes as affected by temperature. Agron J 82:1024–1026

    Google Scholar 

  • Brück H, Becker HC, Sattelmacher B (1992) Phosphate efficiency of two maize inbred lines. In: Kutschera L, Hübl E, Lichtenegger E, Person H, Sobotik M (eds) Root ecology and its practical application. ISSR Symposium, Klagenfurt, pp 193–196

    Google Scholar 

  • Cacco G, Ferrari G, Saccomani M (1980) Pattern of sulfate uptake during root elongation in maize: its correlation with productivity. Physiol Plant 48:375–378

    Article  CAS  Google Scholar 

  • Cacco G, Saccomani M, Ferrari G (1983) Changes in the uptake and assimilation efficiency for sulfate and nitrate in maize hybrids selected during the period 1930 through 1975. Physiol Plant 58:171–174

    Article  CAS  Google Scholar 

  • Cai S, Bai GH, Zhang D (2008) Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW. Theor Appl Genet 117:49–56

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24

    Article  CAS  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31:132–140

    PubMed  Google Scholar 

  • Choi EY, Kolesik P, McNeill A, Collins H, Zhang Q, Huynh BL, Graham R, Stangoulis J (2007) The mechanism of boron tolerance for maintenance of root growth in barley (Hordeum vulgare L.). Plant Cell Env 30:984–993

    Article  CAS  Google Scholar 

  • Colmer TD, Bloom AJ (1998) A comparison of NH4+ and NO3 net fluxes along roots of rice and maize. Plant Cell Env 21:240–246

    Article  CAS  Google Scholar 

  • Conover WJ (1980) Practical non-parametric statistics. Wiley, New York, p 592

    Google Scholar 

  • de Dorlodot S, Brian F, Pagés L, Price A, Tuberosa R, Xavier D (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481

    Article  PubMed  CAS  Google Scholar 

  • del Amor FM, Marcelis LFM (2004) Regulation of K uptake, water uptake, and growth of tomato during K starvation and recovery. Sci Hortic 100:83–101

    Article  CAS  Google Scholar 

  • Doussan C, Pagès L, Pierret A (2003) Soil exploration and resource acquisition by plant roots: an architectural and modeling point of view. Agronomie 23:419–431

    Article  Google Scholar 

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:763–782

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow

    Google Scholar 

  • Fitter A (1985) Functional significance of root morphology and root system architecture. In: Fitter A, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell Scientific, Oxford, pp 87–106

    Google Scholar 

  • Freixes S, Thibaud MC, Tardieu F, Muller B (2002) Root elongation and branching is related to local hexose concentration in Arabidopsis thaliana seedlings. Plant Cell Env 25:1357–1366

    Article  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (2004) Root traits as tools for creating phosphorus efficient crop varieties: new challenges for rhizosphere research at the entrance of the 21st Century. Plant Soil 260:47–57

    Article  Google Scholar 

  • Gruber V, Blanchet S, Diet A, Zahaf O, Boualem A, Kakar K, Alunni B, Udvardi M, Frugier F, Crespi M (2009) Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula. Mol Genet Genom 281:55–66

    Article  CAS  Google Scholar 

  • Holobradá M (1977) Changes in sulphate uptake and accumulation along the primary root during tissue differentiation. Biol Plant 19:331–337

    Article  Google Scholar 

  • Huang B (1999) Water relations and root activities of Buchloe dactyloides and Zoysia japonica in response to localized soil drying. Plant Soil 208:179–186

    Article  CAS  Google Scholar 

  • Hund A, Fracheboud Y, Soldati A, Frascaroli E, Salvi S, Stamp P (2004) QTL controlling root and shoot traits of maize seedlings under cold stress. Theor Appl Genet 109:618–629

    Article  CAS  PubMed  Google Scholar 

  • Jahn T, Baluška F, Michalke W, Harper JF, Volkmann D (1998) Plasma membrane H+-ATPase in the root apex: evidence for strong expression in xylem parenchyma and asymmetric localization within cortical and epidermal cells. Physiol Plant 104:311–316

    Article  CAS  Google Scholar 

  • Jahufer MZZ, Nichols SN, Crush JR, Li O, Dunn A, Ford JL, Care DA, Griffiths AG, Jones CS, Jones CG, Woodfield DR (2008) Genotypic variation for root trait morphology in a white clover mapping population grown in sand. Crop Sci 48:487–494

    Article  Google Scholar 

  • Jones PD, Lister DH, Jaggard KW, Pidgeon JD (2003) Future climate impact on the productivity of sugar beet (Beta vulgaris L.) in Europe. Clim Change 58:93–108

    Article  Google Scholar 

  • Kincaid DC, Heerman DF (1974) Scheduling irrigations using a programmable calculator. USDA-ARS, Washington, DC

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: An interactive computer package for constructing genetic linkage map of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (2007) Roots of the Second Green Revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Lynch JP, Beebe SE (1995) Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availability. Hort Science 30:1165–1171

    CAS  Google Scholar 

  • Lynch JP, St Clair S (2004) Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils. Field Crops Res 90:101–115

    Article  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Env 28:67–77

    Article  CAS  Google Scholar 

  • Manschadi AM, Hammer GL, Christopher JT, de Voil P (2008) Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil 303:115–129

    Article  CAS  Google Scholar 

  • McGrath JM, Saccomani M, Stevanato P, Biancardi E (2007) Beet. In: Kole C (ed) Genome mapping and molecular breeding in plants. Vegetables, vol 5. Springer, Berlin, pp 191–207

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: in specific genomic regions by using segregating populations. PNAS 88:9828–9832

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Adu-Gyamfi JJ, Yamamoto A, Ishikawa S, Nakano H, Ito O (2002) Varietal differences in root growth as related to nitrogen uptake by sorghum plants in low-nitrogen environment. Plant Soil 245:17–24

    Article  CAS  Google Scholar 

  • O’Neill PM, Shanahan JF, Schepers JS, Caldwell B (2004) Agronomic responses of corn hybrids from different eras to deficit and adequate levels of water and nitrogen. Agron J 96:1660–1667

    Article  Google Scholar 

  • O’Toole JC, Bland WL (1987) Genotypic variation in crop plant root systems. Adv Agron 41:91–145

    Article  Google Scholar 

  • Pace GM, Volk RJ, Jackson WA (1990) Nitrate reduction in response to CO2-limited photosynthesis. Relationship to carbohydrate supply and nitrate reductase activity in maize seedlings. Plant Physiol 92:286–292

    Article  CAS  PubMed  Google Scholar 

  • Padilla FM, Miranda J, Pugnaire FI (2007) Early root growth plasticity in seedlings of three mediterranean woody species. Plant Soil 296:103–113

    Article  CAS  Google Scholar 

  • Raman H, Moroni JS, Sato K, Read BJ, Scott BJ (2002) Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley (Hordeum vulgare L.). Theor Appl Genet 105:458–464

    Article  CAS  PubMed  Google Scholar 

  • Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T (2006) Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Env 29:115–125

    Article  CAS  Google Scholar 

  • Roumet C, Urcelay C, Díaz S (2006) Suites of root traits differ between annual and perennial species growing in the field. New Phytol 170:357–368

    Article  PubMed  Google Scholar 

  • Ryser P (1998) Intra- and interspecific variation in root length, root turnover and the underlying parameters. In: Lambers H, Poorter H, van Vuuren MMI (eds) Inherent variation in plant growth physiological mechanisms and ecological consequences. Backhuys Publishers, Leiden, pp 441–465

    Google Scholar 

  • Saccomani M, Cacco G, Ferrari G (1981) Efficiency of the first steps of sulfate utilization by maize hybrids in relation to their productivity. Physiol Plant 53:101–104

    Article  CAS  Google Scholar 

  • Saccomani M, Stevanato P, Trebbi D, McGrath M, Biancardi E (2009) Molecular and morpho-physiological characterization of sea, ruderal and cultivated beets. Euphytica. doi:10.1007/s10681-009-9888-5

  • Sangamesh VA, Martin HE (2002) Root system and water use patterns of different height sunflower cultivars. Agron J 94:136–145

    Google Scholar 

  • Shimizu A, Yanagihara S, Kawasaki S, Ikehashi H (2004) Phosphorus deficiency-induced root elongation and its QTL in rice (Oryza sativa L.). Theor Appl Genet 109:1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Stevanato P, Saccomani M, Bertaggia M, Bottacin A, Cagnin M, De Biaggi M, Biancardi E (2004) Nutrient uptake traits related to sugarbeet yield. J Sugar Beet Res 41:89–99

    Google Scholar 

  • Sullivan WM, Jiang Z, Hull RJ (2000) Root morphology and its relationship with nitrate uptake in Kentucky bluegrass. Crop Sci 40:765–772

    Google Scholar 

  • Thomas SG, Bilsborrow PE, Hocking TJ, Bennett J (2000) Effect of sulphur deficiency on the growth and metabolism of sugar beet (Beta vulgaris cv. Druid). J Sci Food Agr 80:2057–2062

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R, Giuliani S, Sanguineti MC, Bellotti M, Conti S, Landi P (2007) Genome-wide approaches to investigate and improve maize response to drought. Crop Sci 47:S-120–S-141

    Article  Google Scholar 

  • Vamerali T, Saccomani M, Bona S, Mosca G, Guarise M, Ganis A (2003) A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant Soil 255:157–167

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Vuylsteke M, Peleman JD, van Eijk MJT (2007) AFLP technology for DNA fingerprinting. Nat Protoc. doi:10.1038/nprot.2007.175

  • Wang H, Taketa S, Miyao A, Hirochika H, Ichii M (2006) Isolation of a novel lateral-rootless mutant in rice (Oryza sativa L.) with reduced sensitivity to auxin. Plant Sci 170:70–77

    Article  CAS  Google Scholar 

  • Wissuwa M, Mazzola M, Picard C (2008) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil. doi:10.1007/s11104-008-9693-2

  • Zheng BS, Yang L, Zhang WP, Mao CZ, Wu YR, Yi KK, Liu FY, Wu P (2003) Mapping QTLs and candidate genes for rice root traits under different water supply conditions and comparative analysis across three populations. Theor Appl Genet 107:1505–1515

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor Appl Genet 111:688–695

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by Veneto Region (Italy) through the Biotech Action II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piergiorgio Stevanato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevanato, P., Trebbi, D. & Saccomani, M. Root traits and yield in sugar beet: identification of AFLP markers associated with root elongation rate. Euphytica 173, 289–298 (2010). https://doi.org/10.1007/s10681-009-0042-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-009-0042-1

Keywords

Navigation