Skip to main content

Molecular Markers: Potential Facilitators in Plant Breeding and Germplasm Conservation

  • Chapter
  • First Online:
Food Security and Safety

Abstract

Plant breeding through conventional methods with classical markers (morphological, cytological, and biochemical) has substantially contributed to crop productivity and germplasm conservation for sustenance of food security, but integration of molecular markers has potentially revolutionized plant breeding. Molecular markers, genes or DNA sequences controlling traits within chromosomal locations, when fully deployed in plant breeding including underutilized crops, will facilitate identification of novel traits that are phenotypically associated with expressed characters for high yields, early maturity, wide genetic base, resistance to abiotic and biotic stressors in under-utilized crops even at the seedling stage. Molecular markers are more sensitive, reliable, accurate, reproducible and devoid of environmental interferences unlike morphological traits. Some gel-based microsatellite/minisatellite markers and non-gel-based markers that require sequencing and high-throughput genotyping approaches are widely applicable in breeding programmes to assuage the bottlenecks in conventional agriculture and to enhance rapid selection of agronomically significant traits. Utilization of these markers has recorded tremendous breeding progress in many well-known crops but not fully in orphan crops. Parental or varietal genepools with traits of interest can be harnessed through these informative molecular markers and strategically implementing them in underutilized crops will accelerate identification and association of useful traits for breeding, germplasm conservation and food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H., Merril, C.R., Wu, A., Olde, B., Moreno, R.F., Kerlavage, A.R., McCombie, W.R., & Venter, J.C. (1991). Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 252,1651–1656.

    Google Scholar 

  • Agarwal, M., Shrivastava, N., & Padh, H. (2008). Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports, 27(4), 617–631.

    Article  CAS  PubMed  Google Scholar 

  • Aitken, K. S., Jackson, P. A., & McIntyre, C. L. (2005). A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theoretical and Applied Genetics, 110, 789–801.

    Article  CAS  PubMed  Google Scholar 

  • Aitken, K. S., Li, J.-C., Jackson, P., Piperidis, G., & McIntyre, C. L. (2006). AFLP analysis of genetic diversity within Saccharum officinarum and comparison with sugarcane cultivars. Australian Journal of Agricultural Research, 57, 1167–1184.

    Article  CAS  Google Scholar 

  • Aitken, K. S., McNeil, M. D., Hermann, S., Bundock, P. C., Kilian, A., Heller Uszynska, K., Henry, R. J., & Li, J. (2014). A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high-throughput diversity Array technology (DArT) markers. BMC Genomics, 15, 152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akhunov, E. D., Goodyear, A. W., Geng, S., Qi, L.-L., Echalier, B., Gill, B. S., Miltahudin Gustafson, J. P., Lazo, G., Chao, S., Anderson, O. D., Linkiewicz, A. M., Dubcovsky, J., La Rota, M., Sorrells, M. E., Zhang, D., Nguyen, H. T., Kalavacharla, V., Hossain, K., Kianian, S. F., Peng, J., Lapitan, N. L. V., Gonzalez-Hermandez, J. L., Anderson, J. A., Choi, D.-W., Close, T. J., Dilbirligi, M., Gill, K. S., Walker-Simmons, M. K., Steber, C., et al. (2003). The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Research, 13, 753–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aikpokpodion, P.O., Abebe, J., & Igwe, D. (2018). Genetic diversity in Vernonia amygdalina Delile accessions revealed by random amplified polymorphic DNAs (RAPDs). Journal of Biotechnology, 99(2), 147–152.

    Google Scholar 

  • Alavi-Kia, S. S., Mohammadi, S. A., Aharizad, S., & Moghaddam, M. (2008). Analysis of genetic diversity and phylogenetic relationships in crocus genus of Iran using interretrotransposon amplified polymorphism. Biotechnology and Biotechnological Equipment, 22, 795–800.

    Article  CAS  Google Scholar 

  • Alghamdi, S., Al-Faifi, S., Migdadi, H., Khan, M., El-Harty, E., & Ammar, M. (2012). Molecular diversity assessment using sequence related amplified polymorphism (SRAP) markers in Vicia faba L. International Journal of Molecular Sciences, 13, 16457–16471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali, F., Yılmaz, A., Nadeem, M.A., Habyarimana, E., Subaşı, I., Nawaz, M.A., et al. (2019). Mobile genomic element diversity in world collection of safflower (Carthamus tinctorius L.) panel using iPBS-retrotransposon markers. PLoS ONE, 14(2), e0211985.

    Google Scholar 

  • Alwala, S., Suman, A., Arro, J. A., Veremis, J. C., & Kimbeng, C. A. (2006). Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Science, 46, 448–455.

    Article  CAS  Google Scholar 

  • Alwala, S., Kimbeng, C. A., Veremis, J. C., & Gravois, K. A. (2008). Linkage mapping and genome analysis in a Saccharum interspecifi c cross using AFLP, SRAP and TRAP markers. Euphytica, 164, 37–51.

    Article  CAS  Google Scholar 

  • Anand, K. K., Srivastava, R. K., & Chaudhary, L. B. (2010). Analysis of genetic diversity in Astragalus rhizanthus Benth. Ssp. rhizanthus var. rhizanthus (Fabaceae) using molecular markers from India. Journal of Botany, 2010, 9. https://doi.org/10.1155/2010/701975.

    Article  CAS  Google Scholar 

  • Andeden, E. E., Baloch, F. S., Derya, M., & Ozkan, H. (2013). IPBS-retrotransposon-based genetic diversity and relationship among wild annual Cicer species. Journal of Plant Biochemistry and Biotechnology, 22(4), 453–466.

    Article  CAS  Google Scholar 

  • Arnau, G., Bhattacharjee, R., MN, S., Chair, H., Malapa, R., Lebot, V., Abraham, K., Perrier, X., Petro, D., Penet, L., & Pavis, L. (2017). Understanding the genetic diversity and population structure of yam (Dioscorea alata L.) using microsatellite markers. PLoS One, 12(3), e0174150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arystanbekkyzy, M., Nadeem, M. A., Aktas, H., Yeken, M. Z., Zencirci, N., Nawaz, M. A., et al. (2018). Phylogenetic and taxonomic relationship of turkish wild and cultivated emmer (triticum turgidum ssp. dicoccoides) revealed by iPBS retrotransposons markers. International Journal of Agriculture and Biology, 00(0), 201x.

    Google Scholar 

  • Avise, J. C. (1994). Molecular markers, natural history and evolution. New York\London: Chapman and Hall. 511pp.

    Book  Google Scholar 

  • Avise, J. C. (2004). Molecular markers, natural history and evolution. USA: Sinauer Publication.

    Google Scholar 

  • Aydın, M. F., & Baloch, F. S. (2018). Exploring the genetic diversity and population structure of Turkish common bean germplasm by the iPBS-retrotransposons markers. Legume Research, 423, 1–7.

    Google Scholar 

  • Bachem, C. W., van der Hoeven, R. S., de Bruijn, S. M., Vreugdenhil, D., Zabeau, M., & Visser, R. G. (1996). Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. The Plant Journal, 9, 745–753.

    Article  CAS  PubMed  Google Scholar 

  • Baloch, F. S., Alsaleh, A., de Miera, L. E. S., Hatipoglu, R., Ciftci, V., Karakoy, T., et al. (2015a). DNA based iPBS-retrotransposon markers for investigating the population structure of pea (Pisum sativum) germplasm from Turkey. Biochemical Systematics and Ecology, 61, 244–252.

    Article  CAS  Google Scholar 

  • Baloch, F. S., Derya, M., Andeden, E. E., Alsaleh, A., Co¨mertpay, G., Kilian, B., et al. (2015b). Inter-primer binding site retrotransposon and inter-simple sequence repeat diversity among wild Lens species. Biochemical Systematics and Ecology, 58, 162–168.

    Article  CAS  Google Scholar 

  • Bardini, M., Lee, D., Donini, P., Mariani, A., Gianì, S., Toschi, M., Lowe, C., & Breviario, D. (2004). Tubulin-based polymorphism (TBP): A new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome, 291, 281–291.

    Article  Google Scholar 

  • Beckmann, J. S., & Weber, J. L. (1992). Survey of human and rat microsatellites. Genomics, 12(4), 627–631.

    Article  CAS  Google Scholar 

  • Bento, M., Gustafson, J. P., Viegas, W., & Silva, M. (2011). Size matters in Triticeae polyploids: Larger genomes have higher remodeling. Genome, 54, 175–183.

    Article  PubMed  Google Scholar 

  • Bhagyawant, S. S. (2016). RAPD-SCAR markers: An interface tool for authentication of traits. Journal of Biosciences and Medicines, 4, 1–9.

    Article  CAS  Google Scholar 

  • Bhattacharjee, R., Nwadili, C. O., Saski, C. A., Paterne, A., Scheffler, B. E., Augusto, J., et al. (2018). An EST-SSR based genetic linkage map and identification of QTLs for anthracnose disease resistance in water yam (Dioscorea alata L.). PLoS One, 13(10), e0197717. https://doi.org/10.1371/journal.pone.0197717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilgen, M., Karaca, M., Onus, A. N., & Ince, A. G. (2004). A software program combining sequence motif searches with keywords for finding repeats containing DNA sequences. Bioinformatics, 20(18), 3379–86.

    Google Scholar 

  • Bochra, L., Nejia, Z., Myriam, L., Karima, K., Abdelwahed, G., & Abdelaziz, M. (2011). RAPD-based assessment of genetic diversity among annual caraway (Carum carvi) populations. EurAsian Journal of BioScience, 5, 37–47.

    Google Scholar 

  • Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 32, 314–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Branco, C. J. S., Vieira, E. A., Malone, G., Kopp, M. M., Malone, E., Bernardes, A., Mistura, C. C., Carvalho, F. I. F., & Oliveira, C. A. (2007). IRAP and REMAP assessments of genetic similarity in rice (Oryza sativa). Journal of Applied Genetics, 48, 107–113.

    Article  PubMed  Google Scholar 

  • Breviario, D. (2008). Plant tubulin genes: Regulatory and evolutionary aspects. In Plant microtubules (2nd ed., pp. 207–232). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Breviario, D., & Nick, P. (2000). Plant tubulins: A melting pot for basic questions and promising applications. Transgenic Research, 9, 383–393.

    Article  CAS  PubMed  Google Scholar 

  • Breviario, D., Baird, W. V., Sangoi, S., Hilu, K., Blumetti, P., & Gianì, S. (2007). High polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns. Molecular Breeding, 20(3), 249–259.

    Article  CAS  Google Scholar 

  • Brown, A. H. D. (1978). Isozymes, plant population genetic structure and genetic conservation. Theoretical and Applied Genetics, 52, 145–157.

    Article  CAS  PubMed  Google Scholar 

  • Brugmans, B., del Carmen, A. F., Bachem, C. W. B., van Os, H., van Eck, H. J., & Visser, R. G. F. (2002). A novel method for the construction of genome wide transcriptome maps. The Plant Journal, 31, 211–222.

    Article  CAS  PubMed  Google Scholar 

  • Bryan, G. I., Stephenson, P., Collins, A., Kirby, J., Smith, J. B., & Gale, M. D. (1999). Low levels of DNA sequence variation among adapted genotypes of hexaploidy wheat. Theoretical and Applied Genetics, 99, 192–198.

    Article  CAS  Google Scholar 

  • Budak, H., Shearman, R. C., Parmaksiz, I., Gaussoin, R. E., Riordan, T. P., & Dweikat, I. (2004). Molecular characterization of buffalograss germplasm using sequence-related amplified polymorphism markers. Theoretical and Applied Genetics, 108, 328–334.

    Article  CAS  PubMed  Google Scholar 

  • Cai, K., Zhu, L., Zhang, K., Li, L., Zhao, Z., Zeng, W., & Lin, X. (2019). Development and characterization of EST-SSR markers from RNA-Seq data in Phyllostachys violascens. Frontiers in Plant Science, 10, 50. https://doi.org/10.3389/fpls.2019.00050.

    Article  PubMed  PubMed Central  Google Scholar 

  • Castilla, L. L., Hernández, R. G., Aguilar, C. C. C., Martínez-Hernández, A., Ortiz-García, M. M., & Andueza-Noh, R. H. (2019). Structure and genetic diversity of nine important landraces of Capsicum species cultivated in the Yucatan Peninsula, Mexico. Agronomy, 9, 376. https://doi.org/10.3390/agronomy9070376.

    Article  Google Scholar 

  • Chen, X.M., Line, R.F., & Leung, H. (1998). Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theoretical and Applied Genetics, 97, 345–355.

    Google Scholar 

  • Chen, J., Li, R., Xia, Y., Bai, G., Guo, P., Wang, Z., et al. (2017). Development of EST-SSR markers in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) based on de novo transcriptomic assemblies. PLoS One, 12(9), e0184736. https://doi.org/10.1371/journal.pone.0184736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christelova, P., Valarik, M., Hribova, E., Van den houwe, I., Channeliere, S., Roux, N., & Dolezel, J. (2011). A platform for efficient genotyping in Musa using microsatellite markers. AoB Plants, 2011, plr024. https://doi.org/10.1093/aobpla/plr024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole, C. T. (2003). Genetic variation in rare and common plants. Annual Review of Ecology, Evolution, and Systematics, 34, 213–227.

    Article  Google Scholar 

  • Collard, B. C., & Mackill, D. J. (2009). Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter, 27, 86–93.

    Article  CAS  Google Scholar 

  • Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142, 169–196.

    Article  CAS  Google Scholar 

  • Colling, J., Pollier, J., Makunga, N. P., & Goossens, A. (2013). cDNA-AFLP-based transcript profiling for genome-wide expression analysis of jasmonate-treated plants and plant cultures. Methods in Molecular Biology, 1011, 287–303.

    Article  CAS  PubMed  Google Scholar 

  • D’Hont, A., Denoeud, F., Aury, J.-M., Baurens, F.-C., Carreel, F., Garsmeur, O., et al. (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 488, 213–217.

    Google Scholar 

  • Dalong, G. U. O., Haiqing, Z., & Zhengrong, L. U. O. (2006). Genetic relationships of Diospyros kaki Thunb. And related species revealed by IRAP and REMAP analysis. Plant Science, 170, 528–533.

    Article  CAS  Google Scholar 

  • Deokar, A. A., Kondawar, V., Jain, P. K., Karuppayi, S. M., Raju, N. L., Vadez, V., Varshney, R. K., & Srinivasan, R. (2011). Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biology, 11, 70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doungous, O., Kalendar, R., Adiobo, A., & Schulman, A. (2015). Retrotransposon molecular markers resolve cocoyam (Xanthosoma sagittifolium) and taro (Colocasia esculenta) by type and variety. Euphytica, 206, 1–14.

    Article  CAS  Google Scholar 

  • Dwivedi, S. L., Crouch, J. H., Mackill, D. J., Xu, Y., Blair, M. W., Ragot, M., & Upadhyaya HD Ortiz, R. (2007). The molecularization of public sector crop breeding: Progress, problems, and prospects. Advances in Agronomy, 95, 163–318.

    Article  CAS  Google Scholar 

  • Ekun, V.S., Adenipekun, C.O., Ogunkanmi, L.A., Ojuederie, O.B., & Igwe, D.O (2018). Molecular Characterization of Auricularia Spp from South-Western Nigeria using Random amplified polymorphic DNA (RAPD) markers. Nigeria Journal of Biotechnology, 35, 34–43.

    Google Scholar 

  • Etminana, A., Pour-Aboughadareh, A., Mohammadic, R., Ahmadi-Radd, A., Nooria, A., Mahdaviana, Z., & Moradi, Z. (2016). Applicability of start codon targeted (SCoT) and inter-simple sequence repeat (ISSR) markers for genetic diversity analysis in durum wheat genotypes. Biotechnology and Biotechnological Equipment, 30(6), 1075–1081.

    Article  Google Scholar 

  • Fan, F., Cui, B., Zhang, T., et al. (2014). LTR-retrotransposon activation, IRAP marker development and its potential in genetic diversity assessment of masson pine (Pinus massoniana). Tree Genetics & Genomes, 10(1), 213–222.

    Article  Google Scholar 

  • Fang, D. Q., & Roose, M. L. (1997). Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theoretical and Applied Genetics, 95(3), 408–417.

    Article  CAS  Google Scholar 

  • FAO World Agriculture. (2002). Towards 2015/2030. Summary report. Rome: FAO.

    Google Scholar 

  • Farias da Silva, E. F., de Sousa, S. B., da Silva, G. F., Sousa, N. R., Filho, F. J. N., & Hanada, R. E. (2016). TRAP and SRAP markers to find genetic variability in complex polyploid Paullinia cupana var. sorbilis. Plant Gene, 6(2016), 43–47.

    Article  CAS  Google Scholar 

  • Fatokun, C., Girma, G., Abberton, M., Gedil, M., Unachukwu, N., Oyatomi, O., Yusuf, M., & Rabbi, I. (2018). Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Scientific Reports, 8, 16035. https://doi.org/10.1038/s41598-018-34555-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, S., He, R., Yang, S., Chen, Z., Jiang, M., Lu, J., & Wang, H. (2015). Start codon targeted (SCoT) and target region amplification polymorphism (TRAP) for evaluating the genetic relationship of Dendrobium species. Gene, 567(2), 182–188. https://doi.org/10.1016/j.gene.2015.04.076.

    Article  CAS  PubMed  Google Scholar 

  • Finnegan, D. J. (1989). Eukaryotic transposable elements and genome evolution. Trends in Genetics, 5, 103–107. https://doi.org/10.1016/0168-9525(89)90039-5. PMID: 2543105.

    Article  CAS  PubMed  Google Scholar 

  • Flavell, A. J., Knox, M. R., Pearce, S. R., et al. (1998). Retrotransposon based insertion polymorphisms (RBIP) for high throughput marker analysis. The Plant Journal, 16(5), 643–650.

    Article  CAS  PubMed  Google Scholar 

  • Foulley, J. L., Van Schriek, M. G. M., Alderson, L., Amigues, Y., Bagga, M., Boscher, M. Y., Brugmans, B., Cardellino, R., Davoli, R., Delgado, J. V., Fimland, E., Gandini, G. C., Glodek, P., Groenen, M., Hammond, K., Harlizius, B., Heuven, H., Joosten, R., Martinez, A. M., Matassino, D., Meyer, J. N., Peleman, J., Ramos, A. M., Rattink, A. P., Russo, V., Siggens, K. W., & Vega PJL Ollivier, L. (2006). Genetic diversity analysis using lowly polymorphic dominant markers. The Journal of Heredity, 97, 244–252.

    Article  CAS  PubMed  Google Scholar 

  • Galindo-González, L., Mhiri, C., Grandbastien, M. A., & Deyholos, M. K. (2016). Ty1-copia elements reveal diverse insertion sites linked to polymorphisms among flax (Linum usitatissimum L.) accessions. BMC Genomics, 17, 1002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Moreno, M. U., Velasco, L., & Perez-Vich, B. (2010). Transferability of non-genic microsatellite and gene-based sunflower markers to safflower. Euphytica, 175, 145–150.

    Article  CAS  Google Scholar 

  • Gentzbittel, L., Mestrites, E., Mouzeyar, S., Mazeyrat, F., Badaoui, S., Vear, F., Tourvieille De Labrouhe, D., & Nicholas, P. (1999). A composite map of expressed sequences and phenotypic traits of the sunflower (Helianthus annuus L.) genome. Theoretical and Applied Genetics, 99, 218–234.

    Article  CAS  Google Scholar 

  • Gharsallah, C., Abdelkrim, A. B., Fakhfakh, H., Salhi-Hannachi, A., & Faten Gorsane, F. (2016). SSR marker-assisted screening of commercial tomato genotypes under salt stress. Breeding Science, 66, 823–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilani, S., Hirano, R., Fujii, Y., & Watanabe, K. (2014). AFLP and PBA polymorphisms in an endangered medicinal plant, Rhazya stricta, in Pakistan. Plant Genetics Research, 12(2), 199–206.

    Article  Google Scholar 

  • Giordani, W., Scapim, C. A., Ruas, P. M., Ruas, C. de F., Contreras-Soto, R., Coan, M., Fonseca, I. C., & Gonçalves, L. S. A. (2019). Genetic diversity, population structure and AFLP markers associated with maize reaction to southern rust. Bragantia, Campinas, v. 78, n. 2, p.183–196.

    Google Scholar 

  • Gorji, A. M., Poczai, P., Polgar, Z., & Taller, J. (2011). Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. Am J Pot Res, 88, 226–237.

    Google Scholar 

  • Grzebelus, D. (2006). Transposon insertion polymorphism as a new source of molecular markers. Journal of Fruit and Ornamental Plant Research, 14, 21–29.

    CAS  Google Scholar 

  • Gui, Y., Yan, G., Bo, S., Tong, Z., Wang, Y., Xiao, B., Lu, X., Li, Y., Wu, W., & Fan, L. (2011). iSNAP: A small RNA-based molecular marker technique. Plant Breeding, 130, 515–520.

    Article  CAS  Google Scholar 

  • Guo, L., Wang, D., Ma, H., Yin, W., & Xia, X. (2011). Complementary DNA-amplified fragment length polymorphism (AFLP-cDNA) analysis of differential gene expression from the xerophyte Ammopiptanthus mongolicus in response to cold, drought and cold together with drought. African Journal of Biotechnology, 10(19), 3715–3725.

    CAS  Google Scholar 

  • Guo, L., Liu, X., Liu, X., Yang, Z., Kong, D., He, Y., & Feng, Z. (2012a). Construction of genetic map in barley using sequence-related amplified polymorphism markers, a new molecular marker technique. African Journal of Biotechnology, 11, 13858–13862.

    CAS  Google Scholar 

  • Guo, D. L., Zhang, J. Y., & Liu, C. H. (2012b). Genetic diversity in some grape varieties revealed by SCoT analyzes. Molecular Biology Reports, 39, 5307–5313.

    Article  CAS  PubMed  Google Scholar 

  • Guo, D-L., Guo, M-X., Hou, X-G., & Zhang, G-H. (2014). Molecular diversity analysis of grape varieties based on iPBS markers. Biochemical Systematics and Ecol

    Google Scholar 

  • Gupta, P. K., & Varshney, R. K. (2004). Cereal genomics: an overview. In P. K. Gupta & R. K. Varshney (Eds.), Cereal genomics. Dordrecht: Kluwer Academic Press. 639pp.

    Google Scholar 

  • Gupta, M., Chyi, Y. S., Romero-Severson, J., et al. (1994). Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theoretical and Applied Genetics, 89(7–8), 998–1006.

    Article  CAS  PubMed  Google Scholar 

  • Hajibarat, Z., Saidi, A., Hajibarat, Z., & Talebi, R. (2015). Characterization of genetic diversity in chickpea using SSR markers, Start Codon Targeted Polymorphism (SCoT) and Conserved DNA-Derived Polymorphism (CDDP). Physiol Mol Biol Plants, 21(3), 365–373.

    Google Scholar 

  • Hamidi, H., Talebi, R., & Keshavarzi, F. (2014). Comparative efficiency of functional gene-based markers start codon targeted polymorphism (SCoT) and conserved DNA-derived polymorphism (CDDP) with ISSR markers for diagnostic fingerprinting in wheat (Triticum aestivum L.). Cereal Research Communications, 42(4), 558–567.

    Article  CAS  Google Scholar 

  • Hamrick, J. L. (1989). Isozymes and the analysis of genetic structure in plant populations. In D. E. Soltis, P. S. Soltis, & T. R. Dudley (Eds.), Isozymes in plant biology (pp. 87–105). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hartl, D. L., & Clark, A. G. (1997). Principles of population genetics (3rd ed., p. 163). Sunderland: Sinauer Association.

    Google Scholar 

  • Hartl, D. L., & Jones, E. W. (2005). Chapter 2: DNA structure and DNA manipulation. In Genetics: Analysis of genes and genomes (5th ed., pp. 36–85). Sudbury: Jones and Bartlett Publisher.

    Google Scholar 

  • Heath, D.D., Iwana, G.K., & Delvin, R.H. (1993). PCR primed with VNTR core sequences yield species specific patterns and hypervariable probes. Nucleic Acids Research, 21, 5782–5.

    Google Scholar 

  • Hecker, K. H., Taylor, P. D., & Gjerde, D. T. (1999). Mutation detection by denaturing DNA chromatography using fluorescently labeled polymerase chain reaction products. Analytical Biochemistry, 272, 156–164.

    Article  CAS  PubMed  Google Scholar 

  • Hiendleder, S., Thomsen, H., Reinsch, N., Bennewitz, J., Leyhe-Horn, B., Looft, C., Xu, N., Medjugorac, I., Russ, I., Kühn, C., Brockmann, G. A., Blümel, J., Brenig, B., Reinhardt, F., Reents, R., Averdunk, G., Schwerin, M., Förster, M., & Kalm E Erhardt, G. (2003). Mapping of QTL for body conformation and behaviour in cattle. The Journal of Heredity, 94, 496–506.

    Article  CAS  PubMed  Google Scholar 

  • Hillis, D. M., Mable, B. K., & Moritz, C. (1996). Applications of molecular systematics: The state of the field and a look to the future. In D. M. Hillis, C. Moritz, & B. K. Mable (Eds.), Molecular systematics (pp. 515–543). Massachusetts: Sinauer Associates.

    Google Scholar 

  • Horst, L., & Wenzel, G. (2005). Molecular marker systems in plant breeding and crop improvement (pp. 74–76). Germany: Springer.

    Google Scholar 

  • Hu, J., & Vick, B. B. A. (2003). Target region amplification polymorphism: A novel marker technique for plant genotyping. Plant Molecular Biology Reporter, 289–294.

    Google Scholar 

  • Hu, J., Ochoa, O. E., Truco, M. J., & Vick, B. A. (2005). Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Eunphytica, 144, 225–235.

    Article  CAS  Google Scholar 

  • Huttner, E., Wenzl, P., Akbari, M., et al. (2005). Diversity arrays technology: A novel tool for harnessing the genetic potential of orphan crops. In I. Serageldin & G. J. Persley (Eds.), Discovery to delivery: BioVision Alexandria 2004; Proceedings of the 2004 Conference of the World Biological Forum; 2004 Apr Alexandria, Egypt (Vol. 3–6, pp. 145–155). Wallingford: CABI.

    Google Scholar 

  • Igwe, D. O., & Afiukwa, C. A. (2017). Competency assessment of directed amplified minisatellite DNA and start codon targeted markers for genetic diversity study in accessions of Vigna subterranea (L.) Verdcourt. JCSB, 20(4), 263–278.

    Google Scholar 

  • Igwe, D. O., Afiukwa, C. A., Ubi, B. E., Ogbu, K. I., Ojuederie, O. B., & Ude, G. N. (2017). Assessment of genetic diversity in Vigna unguiculata L. (Walp) accessions using inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) polymorphic markers. BMC Genetics, 18, 98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Igwe, D. O., Afiukwa, C. A., Acquaah, G., & Ude, G. N. (2019). Genetic diversity and structure of Capsicum annuum as revealed by start codon targeted and directed amplified minisatellite DNA markers. Hereditas, 156, 32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam, S., Mir, J. I., & Kudesia, R. (2015). Evaluation of genetic diversity in Vigna radiata (L.) using protein profiling and molecular marker (RFLP). International Journal of Plant Breeding and Genetics, 9(4), 238–246.

    Article  Google Scholar 

  • Jaccoud, D., Peng, K., Feinstein, D., et al. (2001). Diversity arrays: A solid-state technology for sequence information independent genotyping. Nucleic Acids Research, 29(4), E25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis, P., Lister, C., Szabo, V., et al. (1994). Integration of CAPS markers into the RFLP map generated using recombinant inbred lines of Arabidopsis thaliana. Plant Molecular Biology, 24(4), 685–687.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, L. & Zang, D. (2018). Analysis of genetic relationships in Rosa rugosa using conserved DNA-derived polymorphism markers. Biotechnology & Biotechnological Equipment, 32:1, 88–94.

    Google Scholar 

  • Jin, F.Y., Shu, H.J., & Liu, J. (2016). Advances in population biology of Rosa rugosa. Acta Ecol Sin, 36(11), 3156–3166.

    Google Scholar 

  • Jing, R., Bolshakov, V., & Flavell, A. J. (2007). The tagged microarray marker (TAM) method for high-throughput detection of single nucleotide and indel polymorphisms. Nature Protocols, 2(1), 168–177.

    Article  CAS  PubMed  Google Scholar 

  • Jing, R., Vershinin, A., Grzebyta, J., Shaw, P., Smýkal, P., Marshall, D., Ambrose, M. J., Ellis, T. H. N., & Flavell, A. J. (2010). The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon-based insertion polymorphism (RBIP) marker analysis. BMC Evolutionary Biology, 10, 44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalendar, R., & Schulman, A. H. (2006). IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols, 1(5), 2478–2484.

    Article  CAS  PubMed  Google Scholar 

  • Kalendar, R., Grob, T., Regina, M., Suoniemi, A., & Schulman, A. (1999). IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics, 98(5), 704–711.

    Google Scholar 

  • Kalendar, R., Antoniu, K., Smykal, P., & Schulman, A. H. (2010). iPBS: A universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics, 121(8), 1419–1430.

    Article  CAS  PubMed  Google Scholar 

  • Kalia, R. K., Rai, M. K., Kalia, S., et al. (2011). Microsatellite markers: An overview of the recent progress in plants. Euphytica, 177(3), 309–334.

    Article  CAS  Google Scholar 

  • Kantety, R. V., La Rota, M., Matthews, D. E., & Sorrells, M. E. (2002). Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Molecular Biology, 48, 501–510.

    Article  CAS  PubMed  Google Scholar 

  • Kashkush, K., Feldman, M., & Levy, A. A. (2002). Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics, 160, 1651–1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kebriyaee, D., Kordrostami, M., Rezadoost, M. H., et al. (2012). QTL analysis of agronomic traits in rice using SSR and AFLP markers. Notulae Scientia Biologicae, 4(2), 116–123.

    Article  CAS  Google Scholar 

  • Kim, H., Terakami, S., Nishitani, C., Kurita, K., Kanamori, H., Katayose, Y., Sawamura, Y., Saito, T., & Yamamoto, T. (2012). Development of cultivar-specific DNA markers based on retrotransposon-based insertional polymorphism in Japanese pear. Breeding Science, 62, 53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J.-H., Kim, J.-H., Jo, W.-S., Ham, J.-G., Chung, K., & Kim, K.-M. (2016). Characterization and development of EST-SSR markers in sweet potato (Ipomoea batatas (L.) lam). Biotechnology, 6, 243.

    Google Scholar 

  • Kolade, O. A., Olowolafe, M. O., & Fawole, I. (2016). Characterization of mutant cowpea [Vigna unguiculata (L.) Walp] lines using random amplified polymorphic DNAs (RAPDs) and amplified fragment length polymorphism (AFLP) markers. African Journal of Biotechnology, 15(45), 2530–2537.

    Article  Google Scholar 

  • Korzun, V., & Heckenberger, M. (2005). Methodik zur Bestimmung im wesentlichen abgeleiteter Sorten. In Schriften zu Genetischen Ressourcen, Informationszentrum für Biologische Vielfalt (IBV) der ZADI, Bonn: (7–14 pp).

    Google Scholar 

  • Kuhn, B. C., Lopez-Ribera, I., Machado, M. D. P. D., & Vicient, C. M. (2014). Genetic diversity of maize germplasm assessed by retrotransposon-based markers. Electrophoresis, 35, 1921–1927.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, L. S. (1999). DNA markers in plant improvement: An overview. Biotechnology Advances, 17, 143–182.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., & Hirochika, H. (2001). Applications of retrotransposons as genetic tools in plant biology. Trends in Plant Science, 6, 127–134.

    Article  CAS  PubMed  Google Scholar 

  • Kuria, P., Ateka, E., Miano, D., Onguso, J., & Taylor, N. J. (2016). Identification and analysis of cassava genotype TME3 bacteria artificial chromosome libraries for characterization of the cassava mosaic disease. African Journal of Biotechnology, 15(29), 1575–1596.

    Article  CAS  Google Scholar 

  • La Rota, M., & Sorrells, M. E. (2004). Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Functional & Integrative Genomics, 4, 34–46.

    Article  CAS  Google Scholar 

  • Lamare, A., & Rao, S. R. (2015). Efficacy of RAPD, ISSR and DAMD markers in assessment of genetic variability and population structure of wild Musa acuminata colla. Physiology and Molecular Biology of Plants, 21(3), 349–358.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, S. I., Kim, J. H., Park, K. C., & Kim, N. S. (2015). LTR-retrotransposons and inter-retrotransposon amplified polymorphism (IRAP) analysis in Lilium species. Genetica, 143(3), 343–352. https://doi.org/10.1007/s10709-015-9833-6.

    Article  CAS  PubMed  Google Scholar 

  • Lexa, M., Horak, J., & Brzobohaty, B. (2001). Virtual polymerase chain reaction. Bioinformatics, 17, 192–193.

    Article  CAS  PubMed  Google Scholar 

  • Li, G., & Quiros, C. F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 103(2–3), 455–461.

    Article  CAS  Google Scholar 

  • Li, T., Guo, J., Li, Y., Ning, H., Sun, X., & Zheng, C. (2013). Genetic diversity assessment of chrysanthemum germplasm using conserved DNA-derived polymorphism markers. Sci Hortic, 162, 271–277.

    Google Scholar 

  • Li, Z., Chen, F., Huang, C., Zheng, W., Yu, C., Cheng, H., & Zhou, R. (2017). Genome-wide mapping and characterization of microsatellites in the swamp eel genome. Scientific Reports, 7, 3157. https://doi.org/10.1038/s41598-017-03330-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liaud, M. F., Brinkmann, H., & Cerff, R. (1992). The beta-tubulin gene family of pea: Primary structures, genomic organization and intron-dependent evolution of genes. Plant Molecular Biology, 18, 639–651.

    Article  CAS  PubMed  Google Scholar 

  • Litt, M., & Luty, J. A. (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American Journal of Human Genetics, 44(3), 397–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lou, Q., & Chen, J. (2007). Ty1-copia retrotransposon-based SSAP marker development and its potential in the genetic study of cucurbits. Genome, 50(9), 802–810.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits. Sunderland (MA: Sinauer.

    Google Scholar 

  • Madhumati, B. (2014). Potential and application of molecular markers techniques for plant genome analysis. Indian Journal of Pure & Applied Biosciences, 2(1), 169–188.

    Google Scholar 

  • Maeda, M., Uryu, N., Murayama, N., et al. (1990). A simple and rapid method for HLA-DP genotyping by digestion of PCRamplified DNA with allele-specific restriction endonucleases. Human Immunology, 27(2), 111–121.

    Article  CAS  PubMed  Google Scholar 

  • Mam, A., Sakr, M.M., & Adawy, S.S. (2017). Assessing date palm genetic diversity using different molecular markers. Methods Mol Biol, 1638,125–142.

    Google Scholar 

  • Marcos, V. B. M. S., Queiroz-Silva, J. R., Bressan, E. A., Borges, A., Pereira, K. J. C., Pinto, J. G., & Veasey, E. A. (2009). Genetic characterization of cassava (Manihot esculenta) landraces in Brazil assessed with simple sequence repeats. Genetics and Molecular Biology, 32(1), 104–110.

    Article  Google Scholar 

  • Marsan, P., & Lenstra, J. (2007). Differentiation of European cattle by AFLP fingerprinting. Animal Genetics, 38, 60–66.

    Article  Google Scholar 

  • Masumba, E. A., Kapinga, F., Mkamilo, G., Salum, K., Kulembeka, H., Rounsley, S., Bredeson, J. V., Lyons, J. B., Rokhsar, D. S., Kanju, E., Katari, M. S., Myburg, A. A., van der Merwe, N. A., & Ferguson, M. E. (2017). QTL associated with resistance to cassava brown streak and cassava mosaic diseases in a bi-parental cross of two Tanzanian farmer varieties, Namikonga and Albert. Theoretical and Applied Genetics, 130, 2069–2090.

    Article  CAS  PubMed  Google Scholar 

  • Melnikova, N. V., Kudryavtseva, A. V., Zelenin, A. V., Lakunina, V. A., Yurkevich, O. Y., Speranskaya, A. S., Dmitriev, A. A., Krinitsina, A. A., Belenikin, M. S., Uroshlev, L. A., Snezhkina, A. V., Sadritdinova, A. F., Koroban, N. V., Amosova, A. V., Samatadze, T. E., Guzenko, E. V., Lemesh, V. A., Savilova, A. M., Rachinskaia, O. A., Kishlyan, N. V., Rozhmina, T. A., Bolsheva, N. L., & Muravenko, O. V. (2014). Retrotransposon-based molecular markers for analysis of genetic diversity within the genus Linum. BioMed Research International, 2014, 14.

    Article  CAS  Google Scholar 

  • Metcalfe, C. J., Oliveira, S. G., Gaiarsa, J. W., Aitken, K. S., Carneiro, M. S., Zatti, F., & M-AV, S. (2015). Using quantitative PCR with retrotransposon-based insertion polymorphisms as markers in sugarcane. Journal of Experimental Botany, 66(14), 4239–4250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaels, S. D., & Amasino, R. M. (1998). A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. The Plant Journal, 14(3), 381–385.

    Article  CAS  PubMed  Google Scholar 

  • Micheli, M. R., Bova, R., Pascale, E., & Ambrosio, E. (1994). Reproducible DNA fingerprint with the random amplified polymorphic DNA (RAPD) method. Nucleic Acids Research, 22, 1921–1922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra, K. K., Fougat, R. S., Ballani, A., Thakur, V., Jha, Y., & Bora, M. (2014). Potential and application of molecular marker techniques for plant genome analysis. International Journal of Pure & Applied Bioscience, 2, 169–188.

    Google Scholar 

  • Mittal, D., Borah, B. K., & Dasgupta, I. (2008). Agroinfection of cloned Sri Lankan cassava mosaic virus DNA to Arabidopsis thaliana, Nicotiana tabacum and cassava. Arch Virology, 153, 2149–2155.

    Google Scholar 

  • Monden, Y., Yamaguchi, K., & Tahara, M. (2014). Application of iPBS in high-throughput sequencing for the development of retrotransposon-based molecular markers. Current Plant Biology, 1, 40–44.

    Article  Google Scholar 

  • Moonsap, P., Laksanavilat, N., Sinumporn, S., Tasanasuwan, P., Kate-Ngam, S., & Jantasuriyarat, C. (2019). Genetic diversity of Indo-China rice varieties using ISSR, SRAP and InDel markers. Journal of Genetics, 98, 80.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, S., Martın, J. P., & Ortiz, J. M. (1998). Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm. Euphytica, 101(1), 117–125.

    Article  CAS  Google Scholar 

  • Morgante, M., Hanafey, M., & Powell, W. (2002). Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics, 30(2), 194–200.

    Article  CAS  PubMed  Google Scholar 

  • Moyib, O. K., Gbadegesin, M. A., Aina, O. O., & Odunola, O. A. (2008). Genetic variation within a collection of Nigerian accessions of African yam bean (Sphenostylis stenocarpa) revealed by RAPD primers. African Journal of Biotechnology, 7(12), 1839–1846.

    Google Scholar 

  • Mueller, U. G., & Wolfenbarger, L. L. (1999). AFLP genotyping and fingerprinting. Trends in Ecology & Evolution (TREE), 14, 389–394.

    Article  CAS  Google Scholar 

  • Murty, S. G., Patel, F., Punwar, B. S., Patel, M., Singh, A. S., & Fougat, R. S. (2013). Comparison of RAPD, ISSR, and DAMD markers for genetic diversity assessment between accessions of Jatropha curcas L. and its related species. Journal of Agricultural Science and Technology, 15, 1007–1022.

    CAS  Google Scholar 

  • Myint, T., Aung, P. P., & Thet, K. M. (2005) Genetic identification of some rice varieties using PBA markers. In Proceedings of the Annual Research Conference (Agricultural Sciences), Yangon, Myanmar, 7–9 January, 2005 (pp. 518–534). ref.17.

    Google Scholar 

  • Nadeem, M. A., Nawaz, M. A., Shahid, M. O., DoÄŸan, Y., Comertpay, G., Yıldız, M., HatipoÄŸlu, R., Ahmad, F., Alsaleh, A., Labhane, N., Özkan, H., Chung, G., & Baloch, F. S. (2018). DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnology and Biotechnological Equipment, 32(2), 261–285.

    Article  CAS  Google Scholar 

  • Narina, S. S., Buyyarapu, R., Kottapalli, K. R., Sartie, A. M., Ali, M. I., Robert, A., Hodeba, M. J. D., Sayre, B. L., & Scheffler, B. E. (2011). Generation and analysis of expressed sequence tags (ESTs) for marker development in yam (Dioscorea alata L.). BMC Genomics, 12, 100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nashima, K., Terakami, S., Kunihisa, M., Nishitani, C., Shoda, M., Matsumura, M., Onoue-Makishi, Y., Urasaki, N., Tarora, K., & Ogata, T. (2017). Toshiya Yamamoto, retrotransposon-based insertion polymorphism markers in mango. Genetics and Genomes, 13, 110.

    Article  Google Scholar 

  • Naylor, S. (2003). Biomarkers: Current perspectives and future prospects. Expert Review on Mol Diagnostics, 3, 525–529.

    Article  Google Scholar 

  • Nnamani, C. V., Afiukwa, C. A., Oselebe, H. O., Igwe, D. O., Uhuo, C. A., Idika, K. O., Ezigbo, E., Oketa, C. N., Nwankwo, V. O., Ukwueze, C. K., & Nwaojiji, C. O. (2018). Genetic diversity of some African yam bean accessions in Ebonyi state assessed using inter-simple sequence repeat (ISSR) markers. Journal of Underutilized Legumes, 1(1), 20–33.

    Google Scholar 

  • Nongdam, P., & Nirmala, C. (2007). Genetic variability in four species of Cymbidium based on isozyme markers. Physiology and Molecular Biology of Plants, 13(1), 65–68.

    CAS  Google Scholar 

  • Nussey, D. H., Wilson, A. J., & Brommer, J. E. (2007). The evolutionary ecology of individual phenotypic plasticity in wild populations. Journal of Evolutionary Biology, 20(3), 831–844.

    Article  CAS  PubMed  Google Scholar 

  • Nyine, M., Uwimana, B., Swennen, R., Batte, M., Brown, A., Christelová, P., HÅ™ibová, E., Lorenzen, J., & Doležel, J. (2017). Trait variation and genetic diversity in a banana genomic selection training population. PLoS One, 12(6), e0178734. https://doi.org/10.1371/journal.pone.0178734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojuederie, O. B., Igwe, D. O., Okuofu, S. I., & Faloye, B. (2012). Assessment of genetic diversity in some Moringa oleifera lam. Landraces in Western Nigeria using RAPD markers. The Afr J Plant SciBiotechnol, 7(1), 15–20.

    Google Scholar 

  • Ojuederie, O. B., Balogun, M. O., Fawole, I., Igwe, D. O., & Olowolafe, M. O. (2014). Assessment of the genetic diversity of African yam bean (Sphenostylis stenocarpa Hochst ex. a rich. Harms) accessions using amplified fragment length polymorphism (AFLP) markers. African Journal of Biotechnology, 13(18), 1850–1858.

    Article  Google Scholar 

  • Ouedraogo, J. T., Ouedraogo, M., Gowda, B. S., & Timko, M. P. (2012). Development of sequence characterized amplified region (SCAR) markers linked to race-specific resistance to Striga gesnerioides in cowpea (Vigna unguiculata L.). African Journal of Biotechnology, 11(62), 12555–12562.

    CAS  Google Scholar 

  • Paczos-Grzeda, E., & Bednarek, P. T. (2014). Comparative analysis of hexaploid Avena species using REMAP and ISSR methods. Turkish Journal of Botany, 38, 1103–1111.

    Article  CAS  Google Scholar 

  • Pakseresht, F., Talebi, R., & Karami, E. (2013). Comparative assessment of ISSR, DAMD and SCoT markers for evaluation of genetic diversity and conservation of landrace chickpea (Cicer arietinum L.) genotypes collected from north-west of Iran. Physiology and Molecular Biology of Plants, 19(4), 563–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal, N., Sandhu, J. S., & Domier LL Kolb, F. L. (2002). Development and characterization of microsatellite and RFLP-derived PCR markers in oat. Crop Science, 42, 912–918.

    CAS  Google Scholar 

  • Paran, I., & Michelmore, R. W. (1993). Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Genetics, 85(8), 985–993.

    Article  CAS  PubMed  Google Scholar 

  • Parthiban, S., Govindaraj, P., & Senthilkumar, S. (2018). Comparison of relative efficiency of genomic SSR and EST-SSR markers in estimating genetic diversity in sugarcane. Biotech, 8, 144.

    CAS  Google Scholar 

  • Pasquali, M., Dematheis, L. F., Gullino, M., & Garibaldi, A. (2007). Identification of race1 of Fusarium oxysporum f. sp. lactucae on lettuce by inter-retrotransposon sequence characterized amplified region technique. Phytopathology, 97, 987–996.

    Article  CAS  PubMed  Google Scholar 

  • Peltier, E., Sharma, V., Raga, M., Roncoroni, M. M., Bernard, M., Jiranek, V., Gibon, Y. V., & Marullo, P. (2018). Dissection of the molecular bases of genotype x environment interactions: A study of phenotypic plasticity of Saccharomyces cerevisiae in grape juices. BMC Genomics, 19, 772. https://doi.org/10.1186/s12864-018-5145-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poczai, P. (2011). Molecular genetic studies on complex evolutionary processes in Archae solanum (Solanum, Solanaceae), PhD thesis, University of Pannonia, pp 126.

    Google Scholar 

  • Poczai, P., IIdiko, V., Laos, M., Cseh, A., Bell, N., Valkonen, J. P. T., & Hyvonen, J. (2013). Advances in plant gene-targeted and functional markers: A review. Plant Methods, 9, 6.

    Google Scholar 

  • Provan, J., Powell, W., & Hollingsworth, P. M. (2001). Chloroplast microsatellites: New tools for studies in plant ecology and evolution. Trends in Ecology & Evolution, 16(3), 142–147.

    Article  CAS  Google Scholar 

  • Que, Y. X., Pan, Y. B., Lu, Y. H., et al. (2014). Genetic analysis of diversity within a Chinese local sugarcane germplasm based on start codon targeted polymorphism. BioMed Research International, 1–10.

    Google Scholar 

  • Rabbi, I. Y., Hamblin, M. T., Kumar, P. L., Gedil, M. A., Ikpan, A. S., Jannink, J. L., & Kulakow, P. A. (2014). High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by sequencing and its implications for breeding. Virus Research, 186, 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Rajendrakumar, P., Biswal, A. K., Balachandran, S. M., et al. (2007). Simple sequence repeats in organellar genomes of rice: Frequency and distribution in genic and intergenic regions. Bioinformatics, 23(1), 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Raji, A. A. J., Anderson, J. V., Kolade, O. A., Ugwu, C. D., Dixon, A. G. O., & Ingelbrecht, I. L. (2009). Gene-based microsatellites for cassava (Manihot esculenta Crantz): Prevalence, polymorphisms, and cross-taxa utility. BMC Plant Biology, 9, 118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramsay, L., Macaulay, M., Cardle, L., Morgante, M., degli Ivanissevich, S., Maestri, E., Powell, W., & Waugh, R. (1999). Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. The Plant Journal, 17, 415–425.

    Article  CAS  PubMed  Google Scholar 

  • Roy, N. S., Choi, J. Y., Lee, S. I., et al. (2015). Marker utility of transposable elements for plant genetics, breeding, and ecology: A review. Genes Genomics, 37(2), 141–151.

    Article  CAS  Google Scholar 

  • Salazar, J. A., Rasouli, M., Moghaddam, R. F., et al. (2014). Low-cost strategies for development of molecular markers linked to agronomic traits in Prunus. Agricultural Sciences, 5(05), 430–439.

    Article  Google Scholar 

  • SanMiguel, P., Tikhonov, A., Jin, Y. K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., et al. (1996). Nested retrotransposons in the intergenic regions of the maize genome. Science, 5288(274), 765–768.

    Article  Google Scholar 

  • Sansaloni, C. P., Petroli, C. D., Carling, J., et al. (2010). A high-density diversity arrays technology (DArT) microarray for genome-wide genotyping in Eucalyptus. Plant Methods, 6, 16. https://doi.org/10.1186/1746-4811-6-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarosh, B. R., & Meijer, J. (2007). Transcriptional profiling by cDNA-AFLP reveals novel insights during methyl jasmonate, wounding and insect attack in Brassica napus. Plant Molecular Biology, 64, 425–438.

    Article  CAS  PubMed  Google Scholar 

  • Schalk, M., Nedelkina, S., Schoch, G., Batard, Y., & Werck-Reichart, D. (1999). Role of unusual amino acid residues in the proximal and distal heme regions of a plant P450, CYP73A1. The Biochemist, 38, 6093–6103.

    Article  CAS  Google Scholar 

  • Schlotteroer, C., Amos, B., & Tautz, D. (1991). Conservation of polymorphic simple sequence loci in cetacean species. Nature, 354(6348), 63–65.

    Article  Google Scholar 

  • Schulmann, A. H. (2007). Molecular markers to assess genetic diversity. Euphytica, 158, 313–321.

    Article  CAS  Google Scholar 

  • Semagn, K., Bjørnstad, Ã…., & Ndjiondjop, M. N. (2006). An overview of molecular marker methods for plants. African Journal of Biotechnology, 5, 2540–2568.

    CAS  Google Scholar 

  • Seyedimoradi, H., & Talebi, R. (2014). Detecting DNA polymorphism and genetic diversity in lentil (Lens culinaris Medik.) germplasm: Comparison of ISSR and DAMD marker. Physiology and Molecular Biology of Plants, 20(4), 495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shull, V., & Hamer, J. E. (1996). Genetic differentiation in the rice blast fungus revealed by the distribution of the Fosbury retrotransposon. Fungal Genetics and Biology, 20, 59–69.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R., Soon-Guan, T., Panandam, J., Rahman, R. A., & Cheah, S.-C. (2008). Identification of cDNA-RFLP markers and their use for molecular mapping in oil palm (Elaeis guineensis). APJMBB, 16(3), 53–63.

    Google Scholar 

  • Smykal, P., Bacova-Kerteszova, N., Kalendar, R., Corander, J., Schulman, A. H., & Pavelek, M. (2012). Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theoretical and Applied Genetics, 122, 1385–1397.

    Article  Google Scholar 

  • Sobrino, B., Brion, M., & Carracedo, A. (2005). SNPs in forensic genetics: A review on SNP typing methodologies. Forensic Science International, 154(2), 181–194.

    Article  CAS  PubMed  Google Scholar 

  • Somers, D. J., & Demmon, G. (2002). Identification of repetitive, genome-specific probes in crucifer oilseed species. Genome, 45, 485–492.

    Google Scholar 

  • Sornerville, C., & Sornerville, S. (1999). Plant functional genomics. Sciences, 285, 380–383.

    Article  Google Scholar 

  • Song, Y., Wang, Z., Bo, W., Ren, Y., & Zhang, D. (2012). Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis. BMC Genomics, 13, 286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorrentino, R., Potolicchio, I., Ferrara, G. B., & Tosi, R. (1992). A new approach to HLA-DPB1 typing combining DNA heteroduplex analysis with allele-specific amplification and enzyme restriction. Immunogenetics, 36, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Spaniolas, S., May, S. T., Bennett, M. J., et al. (2006). Authentication of coffee by means of PCR-RFLP analysis and lab-on-a-chip capillary electrophoresis. Journal of Agricultural and Food Chemistry, 54(20), 7466–7470.

    Article  CAS  PubMed  Google Scholar 

  • Sraphet, S., Boonchanawiwat, A., Thanyasiriwat, T., Boonseng, O., Tabata, S., Sasamoto, S., Shirasawa, K., Isobe, S., Lightfoot, D. A., Tangphatsornruang, S., & Triwitayakorn, K. (2011). ISSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics, 122(6), 1161–1170.

    Article  PubMed  Google Scholar 

  • Sun, Z., Wang, Z., Tu, J., Zhang, J., Yu, F., Mcvetty, P. B. E., & Li, G. (2007). An ultradense genetic recombination map for Brassica napus, consisting of 13,551 SRAP markers. Theoretical and Applied Genetics, 114, 1305–1317.

    Article  CAS  PubMed  Google Scholar 

  • Syed, N. H., & Flavell, A. J. (2006). Sequence-specific amplification polymorphisms (SSAPs): A multi-locus approach for dissecting multiple loci in transposon insertions. Nature Protocols, 1, 2746–2752.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, T., Ishikawa, G., Ogiso-Tanaka, E., Yanagisawa, T., & Sato, K. (2019). Development of genome-wide SNP markers for barley via reference- based RNA-Seq analysis. Frontiers in Plant Science, 10.

    Google Scholar 

  • Tanhuanpaa, P., Kalendar, R., Laurila, J., Schulman, A. H., Manninen, O., & Kiviharju, E. (2006). Generation of SNP markers for short straw in oat (Avena sativa L.). Genome, 49, 282–287.

    Article  CAS  PubMed  Google Scholar 

  • Tautz, D. (1989). Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 17(16), 6463–6471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uzun, A., Yesiloglu, T., Aka-Kacar, Y., Tuzcu, O., & Gulsen, O. (2009). Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Scientia Horticulturae, 121, 306–312.

    Article  CAS  Google Scholar 

  • Varshney, R. K., Hiremath, P. J., Lekha, P., Kashiwagi, J., Balaji, J., Deokar, A. A., Vadez, V., Xiao, Y., Srinivasan, R., Gaur, P. M., Siddique, K. H., Town, C. D., & Hoisington, D. A. (2009). A comprehensive resource of drought- and salinity responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics, 15(10), 523.

    Article  CAS  Google Scholar 

  • Verma, H., Borah, J. L., & Sarma, R. N. (2019). Variability assessment for root and drought tolerance traits and genetic diversity analysis of rice germplasm using SSR markers. Science Report, 9, 16513. https://doi.org/10.1038/s41598-019-52884-1.

    Article  CAS  Google Scholar 

  • Vieira, P., Burgermeister, W., Mota, M., Metge, K., & Silva, G. (2007). Lack of genetic variation of Bursaphelenchus xylophilus in Portugal revealed by RAPD-PCR analyzes. Journal of Nematology, 39, 118–126.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vitte, C., & Panaud, O. (2005). LTR retrotransposons and flowering plant genome size: Emergence of the increase/decrease model. Cytogenetic and Genome Research, 110, 91–107.

    Article  CAS  PubMed  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., et al. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23(21), 4407–4414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrooman, O. P., & Witjes, J. A. (2009). Molecular markers for detection, surveillance and prognostication of bladder cancer. International Journal of Urology, 16, 234–243.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B. Y., Shi, L., Ruan, Z. Y., & Deng, J. (2011). Genetic diversity and differentiation in Dalbergia sissoo (Fabaceae) as revealed by RAPD. Genetics and Molecular Research, 10, 114–120.

    Article  PubMed  Google Scholar 

  • Waugh, R., Mclean, K., Flavell, A. J., Pearce, S. R., Kumar, A., Thomas, B. B., & Powell, W. (1997). Genetic distribution of Bare-1 like retrotransposable elements in the barely genome revealed by sequence-specific amplification polymorphism (S-SAP). Molecular Genetics, 253, 687–694.

    CAS  Google Scholar 

  • Weber, J. L. (1990). Informativeness of human (dC-dA) n¢(dG-dT) n polymorphisms. Genomics, 7(4), 524–530.

    Article  CAS  PubMed  Google Scholar 

  • Weiland, J. J., & Yu, M. H. (2003). A cleaved amplified polymorphic sequence (CAPS) marker associated with root-knot nematode resistance in sugarbeet. Crop Science, 43(5), 1814–1188.

    Article  CAS  Google Scholar 

  • Welsch, R., Arango, J., Bar, C., Salazar, B., Al-Babili, S., Beltra, J., Chavarriaga, P., Ceballos, H., Tohme, J., & Beyera, P. (2010). Provitamin a accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. The Plant Cell, 22, 3348–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzl, P., Carling, J., Kudrna, D., et al. (2004). Diversity arrays technology (DArT) for whole-genome profiling of barley. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9915–9920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicaksana, N., Gilani, S., Ahmad, D., Kikuchi, A., & Watanabe, K. (2011). Morphological and molecular characterization of underutilized medicinal wild ginger (Zingiber barbatum wall.) from Myanmar. Plant Genetic Researches, 9(4), 531–542.

    Article  CAS  Google Scholar 

  • Wicker, T., Sabot, F., Hua-Van, A., et al. (2007). A unified classification system for eukaryotic transposable elements. Nature Reviews. Genetics, 8, 973–982.

    Article  CAS  PubMed  Google Scholar 

  • Williams, J. G. K., Kublelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphism’s amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff, K., Schoen, E. D., & Peters-Van, R. J. (1993). Optimizing the generation of random amplified polymorphic DNAs in chrysanthemum. Theoretical and Applied Genetics, 86, 1033–1037.

    Article  CAS  PubMed  Google Scholar 

  • Wright, E. M., & Kelly, J. D. (2011). Mapping QTL for seed yield and canning quality following processing of black bean (Phaseolus vulgaris L.). Euphytica, 179, 471–484.

    Article  Google Scholar 

  • Wu, K. S., Jones, R., Danneberger, L., & Scolnik, P. A. (1994). Detection of microsatellite polymorphisms without cloning. Nucleic Acids Research, 22(15), 3257–3258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, X., Li, H., & Tang, C. (2009). A silver-staining cDNA-AFLP protocol suitable for transcript profiling in the latex of Hevea brasiliensis (Para rubber tree). Molecular Biotechnology, 42, 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, D., Liu, S., Wei, Y., Zhou, D.-Y., Li, Y., & Hu, C.-M. (2016). cDNA-AFLP analysis reveals differential gene expression in incompatible interaction between infected non-heading Chinese cabbage and Hyaloperonospora parasitica. Horticulture Research, 3, 16034. https://doi.org/10.1038/hortres.2016.34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y. (2010). Molecular plant breeding. Wallingford: CABI.

    Book  Google Scholar 

  • Yamada, T. (2011). Festuca. In Wild crop relatives: genomic and breeding resources. Edited by Kole C. Berlin Germany: Springer, 153–164.

    Google Scholar 

  • Yamada, T., & Kishida, T. (2003). Genetic analysis of forage grasses based on heterologous RFLP markers detected by rice cDNAs. Plant Breeding, 122, 57–60.

    Article  CAS  Google Scholar 

  • Yamanaka, S., Suzuki, E., Tanaka, M., Takeda, Y., Watanabe, J. A., & Watanabe, K. N. (2003). Assessment of cytochrome P450 sequnces offers a useful tool for determining genetic diversity in higher plant species. Theoretical and Applied Genetics, 108, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Fu, S., Khan, A., et al. (2013). Molecular cloning and development of RAPD-SCAR markers for Dimocarpus longan variety authentication. Springer Plus, 2, 501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yıldız, M., Kocak, M., & Baloch, F. S. (2015). Genetic bottlenecks in Turkish okra germplasm and utility of iPBS retrotransposon markers for genetic diversity assessment. Genetics and Molecular Research, 14(3), 10588–10602.

    Article  PubMed  CAS  Google Scholar 

  • Yuskianti, V., & Shiraishi, S. (2010). Sequence characterized amplified region (SCAR) markers in Sengon (Paraseriathes falcataria (L.) Nielsen). HAYATI Journal of Bioscience, 17(4), 167–172.

    Article  Google Scholar 

  • Zedek, F., Smerda, J., Smarda, P., & BureÅ¡, P. (2010). Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. BMC Plant Biology, 30(10), 265.

    Article  CAS  Google Scholar 

  • Zhang, Z., Hu, M., Zhang, J., Liu, D., Zheng, J., Zhang, K., Wang, W., & Wan, Q. (2009). Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Molecular Breeding, 24, 49–61.

    Article  CAS  Google Scholar 

  • Zhang, K., Wu, Z., Tang, D., Lv, C., Luo, K., Zhao, Y., Liu, X., Huang, Y., & Wang, J. (2016). Development and identification of SSR markers associated with starch properties and β-carotene content in the storage root of sweet potato (Ipomoea batatas L.). Frontiers in Plant Science, 7, 223. https://doi.org/10.3389/fpls.2016.00223.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, X., Cheng, T., Yang, L., Xu, J., Tang, J., Xie, K., Huang, X., Bao, Z., Zheng, X., Diao, Y., You, Y., & Hu, Z. (2019). Genetic diversity and DNA fingerprints of three important aquatic vegetables by EST-SSR markers. Scientific Reports, 9, 14074. https://doi.org/10.1038/s41598-019-50569-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, L., Wang, K., Tan, J., Li, W., & Li, S. (2002). Putative cytochrome P450 genes in rice genome (Oryza sativa L. ssp. indica) and their EST evidence. Science in China. Series C, Life Sciences, 45(5), 512–517.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Q.-H., Spriggs, A., Mattew, L., Fan, L., Kennedy, G., Gubler, F., & Helliwell, C. (2008). A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Research, 18, 1456–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeats (SSR)-anchored polymerase chain reaction amplification. Genomics, 20, 176–183.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Okeh Igwe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Igwe, D.O. (2021). Molecular Markers: Potential Facilitators in Plant Breeding and Germplasm Conservation. In: Babalola, O.O. (eds) Food Security and Safety . Springer, Cham. https://doi.org/10.1007/978-3-030-50672-8_31

Download citation

Publish with us

Policies and ethics